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An optimization of nonlinear control system

based on quantum-mechanical “superposition-principle”†

ITAMI Teturo∗

For nonlinear Hamliton-Jacobi equation, we have proposed a new method to deal with a framework of linear

theories. “Superposable complex waves” and a new constant HR representing “strength” of the wave are intro-

duced in this paper. Attendant to an optimal path we can assume a superposable complex wave in the state

space subject to a “linear wave equation”. Within a weak limit of the wave the optimal path is obtained. This

method is realized as an algorithm according to two factors; the optimal control system as a constrained dynam-

ical system, and its “linear operator” formalism using “Dirac bracket”. A real-part projection of the complex

linear wave equation is shown to lead to a “generalized Hamilton-Jacobi equation”, where a term related to the

wave is added to the Hamilton-Jacobi equation. A state feedback scheme is derived from this algorithm and

a nonlinear system with 1-input 1-state variable is optimized by a simulation study using a typical method for

problems of complex linear wave equations.

Key Words: Hamilton-Jacobi equation, Dirac brackets, linear operator, constrained mechanics, nonlinear opti-

mal control theory, quantum-mechanical superposition-principle

1. Introduction

A governing equation of optimization of nonlinear feed-

back control is Hamilton-Jacobi equation. A solution of

the equation leads to nonlinear optimal feedback in closed

loop in the most systematic way. However, the Hamilton-

Jacobi equation is a nonlinear partial differential equation

in both space and time. Various schemes including ap-

proximations have so far been proposed 1) 2) 3) 4) to solve

the equation, but there has been no ultimate method.

While we have a way of strict linearization of coordinates,

but there are restrictions peculiar to coordinate transfor-

mations and this method is not relevant to any system.

We start with a concept of “a wave represented by com-

plex numbers”. We then propose a method of research in

a framework of “linear wave equations” for systems with

nonlinearities in state equations and control specifications

given as performance time integrals. An optimal path is a

curve in state space as shown in Fig.1, starting at a point

P1 at time t1 ending at a point P2 at time t2, on each point

of which a manipulation of optimal feedback control is op-

erated at each time. This curve of the optimal path

is a solution of the nonlinear partial differential equation

of Hamilton-Jacobi. We then form an idea of a wave ψ

laid out in a background of the optimal path as shown

in Fig.2. And we introduce a new design constant HR

† This paper was presented at 28th SICE Symposium on Con-
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Fig. 1 An optimal path in state space

Fig. 2 A superposable complex wave in state space
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to control wave strength acted on the path. The curve

is deformed by the wave action, however it approaches

the optimal path shown in Fig.1 when the wave action is

sufficiently weak. Because waves are superposable, a gov-

erning equation of the wave acting on the optimal path is

linear. This suggests that we can approximate nonlinear

feedback control by making use of a linear wave equation.

The paper is organized as follows. In Section 2, we for-

mulate an optimal control system according to the con-

ventional method 7) that state equations are regarded as

constraint conditions. A wave in state space is also sub-

ject to these constraint conditions. We then pick up all

the constraint conditions and clarify an algebraic struc-

ture among these constraint conditions. To describe opti-

mal control systems we define canonical coordinates (state

variables, control variables and costate variables) and cor-

responding canonical momenta. We define a Hamiltonian

that describes development of the system in time. We

then calculate conditions that the constraint conditions

close under time development. After that to treat con-

sistently the optimal control system as a constrained dy-

namical system, we introduce a “Dirac bracket” into a

set of these canonical variables(canonical coordinates and

canonical momenta). The Dirac bracket in constrained

dynamical systems is an extension of the Poisson bracket.

In terms of the Dirac bracket, the equation of motion of

the constrained dynamical system is described without

paying attention to the constraint conditions. We show

the conventional form of the Hamilton-Jacobi equation in

the last part of this section. In Section 3, we introduce

“linear operators” which are in one-to-one correspondence

to the canonical variables. Especially to the control vari-

ables correspond “control variable operators”, and to the

costate variables correspond “costate variable operators”.

These linear operators are defined 8) such that they satisfy

all commutation relations when the Dirac brackets are re-

placed with commutation relations. From properties of

these commutation relations, we can represent these lin-

ear operators as those operating on a linear space of state

functions. For an affine system, we explicitly write down

partial differential operators which represent these linear

operators. Moreover, we can construct a “Hamiltonian

operator” corresponding to the Hamiltonian of the op-

timal control system. Using this Hamiltonian operator

we set up a linear wave equation imposed on a complex-

valued “wave function”. We can show for an affine sys-

tem, that a phase function of the wave function satisfies

an equation which is nothing but the Hamilton-Jacobi

equation under an additional cost function representing

wave action. This “additional cost” due to wave action is

a quantity proportional to the square of the control con-

stant HR. We call this equation for the phase function of

the wave function the “generalized Hamilton-Jacobi equa-

tion”. We then see that this equation approximates the

Hamilton-Jacobi equation when we set the additional cost

as small as possible by taking the control constant HR

close to zero. State feedback laws are also given by the

wave function and its partial differentials. In Section 4, to

clarify the concepts we optimize a simple nonlinear sys-

tem with 1-input and 1-state by using the corresponding

wave function. A typical algorithm of perturbation the-

ory is adopted to solve numerically the wave equation.

We examine wave action to the optimal path taking three

values of the control constant HR. In this example, we

show that the generalized Hamilton-Jacobi equation ap-

proximates the Hamilton-Jacobi equation. Summary and

discussion are given in Section 5.

