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Control of Nonlinear Hysteresis Systems by Riemannian Geometric

Approach†

Yoshiaki Izawa∗ and Kyojiro Hakomori∗

This paper presents a designing method for nonlinear systems that have hysteresis properties in the input

stage. The hysteresis properties are usually described by two-valued nonlinear functions. Therefore it is more

difficult to design the nonlinear hysteresis systems.

By using the idea of topology, we consider first how to represent such a hysteresis property as a one-valued

function. To this modified nonlinear system, we construct a Riemannian geometric nonlinear optimal regulator

that has been proposed by the authors. Because the nonlinear geometric regulator is homeomorphic to a linear

optimal regulator, the superior properties of a linear regulator (i.e., asymptotic stability, feedback construction

and so on) are also reflected in the nonlinear regulator.

As an example, the temperature control system with a bimetal thermal sensor is investigated.
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1. Introduction

Some of the real plants have the non-negligible hystere-

sis properties. These properties are appeared especially

in the thermal systems controlled by bimetal thermal sen-

sors, hydraulic servo systems controlled by on-off valves

with clatter properties, high accuracy position control sys-

tems by piezo actuators and so on. Since the hysteresis

systems are described by two-valued nonlinear functions

and often bring the limit cycles 1), many control designers

feel great difficulties.

In this paper we first represent the nonlinear systems

without two-valued functions by the idea of topology.

Next, we design these systems by the Riemannian geo-

metric approach 2), 3) proposed by authors. In this the-

ory we have derived a nonlinear optimal regulator whose

topological structure is equivalent to that of an appro-

priate paired linear regulator. Last, we investigate the

control performance through the numerical examples of a

temperature control with a bimetal thermal sensor.

2. Geometrical Interpretation of Hys-
teresis and Designing Principle

In topological geometry, the torus T2 shown in Fig. 1 is

interpreted as a manifold which is homeomorphic to the

2-dimensional Euclidean space constructed by the direct

product S1 × S1 of two circumferences.
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Fig. 1 Geometric interpretation of hysteresis

Therefore a closed geodesic on a torus is appeared as

a line on the above 2-dimensional Euclidean space and

represented by 1 parameter θ.

When the torus is looked at sideways ( i.e., looked from

hole-less direction) and mapped to a plane, the closed

geodesic is mapped as an ellipse. This ellipse is usually

represented by a two-valued function. On the other hand,

the ellipse can be also described by a one-valued function

of 1 parameter θ, because the ellipse is derived from a

closed geodesic. The same discussion leads that the hys-

teresis properties can be represented by one-valued func-

tions of 1 parameter θ.

Now, we assume that the input block b(u) shown in

Fig. 2 has a hysteresis property composed by an ellipse

(i.e., closed geodesic).
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Fig. 2 Representation of a two-valued hysteresis function

with 1 parameter θ

Consider a system input u and a fictitious input v or θ

defined as following equations.

u = sin(θ) (1)

v = θ + φ0 (−π < φ0 < 0) (2)

Here v has a phase lag φ0 behind θ.

Because the output signal of the dotted fictitious block

b(v) in Fig. 2 is equivalent to that of the input block b(u),

we have the following relation.

b(v)v = b(u)u (3)

Since the hysteresis property of b(u) is given as an ellipse

and can be regarded as a special pattern of Lissajous
′

figures made from two sine functions whose phases are

different from each other, we have

b(u) =
sin(θ + φ0)

sin(θ)
=

sin(sin−1(u) + φ0)

u
, (4)

−π < φ0 < 0. (5)

We will now confirm that the above b(u) becomes a

two-valued function of u. The function sin−1(u) involved

in a numerator takes the following values with respect to

the points A and B in Fig. 3.

sin−1(u) =

{
2nπ + θ ( to point A )

(2n + 1)π − θ ( to point B )
(6)

(n = 0, ±1, ±2, . . .) (7)

Therefore sin−1(u) is represented as a multi-valued func-

tion of the input u (−1 ≤ u ≤ 1).

