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Self-referential Structure in Collective Agent System

— II Carrier Sequence Control of AGV Transportation System

based on Diversity–regulation of Strategy —

Toshimitsu HIGASHI∗, Kosuke SEKIYAMA∗∗ and Toshio FUKUDA∗∗∗

This paper proposes a system, which realizing a collective autonomous behavior such as an autonomous con-

veyance order formation in the AGV(Auto Guided Vehicle) transportation system. We attempt to deal with

a large scale distributed autonomous system in dynamic environment feasibly. We have worked to realize the

dynamically reconfigurable formation in the dynamic environment, and we showed that the dynamically recon-

figurable formation emerges as the autonomous conveyance order formation of AGV transportation system in the

dynamic environment. But It could not be mentioned when the restoration of the unloading success probability

was caused by the self-organization, since the index of the self-organization is not clarified. In this paper, We

define a strategy diversity as an index to the self-organization, and it is shown that it carries out the restoration of

the unloading success probability with the diversity-regulation process of the strategy. Moreover, it is shown that

adaptable parameters to the dynamic environment can be found by a distribution of “Self-organizing velocity”,

which is difference of strategic diversity.
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1. Introduction

Emergence of collective autonomous behavior in DARS

(Distributed Autonomous Robotics Systems) is expected

to have wide applicability in the field of engineering as well

due to its diversity, flexibility and adaptability. Recently,

production systems including material handling systems

are tending to move to large scale systems with high level

of controls, necessitating a response to complicated and

multiple specifications. Further the need to absorb change

in specifications into the system and design a fail proof

system that would not stop even in the event of a fault

has led to the design and installation of large-scale sys-

tems designed for continuous operation.

In order to design and set up a system that is indepen-

dent of the dynamic environment like change in specifi-

cations, or breakdown of equipment, there is much an-

ticipation regarding the emergence system design theory

and Distributed autonomous design methodology for real-

izing collective autonomous behavior based on collective

intelligence. The authors propose that the Distributed

autonomous design methodology is a superior methodol-

ogy due to its fault tolerance and flexibility in responding

to change in specification and although it has not been
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possible to explicitly clarify the behavior of each individ-

ual agent in the system, collective autonomous behavior

displayed by the AGV in the AGV transport system that

enables the system objectives to be reached have been

verified through simulation 1) 2). As shown in Fig.1, by

using Distributed Autonomous Designing Methodology

proposed in the above research, even in uncertain envi-

ronment where required conveyance order is not clarified,

it is possible to expect the emergence of collective behav-

ior as the agents will create the autonomous formation of

the conveyance order.

Recently, various research works have published the

role of Distributed Autonomous Designing Methodology

for realizing the emergence of collective intelligence in

uncertain and dynamic environment, namely the emer-

Fig. 1 Concept of collective behavior emerged as self-

organizing carrier sequence
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gence of cooperative behavior through stochastic gradient

methodology in the field of reinforced learning 5), Interac-

tive schema ecosystem model for internal observation and

internal description formats 11), cooperative behavior by

non-homogenous robot by combination of reflecting model

and planned model operations. 6), learning of multi agent

behavior through fuzzy inference interaction 4) The au-

tonomous formation of the conveyance order forming the

focus of this research resembles the scheduling problem in

which research covers the operation scheduling of multi-

ple AGV 10), and emergence of cooperative behavior based

on the knowledge obtained from the simulation of group

behavior 8).

As shown in fig. 1, we have proposed a Distributed

Autonomous Systems to explain the emergence of collec-

tive autonomous behavior occurring in the group intelli-

gence system even in an environment where required con-

veyance order is not defined clearly. In order to facilitate

the collective autonomous behavior, complicated strategy

formation where conveyance order is not defined is real-

ized through the proposed distributed autonomous sys-

tem based on the learning achieved through autonomous

behavior and mutual operation based on relative evalu-

ation between the agents 3). According to these results,

system objectives could be achieved through AGV strat-

egy formulation, however, in order to verify if the strat-

egy formulation was the result of Self organizing through

collective autonomous behavior could not be done as the

index of organizing was not defined, so it was not possi-

ble to provide a reference of the correlation between the

collective autonomous behavior of each agent and the Self

organizing of the system as a whole.