2. Optimal control systems as con-

strained dynamical systems

According to the conventional method 7), we treat the

state equation as the constraint condition. We then de-

scribe development of the optimal control system in time

using a method pioneered by Dirac. 8) The reason of ap-

plying Dirac’s method is that the control and costate vari-

ables are to be represented by the linear operators, even

when there are the constraint condition. In this section,

after we introduce the optimal control system, we use the

costate variable to formulate the state equation as the con-

straint condition. We also pick up constraint conditions

simultaneously imposed on the system. And we then de-

fine the Hamiltonian which describes development of the

system in time consistently with these constraints. Next,

we define and calculate the Dirac bracket. This is an

extended form of the Poisson bracket in a way that the

Dirac bracket is consistent with the constraints. Finally,

we write down the Hamilton-Jacobi equation of the opti-

mal control system as the constrained dynamical system.

2. 1 An optimal control system

and the constraint conditions

We define below the system and the control specifica-

tion. Let us take ~x ∈ Rn as the state variable and ~u ∈ Rm
as the control variable. The system is then described by

the following state equation,

~̇x = ~f(~x, ~u). (1)

The control specification imposed on the system is de-

scribed by the following Lagrangian,
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L(~x, ~u). (2)

Feedback is optimized such that the following time inte-

gral takes its minimum value,

δPI ≡ δ

½
Φ(~x2) +

Z t2

t1

dtL(~x, ~u)

¾
= 0. (3)

In the above equations, the function ~f is in general an ar-

bitrarily nonlinear function and the Lagrangian L is not

restricted to quadratic form and takes an arbitrary form.

The function Φ has also general form and this represents

a cost of the terminal state ~x2. The following discussion

holds even when the functions ~f and L depend explicitly

on time.

We use the costate variable ~λ with the same dimen-

sionality as the state variable to define an extended La-

grangian,

L0(~x, ~u,~λ; ~̇x) ≡ L(~x, ~u) +←−λ ·
¡
~f(~x, ~u)− ~̇x

¢
, (4)

where
←−
λ ≡t ~λ is the transposed vector of ~λ. Using this,

only one condition,

δPI 0 ≡ δ

½
Φ(~x2)+

Z t2

t1

dtL0(~x, ~u,~λ; ~̇x)

¾
= 0, (5)

describes the state equation (1) and the control specifica-

tion (3) simultaneously. The state equation (1) is viewed

as the constraint condition in this formulation. On the

other hand, the constraint condition must also be satisfied

along with wave motion associated with the optimal path.

Therefore we must pick up other possible constraint con-

ditions and need to check that they are consistent among

them. Starting with calculations of canonical momenta,

we find out all the constraint conditions in the following.

Regarding the optimal control system as the dynamical

system described by the extended Lagrangian L0, we can

define canonical momenta by,

~pz =
∂L0

∂~̇z
, z = x, u,λ. (6)

The following three kinds of constraints are then intro-

duced,

~φx ≡ ~px + ~λ ≈ 0, (7)

~φu ≡ ~pu ≈ 0, (8)

~φλ ≡ −→p λ ≈ 0, (9)

where the notation “≈” denotes weak equality: these hold
only over the subspace of the motion.

Taking into account that we have the constraints of

Eqs.(7), (8) and (9), development of the system in time is

determined by the following Hamiltonian,

H(~x, ~u,~λ; ~px, ~pu, ~pλ)

≡
X

z=x,u,λ

←̇−p z ·−→z − L0(~x, ~u,~λ; ~̇x)

+
X

z=x,u,λ

←−µ z ·
−→
φ z. (10)

In the above Eq.(10), ~µx, ~µu and ~µλ are Lagrange multi-

pliers, which are determined so as to guarantee that the

constraint conditions (7), (8) and (9) hold at any time.

The time development of any dynamical variable ω is de-

termined by H as follows,

ω̇ = {ω, H}+ ∂ω

∂t
. (11)

The first term in the above equation is the Poisson bracket

between the dynamical variable ω and the HamiltonianH.

The Poisson bracket between any dynamical variables ω

and σ is defined as follows,

{ω, σ} ≡
X

z=x,u,λ

³
∂ω

∂←−z
· ∂σ
∂−→p z

− ∂σ

∂←−z
· ∂ω
∂−→p z

´
. (12)

After calculating time development of the constraint con-

ditions (7), (8) and (9) according to Eqs.(11) and (12),

we find further possible conditions which guarantee that

these constraint conditions including the further condi-

tions continue to hold at any time. First, we calculate

the Hamiltonian (10) according to the definition of the

canonical momenta (6) as follows,

H(~x, ~u,~λ; ~px, ~pu, ~pλ) = −L(~x, ~u)−←−λ ·−→f (~x, ~u)
+

X
z=x,u,λ

←−µ z ·
−→
φ z. (13)

The time derivative of the constraint conditions (7) is cal-

culated as,

φ̇xi = {φxi , H}
= {φxi ,−L(~x, ~u)−

←−
λ ·−→f (~x, ~u)}

+
X

z=x,u,λ

{φxi ,←−µ z} · ~φz +
X

z=x,u,λ

←−µ z · {φxi , ~φz}

≈ {φxi ,−L(~x, ~u)−
←−
λ ·−→f (~x, ~u)}

+
X

z=x,u,λ

←−µ z · {φxi , ~φz}

=
∂{L(~x, ~u) +←−λ ·−→f (~x, ~u)}

∂xi
+ µλi ≈ 0, (14)

which holds when we set one of the Lagrange multipliers

~µλ as follows,

µλi ≈ −
∂{L(~x, ~u) +←−λ ·−→f (~x, ~u)}

∂xi
. (15)