Let the point A′ and B′ have a same phase lag φ0 be-

hind points A and B each other. Then the numerator of

(4), i.e., f ≡ sin(sin−1(u) + φ0), is given as the following

values with respect to points A′ and B′.

sin(sin−1(u) + φ0) =

{
fA′

fB′
(8)

Thus the function b(u) defined in (4) becomes a two-

valued function of u. However, b(u) defined in (4) can be

Fig. 3 Illustration of f = sin{sin−1(u) + φ0}

interpreted simultaneously as a one-valued function with

respect to θ, because both numerator and denominator of

(4) are one-valued functions with respect to θ .

Consider the function b(v) of a fictitious input v.

Substituting (4) and (1) into (3), and considering (2), we

have

b(v) = sin(v) /v (9)

Therefore the hysteresis property defined by b(v) is repre-

sented as a one-valued function with respect to a fictitious

input v.

Fig. 4 One input imaginary system which represents the hys-

teresis property with 1 parameter θ

Now, consider a one-input hysteresis system shown in

Fig. 4. Regarding the hysteresis property as a deforma-

tion of the ellipse defined in Fig. 2, the system equation is

given as


ẋ1

...

ẋn

 =



0 1 0 · · · 0

0 0 1 · · · 0

. . .

0 0 · · · 0 1

−a0 −a1 · · · · · · −an−1




x1

...

xn



+


0

· · ·
0

b(v)

 v, (10)

b(v) = k · tanh(h · sin(v)) /v. (11)
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Here b(v) is a one-valued nonlinear function of a fictitious

input v.

On the other hand, the hysteresis system of Fig. 4 can

be represented by using a real input u. From (10), (11)

and the following relation

v = sin−1(u) + φ0, (12)

we have


ẋ1

...

ẋn

 =



0 1 0 · · · 0

0 0 1 · · · 0

. . .

0 0 · · · 0 1

−a0 −a1 · · · · · · −an−1




x1

...

xn



+


0

· · ·
0

b(u)

 u, (13)

b(u) = k · tanh(h · sin(sin−1(u) + φ0)) /u. (14)

Here b(u) becomes a two-valued function of u .

Thus we have shown the procedure to represent the hys-

teresis property as a one-valued nonlinear function by in-

troducing a fictitious input v. In later sections, we will

construct a nonlinear optimal regulator by adopting the

hysteresis system (10) with v instead of the system (13)

with u. Then the real input u will be given by using the

fictitious optimal control vopt as

u = sin(vopt − φ0). (15)

3. Riemannian Geometric Approach 2), 3)

In this section a Riemannian geometric nonlinear opti-

mal regulator is constructed by the following idea.

” When the trajectories of a linear system is observed on

a set of curvilinear coordinate axes instead of the orthog-

onal straight coordinate axes, then the trajectories behave

like a nonlinear system. Conversely, the trajectories of a

nonlinear system can be treated as those of a linear system

by using a suitable set of curvilinear coordinate axes.”

Consider a nonlinear system (16) and its paired ficti-

tious linear system (17).

ẋ = a(x, v)x + b(x, v)v, (16)

Ẋ = AX + BV. (17)

Here x,X are ｎ-dimensional vectors, v, V are ｒ-

dimensional vectors, a(x, v), A are n × n matrixes, and

b(x, v), B are n × r matrixes.

Let X̃ , X̄ be (n + r)-dimensional vectors spanned on

a direct product space of the state vector space and the

control vector space.

X̃ =

(
x

v

)
, X̄ =

(
X

V

)
. (18)

Then (16)，(17) are given as

˙̃X = α̃(X̃ ) X̃ , α̃(X̃ ) =

(
a(x, v) b(x, v)

0 0

)
. (19)

˙̄X = Ā X̄ , Ā =

(
A B

0 0

)
. (20)

Tensor representations of these equations (19), (20) will

lead the following Riemannian geometric models.