We consider that Self organizing is achieved by creat-

ing a physical time span pattern that coordinates with the

environment required for achieving the objective, reduc-

ing the degree of freedom of the system and through the

structure formation achieved by this process, it is possi-

ble to achieve the objective of the system as a whole. We

also consider that any activity or environmental change

in the system will cause the structure to dynamically col-

lapse and reform itself, and the process of (1) self reference

coupling construction, (2) relative evaluation by internal

observation and (3) by expansion/contraction of strategy

diversification are essential for realizing this collective in-

telligence system. The self reference coupling structure

represents a structural formation of autonomous group

formation which enables self organization of relative sys-

tem status based on the relationship with the environment

and regulated structure existing at the location. From the

fact that internal observation of the intelligence functions

of the system is required for self-organization of regulated

structure, internal relative evaluation is performed. In the

same way if we consider the variation in strategic diversity

as a hypothetically generated process of self-organization,

the self reference coupling structure is also a chained hy-

pothetical process and any variation in the strategic di-

versity becomes an element of the intelligence system.

Sannomiya has tested the design and operation of sys-

tem to flexibly respond to environmental change and dis-

cussed the simultaneous existence of autonomy and self in

responding to environment change. He has used 2 group

behavior models for explaining the emergence of cooper-

ative behavior, but has assigned diversity an initial set-

ting value for information exchange or awareness deciding

mechanism. In response to this, we argue that diversity is

an element that comes from within as a chain hypothesis

generated process and corresponds to the system expan-

sion and contraction. Based on the above concept, we

verify the validity of the 3 design guidelines in system de-

sign for dynamic environment in which AGV runs and test

the relationship of this concept to the actual engineering

system by means of simulation.

Although it is necessary to identify the optimal param-

eters for design of distributed autonomous system, the

identification method or reasons for suitability have not

been discussed. In this research we propose and verify

the method of identification of the optimum learning pa-

rameters for agent strategy reorganization for dynamic

environment.

2. System Definition

2. 1 Outline of the model

Let us consider an AGV transportation system as shown

in Fig.2. In the model shown in Fig.2 (a), there are 20

nos. of AGV. The system consists of one Loading Station

(hereafter LS) and one Unloading Station (US). Number

of AGVs used for transportation remains constant.

The transportation rule is explained as follows: Each

AGV is assigned a job in which one load is to be trans-

ported from LS to US in a repeatable cycle. 6 number

types are used for load assignment, and AGV will un-

load to the US according to the required conveyance or-

der of finite length. The system’s purpose is to check that

the success probability of Unloading by AGV increases as

the conveyance order from US is satisfied. Every unload-

ing count kc set on the AGV will be counted as success

(rc(kc) = 1) when the load type no. on the AGV matches

with the load type no. requested by the US, and con-
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Fig. 2 System configuration of AGV transportation system

veyance volume will be counted up. If the load type on the

AGV does not match with load type requested by the US,

unloading count will be counted as failure (rc(kc) = 0) ,

and conveyance volume will not be counted up. The AGV

can unload to the US irrespective of whether it gets an

OK or NG reply, however, in case of OK reply, the output

will be counted up and the load can remain on the US.

In the case of NG reply, the load is immediately ejected

from the US.

Loading scheme of AGV is explained as follows: The LS

will supply the load requested by US in random sequence.

AGV cannot select a desired load type no. from the LS.

When the AGV goes to pick up the load, it will detect the

load type number for the first time. Also the AGV cannot

know the requested conveyance order from the US. Only

when the AGV enters into the Strategy decision range as

shown in Fig.2(b), will it be able to detect the previously

OK load no. on the US.