Next, the calculation of the time derivative of the con-

straint conditions (8) leads to the following,

φ̇uα = {φuα , H}
≈ {φuα ,−L(~x, ~u)−

←−
λ ·−→f (~x, ~u)}
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+
X

z=x,u,λ

←−µ z · {φuα , ~φz}

=
∂{L(~x, ~u) +←−λ ·−→f (~x, ~u)}

∂uα
. (16)

The above condition must be counted as a new constraint

condition, because the condition (16) does not contain any

Lagrange multiplier and any choice of the Lagrange mul-

tipliers ~µz(z = x, u,λ) cannot guarantee the constraint

condition (16). And a new constraint condition is the

following,

~φH ≡ ∂{L(~x, ~u) +←−λ ·−→f (~x, ~u)}
∂~u

≈ 0. (17)

From the last constraints (9), we have,

φ̇λi = {φλi , H}
≈ {φλi ,−L(~x, ~u)−

←−
λ ·−→f (~x, ~u)}

+
X

z=x,u,λ

←−µ z · {φλi , ~φz}

= fi(~x, ~u)− µxi ≈ 0. (18)

This holds when we set the following Lagrange multiplier,

µxi ≈ fi(~x, ~u). (19)

The time derivative of the above new constraint condition

(17) must also vanish,

φ̇Hα = {φHα , H}
≈ {φHα ,−L(~x, ~u)−

←−
λ ·−→f (~x, ~u)}
+
X

z=x,u,λ

←−µ z · {φHα , ~φz}

= µxi
∂2{L(~x, ~u) +←−λ ·−→f (~x, ~u)}

∂xi∂uα

+µuβ
∂2{L(~x, ~u) +←−λ ·−→f (~x, ~u)}

∂uβ∂uα

+µλi
∂fi(~x, ~u)

∂uα
≈ 0.(20)

(In the above equation (20), summing up over the range

of indices is understood when the repetition of indices

with underline arises, and we have AiBi ≡
Pn

i=1
AiBi

and CαDα ≡
Pm

α=1
CαDα.) Therefore when the follow-

ing matrix with dimension m,

bα,β ≡ ∂2{L(~x, ~u) +←−λ ·−→f (~x, ~u)}
∂uα∂uβ

. (21)

is regular, we will use ~µx calculated by Eq.(19) and ~µλ

calculated by Eq.(15) to get the following solution,

µuα ≈ −(b−1)α,β
"
fi(~x, ~u

∂2{L(~x, ~u) +←−λ ·−→f (~x, ~u)}
∂xi∂uβ

−∂{L(~x, ~u) +
←−
λ ·−→f (~x, ~u)}

∂xi

∂fi(~x, ~u)

∂uβ

#
. (22)

In this paper we assume that the matrix b is regular. The

regularity usually holds when the Lagrangian L contains

the control variable ~u in quadratic form. A study on sys-

tems where this matrix b is not regular will be reported

elsewhere. From the above equations, we determined the

coefficients of ~µx, ~µu and ~µλ by Eqs.(19), (22) and (15),

respectively. The new constraint condition (17) which is

not expressed by a linear combination of the constraint

conditions of Eqs.(7), (8) and (9) was added. This new

constraint condition (17) expresses the optimality condi-

tion of control. No more constraint condition arises when

we take time development of these four kind of constraint

conditions. These four kinds of constraints close among

themselves. The meaning is that the time derivative of

any one φ̇I of these four kinds of constraint conditions is

expressed as a linear combination φ̇I ∼
P

K
φK of these

four kinds of constraints. We can easily see from this for-

mula that φ̇I = 0 if ∀φK = 0. And because φ̈I is a linear

combination ∼ P
K
φ̇K , we also see that φ̈I = 0 when

φK = 0. We have at last that φI = 0 at any time with no

additional constraint conditions.

2. 2 Dirac brackets

According to these four constraint conditions (7), (8),

(9) and (17), let us define the Dirac bracket. the extended

form of the Poisson bracket, Between any pair of dynam-

ical variables, the Dirac bracket is defined by,

{ω, σ}DB≡{ω,σ}−{ω,φI}(K−1)I,J{φJ , σ}. (23)

In this equation,

(φI) ≡


~φx
~φu
~φλ
~φH

 , (24)

andK−1 is the inverse ofK, each elementKI,J of which is

the Poisson bracket {φI ,φJ} between any pair φI and φJ
of the four kinds of constraint conditions. As calculated

in Appendix A, the matrix K is calculated as follows,

K ≡ ({φI ,φJ}) =


0 0 In −a
0 0 0 −b
−In 0 0 −c
ta tb tc 0

 , (25)

where In is the identity matrix of the order n, a is the

n×m matrix defined by,

ai,β ≡ ∂2(L+
←−
λ ·−→f )

∂xi∂uβ
, (26)

b is the m × m matrix defined by Eq.(21) and c is the

n×m matrix defined by,

ci,β ≡ ∂fi
∂uβ

. (27)
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The Dirac bracket between any dynamical variable ω and

any one of the constraint conditions φK vanishes as cal-

culated in the following,

{ω,φK}DB ≡ {ω,φK}− {ω,φI}(K−1)I,J{φJ ,φK}
= {ω,φK}− {ω,φI}(K−1)I,JKJ,K = 0.