Now, let X̃µ , Ãµ
ν be tensors described on the curvilin-

ear coordinate system (x̃i), i = 1, · · · , n + r. And let

X̄µ , Āµ
ν be their paired tensors described on the orthogo-

nal straight coordinate system (x̄i). Then the components

of these tensors are transferred as

X̄µ =
∂x̄µ

∂x̃γ
X̃γ , (21)

Āµ
ν =

∂x̄µ

∂x̃α

∂x̃β

∂x̄ν
Ãα

β . (22)

According to the matrix representation of tensors2), 3), a

contravariant vector is expressed as a column vector, and

(1,1)-tensor T µ
ν is expressed as a matrix with (µ, ν) ele-

ment T µ
ν . Therefore a linear system (20) is represented

as a tensor equation

d

dt
X̄µ = Āµ

ν X̄ ν . (23)

Substituting (21) into (23), we have

∂x̄µ

∂x̃γ

dX̃γ

dt
+

∂2x̄µ

∂x̃β∂x̃λ

dx̃λ

dt
X̃β = Āµ

ν
∂x̄ν

∂x̃ρ
X̃ρ. (24)

Multiplying ∂x̃γ

∂x̄µ into (24), we have

dX̃γ

dt
+

∂x̃γ

∂x̄µ

∂2x̄µ

∂x̃β∂x̃λ

dx̃λ

dt
X̃β

=
∂x̃γ

∂x̄µ
Āµ

ν
∂x̄ν

∂x̃ρ
X̃ρ. (25)

Using (22) and the Christoffel symbols defined as

˜{λ
ν

µ} =
1

2
gνk(

∂gλk

∂x̃µ
+

∂gkµ

∂x̃λ
− ∂gµλ

∂x̃k
)

=
∂x̃ν

∂x̄i

∂2x̄i

∂x̃λ∂x̃µ
, (26)

where gµν is a metric tensor, (25) becomes

dX̃γ

dt
+ ˜{β

γ
λ}

dx̃λ

dt
X̃β = Ãγ

ρ X̃ρ. (27)

Theorem 1. The linear system (23) described on the

orthogonal straight coordinate system (x̄i), i = 1, . . . , n +

r, is represented on the curvilinear coordinate system (x̃i)

as the equation (27).

Proof. Proof is given as above. Q.E.D.
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This Riemannian geometric model has a dual

model.

Theorem 2. The transposed linear system

dX̄µ

dt
= X̄ν

tAν
µ (28)

described on the orthogonal straight coordinate system

(x̄i), i = 1, . . . , n + r, is represented on the curvilinear

coordinate system (x̃i) as

dX̃ρ

dt
− X̃β

dx̃δ

dt
˜{δ

β
ρ} = X̃β

t̃A
β

ρ. (29)

Proof. See Theorem 2 in Ref. 3). Q.E.D.

Using the Riemannian metric tensor gµν , the following

relation holds good between the contravariant and covari-

ant vectors X̃ ν , X̃µ in Theorem 1, 2.

X̃µ = gµνX̃ ν (30)

And the tensor tAν
µ has the following properties.

tAi
j = Āj

i (31)

Consider the mapping between two integral manifolds

of the Riemannian geometric model on the orthogonal

straight coordinate system and the curvilinear coordinate

system. Let τν
γ , T γ

ν be

τν
γ =

∂x̄ν

∂x̃γ
, T γ

ν =
∂x̃γ

∂x̄ν
.

Then the transformation formulas of tensor components

X̄ ν =
∂x̄ν

∂x̃γ
X̃γ , (32)

X̄ν =
∂x̃γ

∂x̄ν
X̃γ (33)

can be regarded as the mappings between X̄ ν and X̃γ

using τ and T . If both τ and T are continuous map-

pings, then the mapping τ becomes the homeomorphism

between two integral manifolds.