Mutual interaction between AGV is explained as fol-

lows: As shown in Fig.2 (b), when an AGV enters the

Strategy decision range, it can mutually interact with

other AGV’s in the sensing range. Through the infor-

mation obtained in this interaction, an AGV can obtain

its own strategy or internal status according to its own

load number. The strategy involved here is to infer the

next load to be unloaded to the US as a probability se-

ries to achieve the systems objectives. The AGV however

cannot observe the load no. carried by other AGV or the

reply received for an unloading operation rc(kc) by other

AGV. This includes the uncertainty involved in mutual

interaction. It is possible to verify if strategy can be reor-

ganized to achieve the system objectives in response to the

uncertainty through this system. Based on the strategy

of other AGV and own strategy obtained through mutual

interaction, the AGV will decide if the load it is carry-

ing can be unloaded to the US after the current unload

operation is completed according to probability and will

execute the unloading operation. If it cannot unload, it

will make a detour to the Detour Point as shown in Fig.2

(a) and repeat the unloading operation to the US. After

completing unloading, the AGV will move to the LS to

pick up the load and repeat this cycle.

2. 2 Matrix representation of strategy

AGV Strategy decision method is described below. In

this model the transport form is expressed as the unload-

ing sequence based on the load type number. In formulat-

ing the strategy for AGV c, we let bi be the load of Type

i on AGV c, and wj be the load of Type j on the US for

Nb representing all loads and define estimated probabil-

ity pij(kc) of unloading count kc from bi to wj containing

matrix Pc(kc). As the value of kc is set individually for

each AGV the value is not uniform for all AGVs. Using

the estimated probability matrix, Pc(kc), if we take the

decimal value of the closed interval[0, 1], it is expressed as

Pc(kc) =
{

pij(kc)

}
∈ hNb×Nb , (1)

In our example, we set Nb = 6.

By using this estimated probability matrix Pc(kc), it can

be expressed in probability terms as to which load should

be unloaded next on the US. Pc(kc) is the information

held independently by each AGV. Pc(kc) changes with

the change in the unloading count kc through the process

of learning and interaction with other AGV. The initial

value of estimated probability matrix when all the trans-

port load numbers are Nb is:

Pc(kc = 0) =
{

1

Nb

}
(2)

2. 3 Definition of internal status

The internal status on which basis it is possible to do the

relative evaluation of the system purpose for each agent

from the strategy Pc(kc) is described below: Internal state

of the AGV is described as φc(kc). The internal state

φc(kc) is defined as the degree of contribution to the sys-

tem’s objective. In this model, the AGV compares its own

agent with that of other agent regarding its internal status

φc(kc). In this model, system’s objectives are stipulated

and this will not change due to change in environment.

For this reason, it is not problematic to integrate the eval-

uation function that represents the degree of contribution

to the systems objective. The internal state of an AGV

c for an unloading count kc is composed of Hc(i, kc) and



T. SICE Vol.E–2 No.1 2002 153

Sc(i, kc). Hc(i, kc) is the entropy of the estimated prob-

ability matrix Pc(kc) for load i on AGV and Sc(i, kc) is

the successful unloading probability for load i on AGV.

As the total number of loads is Nb, the entropy Hc(i, kc)

is

Hc(i, kc) = −
Nb∑
j=1

pij(kc) log2 pij(kc) (3)

The successful unloading probability Sc(i, kc) is defined

as the probability at which AGV c unloads bi correctly

according to the request from the US during r times.

Sc(i, kc) =

kc∑
τ=kc−r

fc(i, τ)/r (kc > r), (4)

where

fc(i, kc) =

{
1 iff AGV c succeeds(rc(kc) = 1)

0 iff AGV c fails(rc(kc) = 0)
(5)

Hence internal evaluation qi of AGV c in response to strat-

egy i is:

qi(kc) = (1− αHc(i, kc))Sc(i, kc). (6)

The internal state vector φc(kc) considered as an element

qi is assigned as follows:

φc(kc) = [q1(kc) . . . qi(kc) . . . qNb(kc)]
T . (7)

where α is the normalization factor of the entropy ex-

pressed by the following equation:

α =
1

−
Nb∑
i=1

1

Nb
log2

1

Nb

=
1

log2 Nb
. (8)

φc(kc) is an important element for AGV interaction.