(28)

Each constraint condition φK is thus regarded to be iden-

tically zero in the Dirac bracket formulation. The inverse

K−1 is given in Appendix B. The inverse to be calcu-

lated is only b−1. The matrix b is given by Eq.(21) and

has the dimensionality m of that of the control variables.

Irrespecive of the dimensionality n of the state variable,

usually m < n or m ¿ n and a calculational burden of

the inverse matrix K−1 is small.

Nonvanishing Dirac brackets are given as follows,

{xi, pxj}DB = δi,j , (29)

{xi, uβ}DB = (cb−1)i,β , (30)

{xi,λj}DB = −δi,j , (31)

{pxi , uβ} = (ab−1)i,β , (32)

{uα, uβ}DB =
¡
(tb)−1(tca−t ac)b−1

¢
α,β
, (33)

{uα,λj}DB = ((tb)−1 ta)α,j . (34)

We must note that the Dirac bracket (33) among the

component uα and uβ of the control variable does not

vanish, although the corresponding Poisson bracket is ob-

viously zero. On the contrary, the Dirac bracket among

the component xi and xj of the state variable vanishes:

{xi, xj}DB = 0. In Sec.3.1 below, we give a linear oper-

ator representation ξ̂ of each canonical variable ξ. And

we set a commutation relation [ξ̂, η̂] ≡ ξ̂η̂ − η̂ξ̂ corre-

sponding to the Dirac bracket {ξ, η}DB between a canon-
ical variable ξ and another canonical variable η in a way

consistent with the algebraic structure among the Dirac

brackets (29) to (34) above. The vanishing Dirac bracket

{xi, xj}DB = 0 then corresponds to the vanishing com-

mutation relation [x̂i, x̂j ] = 0. That x̂i and x̂j commutes,

x̂ix̂j = x̂j x̂i, means that the state variable ~x remains the

classical variable. And this feature of the commutation

relations enables us to represent an operator ξ̂ as a lin-

ear map â : f 7→ g on functional space of state functions

f = f(~x), g = g(~x).

The equation of motion represented by the Dirac

bracket is given by,

ω̇ = {ω, H}DB + ∂ω

∂t
. (35)

For the optimal control system as the constrained dy-

namical system, let us define a function S(~x, ~u,~λ; t) of

the canonical coordinates (~x, ~u,~λ) as that satisfying the

following Hamilton-Jacobi equation,

H(~x, ~u,~λ; ~px, ~pu, ~pλ) +
∂S(~x, ~u,~λ; t)

∂t
= 0, (36)

where

~pz =
∂S(~x, ~u,~λ; t)

∂~z
, z = x, u,λ. (37)

We write down explicitly the Hamilton-Jacobi equation

for the following affine system. This system is practically

important and is defined by the following state equations

and a Lagrangian,

fi(~x, ~u) = gi,α(~x)uα + Fi(~x), (38)

L(~x, ~u) = uαRα,βuβ + Vcost(~x). (39)

Use of the Dirac bracket allows us to set ~φx = ~φu = ~φλ =

0 and by setting the last term of H,
P

z=x,u,λ
←−µ z · ~φz to

be zero we have,

H = −L−←−λ · ~f
= −uαRα,βuβ − Vcost − λi(gi,αuα + Fi). (40)

From the optimality condition φH = 0, Eq.(17), we have

the relation between uα and λi as

uα = −(R−1)α,αλigi,α, (41)

where R is the inverse matrix of R +tR. Expressing ~λ

according to the constraint condition ~φx = 0, Eq.(7),

~λx = −~px = −∂S
∂~x
, (42)

leads to the following Hamilton-Jacobi equation,

∂S

∂t
+
1

2
(R̄−1)α,βgi,αgj,β

∂S

∂xi

∂S

∂xj

−Vcost + Fj ∂S
∂xj

= 0.(43)

3. Formulation of the optimal control

systems by linear operators

Once we have obtained the Dirac bracket we can han-

dle the optimal control system without paying any atten-

tion to the constraints. In this section linear operators

which are in one-to-one correspondence to the canonical

variables of the optimal control system are defined. The

Dirac bracket {ω,σ}DB between any pair of dynamical

variables ω and σ, is then replaced with a commutation

realtion [ω̂, σ̂] ≡ ω̂σ̂ − ω̂σ̂ between corresponding opera-

tors ω̂ and σ̂. And these linear operators are determined

by a requirement that the commutation relations are to

satisfy the algebraic structure that is found in the Dirac

brackets between canonical variables 8). The canonical

variables are classical variables and the commutation re-

lations between the classical variables are obviously zero,

[ω, σ] = ωσ − σω = 0. However, the canonical variables



170 T. SICE Vol.E-2 No.1 January 2002

represented as linear operators have in general nonvan-

ishing commutation relations and to represent an amount

of the nonvanishing value new real positive constant HR

is introduced. To the control variable corresponds a con-

trol variable operator, and to the costate variable corre-

sponds a costate variable operator, respectively. We find

from properties of the algebraic structure, that these lin-

ear operators can be represented as those which map one

f = f(~x) to another g = g(~x) of the state functions of

the state variable. Especially for the affine system, these

linear operators are explicitly given in a combined form

of the state variable and its partial differential operation.

A Hamiltonian operator that corresponds to the Hamilto-

nian is also defined and calculated. And using this Hamil-

tonian operator, we set a linear wave equation imposed on

a wave function which is a complex-valued state function.