Using these τ and T , the Riemannian geometric model

(27) and its dual model (29) become

dX̃γ

dt
= (T γ

µ Āµ
ντν

ρ − T γ
µ

dτµ
ρ

dt
) X̃ρ, (34)

dX̃ρ

dt
= X̃β(T β

ν
tAν

µτµ
ρ −

dT β
µ

dt
τµ

ρ). (35)

Thus the following Riemannian geometric nonlinear op-

timal regulator is derived.

Theorem 3. When the homeomorphism τ exists and

is represented as

(
τ i

j

)
=

( n r

n τ11 τ12

r τ21 τ22

)
, (36)

then for the Riemannian geometric model (27) or (34) and

the performance index

J =
1

2

∫ T

t0

X̃iT i
νQ̄ν

µτµ
j X̃

j dt (37)

(
Q̄ν

µ

)
=

( n r

n Q 0

r 0 R

)
, (38)

where Q̄ν
µ is positive definite, we have the optimal control

law

v = −(τ22 + Kτ12)
−1(τ21 + Kτ11)x (39)

K = R−1BtS. (40)

Here S is the solution of the Riccati equation

dS

dt
+ SA + AtS − SBR−1BtS + Q = 0, (41)

S(T ) = 0. (42)

Proof. See Theorem 3 in Ref. 3). Q.E.D.

Next we consider the infinite-time nonlinear regulator

problem.

Theorem 4. When the homeomorphism τ exists, the

fictitious linear system (20) or (23) is completely control-

lable and the matrix representations of
(
τ i

j

)
,
(
Q̄ν

µ

)
are

given as (36), (38) respectively, then for the Riemannian

geometric model (27) or (34) and the performance index

J =
1

2

∫ ∞

t0

X̃iT i
νQ̄ν

µτµ
j X̃

j dt, (43)

where Q̄ν
µ is positive definite, we have the optimal control

law

v = −(τ22 + Kτ12)
−1(τ21 + Kτ11)x, (44)

K = R−1BtS. (45)

Here S is the solution of the algebraic Riccati equation

SA + AtS − SBR−1BtS + Q = 0. (46)

Proof. The Riccati equation derived in Theorem 3 is

equivalent to that of a finite-time linear optimal regulator

and does not depend on the homeomorphism τ . Further-

more, in Theorem 6 shown later, the homeomorphism τ is

only determined by the equality between the Riemannian

geometric model and the nonlinear system. Therefore, the

construction problem of τ is independent of the optimal

problem. Thus the finite-time nonlinear optimal problem

in Theorem 3 can be separated into the finite-time linear

optimal regulator problem for a fictitious linear system

and the construction problem of τ .

Similarly, the infinite-time nonlinear regulator problem

which is the special case of the finite-time problem can

also be separated into the infinite-time linear regulator

problem and the construction problem of τ .

Consequently, Kalman’s discussion constructing

a infinite-time linear regulator for a completely control-

lable linear system is acceptable (see Chap.6 in Ref. 4)).

Thus the solution S of the Riccati equation (41) becomes

a constant matrix and we have (46). Q.E.D.
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Theorem 5. Nonlinear regulator given in Theorem 4

is asymptotic stable 5).

Proof. See Theorem 4 in Ref. 3). Now the asymptotic

stability 5) is only defined in the case of an infinite time

interval (T → ∞). Q.E.D.

Next, we consider the construction method of the curvi-

linear coordinate system on which the nonlinear system

dX̃γ

dt
= α̃γ

µ(X̃ ) X̃µ (47)

is observed as a linear system (23).

Since the equation (47) is equivalent to the Riemannian

geometric model (27), we have

Ãγ
µ − ˜{µ

γ
λ}

dx̃λ

dt
= α̃γ

µ(X̃ ). (48)

Using (22) and the relations

˜{µ
γ

λ} = T γ
β

∂τβ
µ

∂x̃λ
, (49)

∂τβ
µ

∂x̃λ

dx̃λ

dt
=

dτβ
µ

dt
=

∂τβ
µ

∂X̃λ

dX̃λ

dt
, (50)

the equation (48) becomes the following partial differen-

tial equation with respect to τ .