When the internal state is φc(kc) and internal evalua-

tion qc(kc) is high, then entropy of estimated probabil-

ity matrix Pc(kc) is low. This indicates progress of the

strategy organization and an increase in successful un-

loading probability Sc(i, kc). System objectives are met

when unloading is done according to the conveyance or-

der. By using this internal state, AGV can observe the

contribution degree of the system autonomously without

using global evaluation function.

2. 4 Learning scheme of the strategy

The method of learning by each AGV is described be-

low. After unloading, the AGV learns through its own

behavior to realize self organizing of the AGV transport

form. The focus of learning is the strategy Pc(kc). In

case AGV does not unload, as it just moves to a Detour

Point, there will be no learning. After a load wj of type

j on US, AGV unloads load bi of type i on the US, and

reply rc(kc) will be sent from the US to the AGV. From

this, the AGV can by itself observe the success or failure

of unloading. AGV learning will occur based on the value

of the reply rc(kc). The element pij(kc) of the estimated

probability distribution Pc(kc) is updated using the value

derived in Eq.(7), learning parameters during unloading

success or failure and the internal status.

i) If unloading is successful (rc(kc) = 1):

pij(kc + 1) = pij(kc) + γOK(1− pij(kc))(1− qi(kc))(9)

puj(kc + 1) = puj(kc)− γOKpuj(kc)(1− qu(kc))

(u 6= i, u = 1, 2, . . . , Nb) (10)

ii) If unloading is a failure (rc(kc) = 0):

pij(kc + 1) = pij(kc)− γNGpij(kc)qi(kc) (11)

puj(kc + 1) = puj(kc) + γNG(1− puj(kc))qu(kc)

(u 6= i, u = 1, 2, . . . , Nb) (12)

As described above, in this system in order to create a

strategy for the dynamic environment based on LR−P

learning 7), internal status φc(kc) (contribution to system

through self organizing) is used as the basis for learning .

2. 5 Interaction scheme of the agents

Interaction process is described below. The informa-

tion exchanged mutually between the AGVs is φc(kc) and

Pc(kc). AGV obtains the estimated probability matrix

pd(kc) and internal status φd(kc) (on condition that c 6= d)

from the m number of AGV in the sensing range as shown

in Fig.2 (b). In this research in order to realize dynamic

reconfiguration of the conveyance form, it is necessary to

stipulate the group behavior of the AGVs. For this, we do

not think it is appropriate to use an absolute evaluation

based on restrictive conditions of a large area. That is

to say, when there is no objective valuation standard, the

value evaluation will be relative and susceptible to fluc-

tuate. For this reason, the pattern of interaction between

the AGV is as described below and set such that AGV c

strategy Pc(kc) is propagated to other AGV as well.

Pc(kc + 1) = Pc(kc)

+ξ(φc(kc)− φ̄d(kc))(Pc(kc)− P̄d(kc)) (13)

P̄d(kc) =

m∑
d=1

Pd(kc)

m
, φ̄d(kc) =

m∑
d=1

φd(kc)

m
(14)

where, ξ is a parameter for change in interaction. (ξ >

0)

From equation (13) the interaction that takes place in this

model consists of m number of AGV interacting with each

other. Through the dynamics of the system, the strategy

of the AGV whose contribution to the system is high is

propagated to other AGV. This allows each AGV to in-

crease its level of contribution to the system by itself.
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2. 6 Expression of unloading selecting proba-

bility

From the above, AGV will execute the below unloading

from the derived strategy Pc(kc). When the AGV enters

the Strategy decision range, US transport load informa-

tion LUS(kc) can be obtained from the US. LUS(kc) is the

binary encoded information of element Nb. For eg. if the

load no. on the US is j = 1. LUS(kc | j = 1) will equal

to row vector [1 0 0 0 0 0]T . Based on this information,

AGV c will derive the selection probability vector Yc(kc)

from the strategy Pc(kc). Pc is the strategy for determin-

ing when bi must unload after wj , so by exploiting LUS

in Pc, the selection probability vector for bi corresponding

to wj can be obtained.