We clarify that in sufficiently weak wave action the linear

wave equation approximates the original optimal control

system. In other words, the phase function of the wave

function satisfies an equation in a form of the Hamilton-

Jacobi equation with an additional term representing the

wave action. And the generalized Hamilton-Jacobi equa-

tion approaches the conventional Hamilton-Jacobi equa-

tion when we set this additional term sufficiently small.

3. 1 Definitions of the linear operators

satisfying the commutation relations

We set a linear operator ω̂ corresponding to a dynam-

ical variable ω. The canonical variable ω is the classical

variable. The meaning is that this is not an operator.

The condition of the correspondence is that the algebraic

structure of the Dirac brackets Eqs.(29) to (34) calcu-

lated before is also satisfied even when we replace the

Dirac bracket {ω,σ}DB with the following commutation

relation among the corresponding linear operators ω̂ and

σ̂,

iHR{ω,σ}DB → [ω̂, σ̂] ≡ ω̂σ̂ − σ̂ω̂. (44)

In this equation (44) a parameterHR is a real and positive

constant which is appropriately set by control designers.

As explained in the following, this new control constant

is a “unit” to nondimensionalize the phase function of

the wave associated with the optimal control system and

it represents strength of the wave action. In the above

Eq.(44), i ≡ √−1 is the imaginary unit. The algebraic
structure represented by the Dirac bracket in section 2.2

is replaced with the following formulas,

[xi, ûβ ] = iHR(cb−1)i,β, (45)

[xi, λ̂j ] = −iHRδi,j , (46)

[ûα, ûβ ] = iHR

¡
b−1(tca−t ac)b−1

¢
α,β
, (47)

[ûα, λ̂j ] = iHR(b−1ta)α,j . (48)

We call ~̂u control variable operator and ~̂λ costate vari-

able operator. We set ˆ over these operators to clarify

differences between these operators and classical control

variable ~u and costate variable ~λ. The overbar appearing

in the r.h.s. of Eq.(45) to (48) above is defined as,

ω̂σ̂ ≡ ω̂σ̂ + σ̂ω̂

2
, (49)

which is a symmetrization of an arbitrary product of lin-

ear operators. We note again that the components of

the state variable commute each other. By this nontriv-

ial fact we can represent the above linear operators as

linear maps on the space of the state functions. In the

above equations, the commutation relations correspond-

ing to the Dirac brackets (29) and (32) including ~px give

the same information as those given by Eqs.(46) and (48),

and these are omitted.

The linear operators are completely determined by the

above commutation relations (45) to (48). In the following

we explicitly write down the linear operator representa-

tions for the affine system of Eqs.(38) and (39). The a, b

and c matrices of Eqs.(26), (21) and (27) are calculated

as follows,

ai,β = λj
∂gj,β(~x)

∂xi
, (50)

bα,β = Rα,β + Rβ,α, (51)

ci,β = gi,β(~x), (52)

respectively. After the symmetrization (49), substituting

these matrices into r.h.s. of Eqs.(45) to (48) leads to the

linear operators as partial derivatives ∂
∂~x

multiplied by

function coefficients as follows,

ûα = −(R̄−1)α,βiHR∇gj,βj , (53)

λ̂i = iHR
∂

∂xi
. (54)

In the above equation we define for any function h(~x, t)

of ~x and t,

∇hi ≡ h ∂

∂xi
+
1

2

∂h

∂xi
. (55)

The Hamiltonian operator Ĥ after the symmetrization is

calculated by the following formula,

Ĥ = −L(~x, ~̂u)− ←̂−λ · ~f(~x, ~̂u)
= −ûαRα,βûβ − Vcost(~x)− λ̂iûαgi,α(~x)− λ̂jFj(~x)

= −HR
2

2
(R̄−1)α,β∇gi,αi∇gj,βj− Vcost − iHR∇Fjj .

(56)
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3. 2 The linear wave equation and

the generalized Hamilton-Jacobi equation

We use the Hamiltonian operator to set up a linear

wave equation imposed on a complex-valued wave func-

tion ψ(~x, t;HR), which leads to a generalized equation of

the Hamilton-Jacobi equation. A linear wave equation is

given by the following,

iHR
∂ψ(~x, t;HR)

∂t
= Ĥψ(~x, t;HR). (57)

In this equation, we explicitly show dependence of the

wave function ψ on the parameter HR. We note that this

equation (57) is a linear partial differential equation both

in time and space coordinates. This reflects the fact that

waves are superposable. Next we decompose the wave

function to the following combination of an absolute value

function and a phase function,

ψ(~x, t;HR) = R
q(~x, t;HR) exp

µ
i

HR
Sq(~x, t;HR)

¶
, (58)

where we set HR as a unit of the phase function. We

explicitly write down dependence on HR of the absolute

value function Rq and the dimensional phase function

Sq. We note that in the above equation, the wave func-

tion depends explicitly on time and so the wave equation

contains time partial derivative. Substituting the expres-

sion (58) into the wave equation (57) and taking the real

part projection lead to an generalization of the Hamilton-

Jacobi equation. For the affine system of Eqs.(38) and

(39), as will be shown in Appendix C, the phase func-

tion Sq(~x, t,HR) satisfies the following partial differential

equation,

∂Sq

∂t
− V q +

(R̄−1)α,β
2

gi,αgj,β
∂Sq

∂xi

∂Sq

∂xj

−Vcost + Fj ∂S
q

∂xj
= 0. (59)