∂τβ
µ

∂X̃λ
[α̃λ

γ(X̃ ) X̃γ ] = Āβ
ντν

µ − τβ
γ α̃γ

µ(X̃ ) (51)

Theorem 6. The homeomorphism τ between the in-

tegral manifold of a nonlinear system (19) and that of a

linear system (20) satisfies a partial differential equation

(51).

Proof. Proof is given as above. Q.E.D.

Since the equation (51) is a quasi-linear partial differ-

ential equation of first order, we have the following char-

acteristic equations.

dX̃γ

dt
= α̃γ

µ(X̃ ) X̃µ (52)

dτβ
µ

dt
= Āβ

ντν
µ − τβ

γ α̃γ
µ(X̃ ). (53)

The nonlinear optimal regulator derived in Theorem 4 is

realized by using the algorithm in Ref. 2).

4. Control of Nonlinear Hysteresis System

This section presents a designing method for nonlinear

hysteresis systems.

First, we consider the nonlinear hysteresis system (10)

with a fictitious input v. Second, we construct a nonlin-

ear optimal regulator based on Theorem 4 and derive vopt.

Last, a real input u is given as

u = sin(vopt − φ0). (54)

The flow chart is shown in Fig. 5.

< Numerical Example >

�
�

�
�Start

Initialize x = x0, v = v0, τ = In+m, j = 0,

and determine A = a(x0, v0),B = b(x0, v0).

Find K using Riccati equation.

j = j + 1

u = sin(vopt − φ0)

Find x(t) using plant equation.

vopt = −(τ22 + Kτ12)−1(τ21 + Kτ11)x

Determine a(x, v), b(x, v) at time = t,

using v = vopt and plant equation.

Find τ(t) =

(
τ11 τ12

τ21 τ22

)
using eq.(53).

�����
�����

�����
�����

j > jmax ?
�
�

�
�Stop

No Yes

�

�

Fig. 5 Flow chart for designing the nonlinear hysteresis sys-

tem

Consider the temperature control 1) of the compartment

in an airplane shown in Fig. 6.

The heat from electric devices is detected by the bimetal

Fig. 6 Temperature control of a compartment with bimetal

thermal sensor

thermal sensor. When the temperature in the compart-

ment rises, the current flowing to the DC motor increases

in the opposite direction and the inlet valve is opened.

These control operations lead the temperature constant.
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The bimetal switch has a hysteresis property shown in

Fig. 7. Here Θ is the temperature of a compartment,

and ξ, ξ̇ are the revolution angle and its derivative of

an inlet valve, respectively.

–1 0 1
Θ

–1

0

1

dξ
/d

t

Fig. 7 Hysteresis of an inlet valve (φ 0 = −15◦, h = 10.0)

Table 1 System variables of the temperature control system

System variables

M mass of compartment

C specific heat

S closs area of compartment

α thermal conductivity

Θ temperature of compartment

q heat

The system variables are shown in Table 1. Consider-

ing the heat balance, the system equation is derived as

M C dΘ + S α Θ dt = q̇ dt. (55)

Since the heat inflow from the outside depends on the

position of a inlet valve, the heat variation q̇ is given as

q̇ = − K ξ(Θ) + f(t), K > 0 (56)

ḟ(t) = 0. (57)

Thus we have

T1 Θ̇ + Θ = − K1 ξ(Θ) + f1(t), (58)

where

T1 =
M C

S α
, K1 =

K

S α
, f1(t) =

f(t)

S α
. (59)

Differentiating (58) with time, we have

T1 Θ̈ + Θ̇ + K1 ξ̇(Θ) = 0. (60)

The bimetal switch is working as a temperature sen-

sor and an on-off switch. Fig. 8 is a simulation system

in which the on-off switch is replaced by a relay with a

hysteresis property. Let e be an input voltage of the

relay, and ξ1(e) be a revolution angle of the inlet valve

with respect to the input voltage e. Then the hysteresis

property is represented as

ξ̇1(e) = ξ̇(Θ). (61)

Fig. 8 Temperature control of the compartment with thermal

sensor and relay

Using the state and control vectors x1 = Θ, x2 =

Θ̇, u = e, and considering (60), (61), the system equa-

tion of Fig. 8 is derived as

d

dt

(
x1

x2

)
=

(
0 1

0 − 1
T1

)(
x1

x2

)
+

(
0

−K1
T1

ξ̇1(u) / u

)
u.