Yc(kc) = εPc(kc)LUS(kc) (15)

On condition that ε is the norm standard coefficient of

vectors.

The selection probability vector Yc(kc) is loaded with load

information on the AGV LAGV (kc) to derive the selection

probability ycij(kc).

ycij(kc) = (Yc(kc), LAGV (kc)) (16)

where LAGV (kc) like LUS(kc) is the binary coded infor-

mation of the element Nb.

AGV executes unloading according to the selection prob-

ability ycij(kc).

3. Condition of the Simulation

3. 1 Definition of transportation order

The requested conveyance order for the transport load

is expressed by the array O of several records No. In

this simulation, No = 10 and O ={1 1 2 3 4 2 6 3 5

6}. When the load type reaches the end of the array,

the next load type will be at the top of the array. Fig.3

expresses the requested conveyance order and the esti-

mated probability matrix P ∗ for the exercise used in this

research. P ∗ in Fig.3 indicates the number correspond-

ing to the load bi on the AGV and the load wj on the

US after which if unloading is done to the US, the prob-

ability of successful response would be high. This is dis-

played as a bar graph based on the distribution status

derived from the requested conveyance order O. The de-

signed successful unloading probability of the whole sys-

tem Ê is expressed by using the designed probability ma-

trix P ∗ as follows: We express p(bi) as an appearance

probability of the load bi on the AGV, p∗ij is the esti-

mated probability from wj to bi and collection of load wj

on the US during successful unloading of bi by AGV as

(b) Designed state (Order 1)
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(a) Initial state

Order O1= {1 1 2 3 4 2 6 3 5 6}

Fig. 3 Desired probability matrix of experiment

Vi = {j = wj |bi → wj permitted}. The expected success-

ful unloading probability Ê for the entire system based on

the requested conveyance order is expressed as follows:

Ê =

Nb∑
i=1

∑
j∈Vi

p(bi)p
∗
ij , (17)

where Nb is the transport load type within the conveyance

order.

From the designed probability matrix P ∗ in Fig.3, Nb = 6,

if load having numbers 1, 2, 3, 6 appear twice, the appear-

ance probability is 1
5
, and as load numbers 4, 5 appear

only once, the appearance probability is 1
10

. By using

these parameter values, it is possible to derive the de-

signed successful unloading probability Ê = 6. In this

simulation, as the requested conveyance order has some

identical numbers, the conveyance order organized by the

AGV will be complex.

3. 2 Definition of dynamical environment

The setting of the dynamic environment for this re-

search is described below. The change in environment

is done within a range not exceeding the degree of free-

dom of the agent (strategy space). For eg. the load type

will not be increased beyond 6 and conveyance order mon-

itored. In this system, as shown in Fig.3, the requested

conveyance order on the US is taken as {1 1 2 3 4 2 6 3

5 6}, and the requested conveyance order from the LS to

the AGV is set at random, to supply the load and form

the conveyance order. After this at step 100000, the the

requested conveyance order is modified to {2 1 4 3 6 5 6 1
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2 3}, and it is verified if the AGV can restructure the con-

veyance order. The AGV makes one movement at each

step or executes one grid movement. Since there are 50

grids between the LS and the US，AGV movement will

be complete in about 50 steps. This simulation was done

up to 350000 step.

The following items are considered for verification in

the defined dynamic environment.

(1) Verification of dynamic recompilation of strategic

diversity and variation of the conveyance order.

(2) Verification of the time evolution of the variation

process in strategic diversification.