Except the second term in the l.h.s., the above equation

is nothing but the Hamilton-Jacobi equation (43). This

term V q is given by,

V q(~x, t;HR) =
H2
R

2
(R̄−1)α,β

wqα,β(~x, t;HR)

Rq(~x, t;HR)
. (60)

We call this an additional cost, because this V q con-

tributes to the equation in a form added to the conven-

tional cost function Vcost. This additional cost V
q rep-

resents wave strength acted on the optimal path. In the

above equation (60), the denominator is calculated as,

wqα,β ≡ gi,αgj,β
∂2Rq

∂xi∂xj

+
1

2

³
gi,α

∂gj,β

∂xi
+ gj,β

∂gi,α

∂xi

´
∂Rq

∂xj

+
1

2

³
gi,α

∂gj,β

∂xj
+ gj,β

∂gi,α

∂xj

´
∂Rq

∂xi

+
1

4

³
gi,α

∂2gj,β

∂xi∂xj
+
∂gi,α

∂xi

∂gj,β

∂xj
+ gj,β

∂2gi,α

∂xi∂xj

´
Rq.

(61)

This additional cost V q contains division by the absolute

value function Rq and has possibly a complicated depen-

dence on HR, the origin of which is the possibly compli-

cated dependence of the wave function on HR. However,

an appropriate time boundary condition leads to conver-

gence of V q → 0 in the order of H2
R in HR → 0. The

proof needs detailed discussion on the boundary condi-

tion and will be reported elsewhere. We call Eq.(59) as a

generalized Hamilton-Jacobi equation. When we set HR

sufficiently small the generalized Hamilton-Jacobi equa-

tion (59) approximates the conventional Hamilton-Jacobi

equation (43), because the order of the additional cost V q

is H2
R.

3. 3 A state feedback law

We show in the following how to calculate optimal state

feedback by making use of a solution of the wave function.

The state feedback is obtained from the optimality con-

dition of control, Eq.(17). For the affine system this is

nothing but Eq.(41). According to the constraint condi-

tion (42) between the canonical momentum of the state

and costates variable, we attain,

uα = (R)α,α
∂S

∂xi
gi,α. (62)

In this equation, S is a solution of the Hamilton-Jacobi

equation (43) which we approximate by the phase function

Sq of the wave function ψ. Straightforward calculations of

differentiations of the wave function leads to the following

formula of the optimal feedback,

uα = (R̄−1)α,α
∂Sq

∂xi
gi,α

= (R̄−1)α,αHR

Reψ ∂Imψ
∂xi

− Imψ ∂Reψ
∂xi

(Reψ)2 + (Imψ)2
gi,α. (63)

In the r.h.s. of the above equation HR is multiplied be-

cause the phase function Sq appears in the wave function

in the form of Sq

HR
.

4. A numerical example

We show a numerical example of the optimal feedback

control of a system containing nonlinearities both in the

state equation and the control specification. After set-

ting up the wave equation according to the method stated

above, we show simulation studies. We will check that

the Hamilton-Jacobi equation is satisfied when the new
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designer’s constant HR tends to zero. We will also exam-

ine behaviors of the additional costs. Our aim here is to

present in a concreet way the new concept clearly. For

this purpose we deal with a simple system with 1-input

and 1-state. We will show systematically in forthcoming

papers methods of calculations for general systems with

multiple inputs and states.

4. 1 The linear wave equation

and the optimal feedback

In the following, we will show an algorithm. We start

with a definition of a system to be examined and then

give calculations of feedback control laws.

A system is described by the following nonlinear state

equation and the non-quadratic cost function,

g(x) = B, F (x) = Ax+ δx3, (64)

R =
M

2
, Vcost(x) = K(x

2 + βx4). (65)

In the above equations, we set B = 1, A = 1, δ = 0.1,

M = 1, K = 0.5 and β = 0.1. When there is no F (x)-

term in the above state equation 10), the state equation

is nothing but a definition of a velocity (ẋ = u ) in clas-

sical mechanics of point particles and we can set up our

linear wave equation entirely in the same manner of the-

ories of a quantum wave associated with point particles.

However, in control theories a time derivative of the state

variable is calculated using a state function like the func-

tion F (x) defined by Eq.(64). We thus no longer see the

state equation as the definition of the velocity. Even for

such system, we can set up a linear wave equation accord-

ing to the method described in the foregoing sections.

The control variable operator, the costate variable op-

erator and the Hamiltonian operator are calculated as fol-

lows, according to (53), (54) and (56),

û = −i 1
M
HR

∂

∂x
, (66)

λ̂ = iHR
∂

∂x
, (67)

Ĥ = −H
2
R

2M

∂2

∂x2
− Vcost(x)

−iHR

©
F (x)

∂

∂x
+
1

2

∂F (x)

∂x

ª
, (68)

respectively. Using these we can set up the linear wave

equation (57) as follows,

iHR
∂ψ(x; t)

∂t
=
h
−H

2
R

2M

∂2

∂x2
− Vcost(x)

−iHR

©
F (x)

∂

∂x
+
1

2

∂F (x)

∂x

ªi
ψ(x; t).(69)

According to Eqs.(59) and (41) we find that the general-

ized Hamilton-Jacobi equation and the optimal feedback

Fig. 3 Results of optimal control with HR = 1.0

Fig. 4 Results of optimal control with HR = 0.5

Fig. 5 Results of optimal control with HR = 0.1

control are given as follows,

∂Sq(x; t)

∂t
− H2

R

2M

1

Rq(x; t)

∂2Rq(x; t)

∂x2

+
1

2M

µ
∂Sq(x; t)

∂x

¶2
−Vcost(x)

+F (x)
∂Sq(x; t)

∂x
= 0, (70)

u =
1

M

∂

∂x
Sq(x; t), (71)

respectively.