(62)

Here the hysteresis function ξ̇1(u) is given as

ξ̇1(u) = tanh(h · sin(v)), (63)

v = sin−1(u) + φ0. (64)

To investigate the characteristic property of this system,

we consider the following approximate linear system.

d

dt

(
x1

x2

)
=

(
0 1

0 − 1
T1

)(
x1

x2

)
+

(
0

−K1
T1

h

)
u.

(65)

The transfer function is given as

G(s) =
−K1h

(T1s + 1)s
. (66)

Considering a PID-control u = −(kpx1 + ki

∫
x1dt +

kd
dx1
dt ) , the Hurwitz stability conditions are given as

kp < 0, ki < 0, kd <
1

K1h
(1 − T1ki

kp
). (67)

In the case of K1 = 1.0, T1 = 1.0, φ0 = −15◦, h =

10.0, the simulation results are shown in Fig. 9 (kp =

−0.5, ki = −0.2, kd = −0.1) and Fig. 10 (kp =

−5.0, ki = −2.0, kd = −0.05).

Here dotted lines, long-dotted lines and solid lines show

x1(t), x2(t) and u(t), respectively. The desired values are

given as x1 = x2 = 0 . In both cases, the stability condi-

tions are satisfied. Although Fig. 9 shows good responses,

Fig. 10 shows an unstable case with a limit cycle.

The simulation results of our nonlinear regulators are

shown in Fig. 11 and Fig. 12. Here Q = I2, R = I1,

and the step widths of time are ∆ = 0.01.

The meanings of lines are as above and one dotted lines

show v(t). The difference between Fig. 11 and Fig. 12 is
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0 10 20
Time

–1

0

1

X
1,

 X
2,

 U

Fig. 9 Responses of the temperature control system with

PID-control (kp = −0.5, ki = −0.2, kd = −0.1)

0 10 20
Time

0

5

X
1,

 X
2,

 U

Fig. 10 Responses of the temperature control system with

PID-control (kp = −5.0, ki = −2.0, kd = −0.05)

only in the initial conditions.

5. Conclusions

The designing methods of nonlinear hysteresis systems

have been proposed. In section 2, the hysteresis system

has been described with a one-valued function by consid-

ering the closed geodesic on a torus. In section 3, the

nonlinear optimal regulator has been introduced by using

Riemannian geometry. In section 4, the example for a

thermal hysteresis system has been shown, and the use-

fulness of this approach has been confirmed.

References

1) J.E.Gibson: Nonlinear Automatic Control, McGraw-Hill

(1963)

2) Y.Izawa and K.Hakomori: Design of Nonlinear Regulators

Using Riemannian Geometric Model, SICE Trans., 16-5,

628/634 (1980)

3) Y.Izawa and K.Hakomori: Nonlinear Control of a Double-

Effect Evaporator by Riemannian Geometric Approach,

SICE Trans., 32-2, 197/206 (1996)

4) R.E.Kalman: Contribution to the theory of optimal con-

trol, Bol. Soc. Mat. Mexicana, Vol. 5, 102/119 (1960)

5) J.LaSalle and S.Lefschetz: Stability by Lyapunov’s Direct

Method with Applications, Academic Press (1961)

0 10 20
Time

0

1

2

X
1,

 X
2,

 V
, 

U

Fig. 11 Responses of the temperature control system with

nonlinear regulator (case-1)
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Fig. 12 Responses of the temperature control system with

nonlinear regulator (case-2)
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