4. Simulation result

4. 1 Expansion-contraction of strategic diver-

sity adapting to dynamic environment

Simulation result based on the environment setting as

described in Section 3. 2 is displayed in Fig.4. Fig.4 is a

graph displaying the strategic diversity and the probabil-

ity of unloading success of AGV within a dynamic envi-

ronment where the requested conveyance order is mod-

ified. The value of the learning parameters γOK and

γNG is set at 0.2 and 0.15 respectively. This graph indi-

cates that through the process of self destruction of strat-

egy, the AGV reorganizes a strategy suitable to the dy-

namic environment. By this the unloading success proba-

bility is restored and collective autonomous behavior is

obtained. If we focus on the unloading success prob-

ability graph shown in Fig.4, the recovery of the un-

loading success probability indicates that the collective

autonomous behavior obtained through the process of

learning by each agent and mutual interaction, meets the

system’s objectives. However, the learning algorithm is

programmed such that unloading success probability in-

creases for each agent. Merely by looking at the unload-

ing success probability graph, it is not possible to judge

that self-organization has been achieved from the collec-

tive autonomous behavior for the system as a whole from

the recovery of the unloading success probability. It is

thus possible to conclude that the recovery of the unload-

ing success probability is expressed as self organization

of the system and self organization index is required in

order to examine the behavior of the entire system from

the point of view of the design method of the Distributed

autonomous system.

The strategy of agent c is defined as the selection prob-

ability matrix Pc input vector as x and output vector as

y and assuming there is a static linear relationship be-

tween the input and output, the agent behavior can be

Fig. 4 Time evolution of Strategy diversity and Unloading

success probability (γOK = 0.2, γNG = 0.15)

expressed as follows.

y = Pcx (18)

From the fact that all the agents in this system are set

with a simple job objective possessing identical evalua-

tion standards, it is possible to say that agent strategy

will converge to a specific matrix. By deriving the dif-

ference in the selection probability matrix of each agent,

the average value for one AGV can be calculated from the

total and defined as the strategy diversification for that

AGV. This is expressed in Equation (19).

For a system with n agents:

δ =

n∑
d

n∑
c 6=d

‖Pc − Pd‖

n(n− 1)
. (19)

Where Frobenius- norm is used for the matrix norm and

expressed as follows:

For matrix P = {pij}(∈ N ×N):

‖P‖ =

√√√√
N∑

i=1

N∑
j=1

|pij |2. (20)

We consider the strategy diversity δ derived from equa-

tion (19) as the index of self-organizing and proceed with

the below study. Strategy diversity in Fig.4 expresses

the time evolution δ. In Fig.4, the value of δ at Step

0 is 0 and indicates that all the agents are having the

same strategy. From the time evolution graph δ shown in

Fig.4, by expanding the autonomous strategic diversity

from the uniform strategic pattern, the strategy search

range is widened and self-organization of strategy forma-

tion occurs. Even if there is a change in the environ-

ment over 100000 steps that affects the strategy, and al-

though this is not informed to other AGV, through the

process of autonomous contraction and expansion of strat-

egy, each AGV will destroy the old strategy and reformu-

late a new one. This can be described as a phenomenon

of self-organization that has been achieved through the
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Fig. 5 Schema of diversity-regulation process

algorithm proposed in this research. It is necessary to

know the process of self destruction and reorganization of

strategy 2) held by each agent in order to verify the suit-

ability to the dynamic environment for the intelligence

system, but in order to consider within the framework

of autonomous group behavior, it is necessary to explain

the expansion and contraction process for strategic diver-

sity occurring during each agent behavior from the self

destruction and reorganization process of strategy 9). By

clarifying the mechanism suitable for the dynamic envi-

ronment from the process, it is possible to design and gen-

eralize a distributed autonomous system for the dynamic

environment and there would be no need for creating a

numerical model of the change in environment to provide

an example.

The expansion and contraction process of strategy di-

versification corresponding to the change in environment

is schematically expressed in Fig.5 as follows.