4. 2 Simulation

We will show simulation studies of feedback optimiza-

tions of the above nonilnear control system. We use a

perturbation method typical to the quantum mechani-

cal linear wave equation. And we mainly compare pro-

files of the additional cost V q by taking three values of

the control constant HR. We then make use of such

examinations to clarify that the generalized Hamilton-
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Fig. 6 Absolute value Rq , its 2nd derivative ∂2Rq

∂x2
and their

ratio with HR = 1.0

Fig. 7 Absolute value Rq , its 2nd derivative ∂2Rq

∂x2
and their

ratio with HR = 0.5

Fig. 8 Absolute value Rq , its 2nd derivative ∂2Rq

∂x2
and their

ratio with HR = 0.1

Fig. 9 ∂Sq

∂t
(Time derivative of phase value Sq) evaluated at

various HR’s

Jacobi equation approximates the conventional one when

we set HR as small values. First, we show time devel-

opments of the control system. Setting the control con-

stant HR = 1.0, 0.5 and 0.1, the corresponding trends are

shown in Fig.3, Fig.4 and Fig.5, respectively. In these fig-

ures, we show the trends of the state variables(No.1 with

the range of −3 ∼ 2), the control variables(No.2 with

the range of −20 ∼ 0), the errors of the Hamilton-Jacobi
equations(No.3, with the range of −20 ∼ 30) and those of
the generalized Hamilton-Jacobi equations(No.4 with the

range of −10 ∼ 40). We here calculate the error of the

Hamilton-Jacobi equation as,h
1

2M

µ
∂Sq(x; t)

∂x

¶2
− Vcost(x) + F (x)∂S

q(x; t)

∂x

i
/(Kx2IC) = 0. (72)

In the above equation, we use the initial value xIC = 1 of

the state variable to nondimensionalize the numerator.

The error of the generalized Hamilton-Jacobi equation

(70) is the l.h.s. of this equation, which is also nondi-

mensionalized by Kx2IC as follows,h
∂Sq(x; t)

∂t
− H2

R

2M

1

Rq(x, t)

∂2Rq(x, t)

∂x2

+
1

2M

µ
∂Sq(x; t)

∂x

¶2
− Vcost(x)

+F (x)
∂Sq(x; t)

∂x

i
/(Kx2IC) = 0. (73)

The errors of the generalized Hamilton-Jacobi equation

near the initial time take large values(∼ 4% ). These

large values suggest inadequate application of the per-

turbation theory to the initial large value of xIC = 1.

However, these errors of the generalized Hamilton-Jacobi

equation keep approximately zero except a neighborhood

of the initial time. And these trends in time depend lit-

tle on the control constant HR. On the other hand, time

trends of the errors of the Hamilton-Jacobi equation de-

pend on the control constant HR and by taking the HR

small these approach the error trends of the generalized

Hamilton-Jacobi equation. In other words, solutions of

the Hamilton-Jacobi equation can be approximated by

those of the generalized Hamilton-Jacobi equation in the

zero limit of the control constant HR.

Next, we show spatial profiles of the additional cost

V q(x; t) of Eq.(70) and examine their dependence on HR.

The additional cost is calculated by the following formula,

V q(x; t) ≡ H2
R

2M

1

Rq
∂2Rq

∂x2
. (74)

In Fig.6, Fig.7 and Fig.8, ratios of the 2nd derivative
∂2

∂x2
Rq to the absolute value function Rq (No.1 in these

Figures with the range −1.2 ∼ 0.8) along with the 2nd
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derivative ∂2

∂x2
Rq (No.2 with the range −0.8 ∼ 1.2) and

the absolute value function Rq(No.3 with the range 0.9 ∼
1.4) are shown. The control constants are set again as

HR = 1.0, 0.5 and 0.1 for Fig.6, Fig.7 and Fig.8, respec-

tively. As a result of calculations, these profiles varies lit-

tle in time. Comparison of these three Figures shows that

the spatial profiles of the ratio of ∂
2Rq(x;t)

∂x2
to Rq(x; t) have

little dependence on HR. This means that the additional

cost calculated by Eq.(74) vary approximately in propor-

tional to the square of HR and tends to zero in the zero

limit of HR. In these example calculations, the absolute

value function Rq(x; t), the denominator of Eq.(74), has

no zero point. We expect that the zero points of such de-

nominator can be avoided by taking an appropriate time

boundary condition. This point will be examined in de-

tail in forthcoming papers. The first term of the general-

ized Hamilton-Jacobi equation (70), the time derivative of

the phase function, ∂S
q

∂t
, has almost constant value over

both time and state variables. As shown in Fig.9(with the

range −0.4 ∼ 0.1) these tend to zero in proportional to

the square of HR.