As shown in Fig.5, the expansion and contraction pro-

cess of strategy diversification can be bifurcated into three

levels. In the first level, each agent exhibits behavior

holding the strategy prior to environment change, so the

strategic diversity exhibits a constant value with a de-

creasing unloading success probability. From this it is

possible to understand that each agent does not recog-

nize the change in environment at the first level. At the

second level, the fact that the strategic diversity increases

indicates that each agent recognizes the environmental

change and expands the strategic space for creating a new

strategy. This leads to the emergence of an individualized

entity for sure acquisition of strategy matching with the

system objectives, and also leads to an increased unload-

ing success probability. The strategic diversity can be

expanded up to a certain value according to the change

in environment based on the learning co-efficient and mu-

tual interaction. The maximum value of strategy diversi-

fication will be the maximum change in the environment

for the system. The size of change in environment will

vary according to the conditions for dynamic environment

(change in conveyance order), mutual interaction between

the agents, and density of presence probability, strategy

searching space etc. Each element of the system in in-

tertwined in a non-linear fashion and has a big effect on

the time needed for strategy reformulation. At the third

level, the number of AGV with unloading success prob-

ability satisfying or meeting the system’s objectives in-

creases and concentrated at the value where desired prob-

ability rate is achieved. Even at this time, there is some

dispersion in the strategy values and process of expansion

and contraction of strategy still continues. Strategy di-

versification continues to expand and contract as strategy

is reformulated to meet system objectives and when strat-

egy converges to a single value, for the first time, it could

be said that strategy reformulation is complete.

As can be seen in Fig.4, the convergence value for δ is

0.8 and we come to know that strategy is not converging

to 0. This means that in this research model, although

all agents are working towards a single objective, they do

not move to a specific distribution range. However, from

the fact that unloading success probability is converging

to about 0.6, and from the fact that δ indicates a stable

value of 0.8, the agents distribution strategy comprises

multiple formats and is a stable value. The strategy dis-

tribution status for system organization is diversified and

suggests that labor differentiation occurs over the entire

system strategy.

In order to know if the optimum value for strategy di-

versification is displayed for this system, it is necessary

to judge if each agent within the system has acquired be-

havior representing global solutions. The discussion may

differ depending on what can be categorized as global and

what can be categorized as local, but assumption of a sta-

ble global solution within a dynamic environment is com-

plicated and its existence is not clear. For this reason, this

research does not discuss the optimization of collective au-

tonomous behavior. This research suggests that through

the process of expansion and contraction of the strategic

diversity process, a dynamic coherence is created within

the changing environment that is the basis of the self ref-

erential structure of the intelligence system. From this it

is possible to discuss if the optimization of the evaluation

of the autonomous behavior due to a drastic change in the

environment for the entire system is appropriate or not.

4. 2 Identification of parameters corresponding

to dynamic environment

It is necessary to identify the learning parameters for de-
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Fig. 6 Self-organizing velocity distribution based on learning parameter (γOK and

γNG)

sign of an distributed autonomous system for the dynamic

environment. However deriving the operator of the entire

system from the behavior of each agent that is the mutual

interaction between the agents, density of existence prob-

ability, strategy searching space etc. i.e. to interlink the

operator of each system in a non-linear fashion is presently

complicated. If we measure the slant of the line from the

maximum value of the expansion and contraction speed

of strategy diversification to the intersection between the

convergence value and decreasing bending line as shown

in Fig.4, the speed of expansion/contraction in a static

environment is 8.72× 10−6, and 8.23× 10−6, when there

is a change in the environment indicating that there is no

difference in the expansion and contraction speed due to a

change in the environment. We think that the contraction

and expansion of strategy diversification would depend on

the speed of self-organization existing in the dynamics of

the strategy searching space for each agent, learning speed

or mutual interaction between the agents and the system

size. The speed of self-organization is reflected when the

strategy formulation speed by each agent is more than

the environmental noise generated from the mutual in-

teraction between agents, environmental uncertainty, and

massive strategy searching space. The expansion and con-

traction speed of strategy as shown below is called as the

(Self-organizing velocity). In this system, the learning pa-

rameters values γOK and γNG have been revised respec-

tively from 0.05 to 03 and from 0 to 0.5, and the distribu-

tion range of the self-organization velocity was compared.

This is shown in Fig.6. The self-organizing velocity is the

change in volume of strategic diversity δ at each step for

time averaged from the maximum value of strategic di-

versity to the convergence value. According to Fig.6, the

Fig. 7 Time evolution of Strategy diversity and Unloading

success probability (γOK = 0.1, γNG = 0.1)

value of the self organizing velocity is 8.72 × 10−6 when

the γOK = 0.2, and γNG = 0.15 and this is the maximum.

Fig.4 shows the strategy diversity and unloading success

probability by using these parameters and this indicates

that the system behavior is in the most suitable dynamic

environment in the area range set in fig.6. Fig.7 shows the

simulation result when γOK = 0.1 and γNG = 0.1. The

self organizing velocity in Fig.7 was 3.90× 10-6. As shown

in Fig.7, it takes approximately 8000 steps from the time

the system starts operating till the convergence of strat-

egy diversification. If we compare this with fig.4 with self

organizing velocity of γOK = 0.2, and γNG = 0.15, the

difference for reaching the convergence level is only about

1000 steps. However, if we observe the system behavior

when a change in environment is made after the system is

in operation for more than 100000 steps we can see that it

takes about 200000 steps for the strategy diversification

to once again reach the convergence level. In Fig.4 it takes

only 150000 steps for reaching the strategy differentiation

to reach the convergence level creating a big difference in

dynamic reformulation.
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Fig. 8 Time evolution of Strategy diversity and Unloading

success probability (γOK = 0.05, γNG = 0.05)

A big delay is generated in the unloading success prob-

ability similar to the transition in strategy diversification.

Also from Fig.7 it is possible to understand that time is

required in the process for increasing the strategy diver-

sification. In the same way, using the learning parameter

representing a small value of the self-organization veloc-

ity does not give the desired results in terms of unload-

ing success probability to for achieving system objectives

or strategy diversification as the index of organization.

The system behavior when γOK = 0.05 and γNG = 0.05

is represented in Fig.8 for reference. At this time, the

self-organizing velocity from Fig.6 is 0 (There is no con-

vergence of strategy diversification within 80000 steps).

From Fig.8 it is possible to confirm that there is practi-

cally no expansion or contraction of strategy diversifica-

tion occurring the dynamic environment and no strategy

reformulation for recovering the unloading success proba-

bility.

From the above, we can say that it is possible to de-

fine the self-organizing velocity and derive the features of

distribution of the self organizing velocity in a static en-

vironment from which it would be possible to derive the

learning parameters for generating a high self organizing

velocity in the static environment. By the derivation of

these learning parameters, it is possible to define the most

suitable parameters for realization of appropriate behav-

ior in the dynamic environment for design of autonomous

distribution system. Based on the learning parameters or

other restrictive conditions, and deriving the distribution

status of the self organizing velocity, it would be possi-

ble to predict how the system behavior changes according

to the parameters in the dynamic environment. This has

been verified in the simulation results.

5. Conclusion

In this research, we have defined strategic diversity as

the difference in strategy between all the agents and by

verifying the time evolution of strategic diversity occur-

ring in the dynamic environment, it is possible to show

that organization takes place through the collective au-

tonomous behavior that meets system objectives accord-

ing to expansion and contraction of strategy diversifica-

tion. Definition of system parameters is one of the most

important items in system design. Also this task is enor-

mous in the case of large-scale system. In this research

we have defined the expansion and contraction speed of

strategic diversity as self organizing velocity and proposed

a method for defining the most suitable parameters de-

rived from the distribution range of self organizing ve-

locity which in turn is derived from the definition of pa-

rameters for a static environment. Through this method,

simulation results have shown that the highest dynamic

reorganization of strategy can be achieved by using the

highest self-organizing velocity.

However, if the self-organizing velocity is too high, the

strategy may collapse. We therefore need to prove quanti-

tatively the ideal conditions for defining the optimum pa-

rameters corresponding to the maximum self-organizing

velocity in the dynamic environment. Also it is necessary

to consider and analyze the maximum value of strategic

diversity and change in environment and the correlation

between the convergence value of the strategic diversifica-

tion and restrictive conditions of the system like learning

parameters.
In order to design a self creating model for facilitating

autonomous adjustment of parameters in a dynamic envi-
ronment, analysis of a numerical model of time evolution
of operator theory in function spaces. This is a topic that
needs evolution of a different topic.
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