5. Summary

For the purpose of calculating optimal feedback control

for a nonlinear system, we assumed that associated with

the optimal path there is a linear superposable complex-

valued wave. To represent strength of action of the wave,

we introduced a constant HR. Regarding an optimal con-

trol system as a dynamical system with constraints of

state equations, we defined linear operators which are in

one-to-one correspondence to canonical variables. These

operators were arranged such that these satisfy a certain

algebraic structure. This is the structure that appears

in the algebra among the Dirac brackets of the canoni-

cal variables. Especially for an affine system, the linear

operators were explicitly represented as combinations of

partial differentials regarding to state variables. After a

calculation of a Hamiltonian operator corresponding to

the Hamiltonian function, we set up a linear wave equa-

tion for a wave function. We showed that a phase function

of the wave function satisfies an equation. This equa-

tion is the same as Hamilton-Jacobi equation except that

there arises an additional cost term representing the ac-

tion of the wave. We called this equation the generalized

Hamilton-Jacobi equation. Taking into account that the

additional cost is proportional to H2
R, we showed that

the generalized Hamilton-Jacobi equation approaches the

conventional Hamilton-Jacobi equation when we set HR

as small as possible. We explained a method of calculat-

ing nonlinear optimal feedback control by a solution of

the wave equation. To clarify new concepts and to show

validity of our algorithm of the feedback calculation, we

gave numerical simulation studies of a simple nonlinear

system with 1-input and 1-state variable.
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Appendix A. Calculations of the

Poisson brackets between

the constraint conditions

In evaluations of the Dirac bracket, we must calculate

the Poisson brackets between the constraint conditions.

These calculations are not restricted to affine sytems. The

Poisson brackets between the canonical variables are cal-

culated as follows,

{xi, pxj} = δi,j , (A. 1)

{uα, puβ} = δα,β , (A. 2)

{λi, pλj} = δi,j . (A. 3)

The Poisson brackets of the other combinations are zero.

The following formulas will also be useful,

{f(~x), pxj} =
∂f(~x)

∂xj
, (A. 4)
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{f(~u), puβ} =
∂f(~u)

∂uβ
, (A. 5)

{f(~λ), pλj} =
∂f(~λ)

∂λj
. (A. 6)

Using the above obtained formulas, we can calculate the

Poisson brackets between the constraint conditions.

(1) The Poisson brackets including φx

The Poisson bracket between φx and φx or that be-

tween φx and φu are not included in Eqs.(A. 1), (A. 2)

and (A. 3) and these vanish. For the combination of φx

and φλ, we see that,

{φxi ,φλj} = δi,j , (A. 7)

by making use of Eqs.(A. 3) or (A. 6). And for the com-

bination of φx and φH , we see from (A. 4) that,

{φxi ,φHβ} = {pxi ,φHβ} = −
φHβ
∂xi

, (A. 8)

which is nothing but the minus sign of Eq.(26)

(2) The Poisson brackets including φu

The Poisson bracket between φu and φu or that be-

tween φu and φλ are not included in (A. 1), (A. 2) and

(A. 3) and these vanish. For the combination of φu and

φH , we use Eq.(A. 5) to obtain,

{φuα ,φHβ} = {puα ,φHβ} = −
φHβ
∂uα

, (A. 9)

which is nothing but the minus sign of Eq.(21).

(3) The Poisson bracktes including φλ

For the combination of φλ and φH , we use Eq.(A. 6)

to obtain,

{φλi ,φHβ} = {pλi ,φHβ} = −
∂φHβ
∂λi

, (A. 10)

which is nothing but the minus sign of Eq.(27).

Appendix B. A calculation of

the inverse matrix of K

We calculate the inverse of the matrix K, each element

of which was calculated in Appendix A. This calculation

of K−1 is also not restricted to affine systems. We assume

that the matrix b defined in Eq.(21) is regular. First let

us set this inverse matrix in a blockwise form,

K−1 =


V1,1 V1,2 V1,3 V1,4

V2,1 V2,2 V2,3 V2,4

V3,1 V3,2 V3,3 V3,4

V4,1 V4,2 V4,3 V4,4

 . (B. 1)

The first to the fourth columns of the product KK−1 =

I2n+2m(2n + 2m-dimensional unit matrix) are written

down as follows, respectively.

•The first column,


0 0 In −a
0 0 0 −b
−In 0 0 −c
ta tb tc 0



V1,1

V2,1

V3,1

V4,1

=


V3,1 − aV4,1
−bV4,1

−V1,1 − cV4,1
taV1,1 +

tbV2,1 +
tcV3,1



=


In

0

0

0

 . (B. 2)

From the second row we have V4,1 = 0, which is

substitued into the first and the third rows to obtain

V3,1 = In and V1,1 = 0, respectively. These results are

substituted into the fourth row to get V2,1 = −(tb)−1 tc.

•The second column,


0 0 In −a
0 0 0 −b
−In 0 0 −c
ta tb tc 0



V12

V2,2

V3,2

V4,2

=


V3,2 − aV4,2
−bV4,2

−V1,2 − cV4,2
taV1,2 +

tbV2,2 +
tcV3,2



=


0

Im

0

0

 . (B. 3)

From the second row we have V4,2 = −b−1, which is
substitued into the first and the third rows to obtain

V3,2 = −ab−1 and V1,2 = cb−1, respectively. These re-

sults are substituted into the fourth row to get V2,2 =

(tb)−1(tca−tac)b−1.
•The third column,


0 0 In −a
0 0 0 −b
−In 0 0 −c
ta tb tc 0



V1,3

V2,3

V3,3

V4,3

=


V3,3 − aV4,3
−bV4,3

−V1,3 − cV4,3
taV1,3 +

tbV2,3 +
tcV3,3



=


0

0

In

0

 . (B. 4)

From the second row we have V4,3 = 0, which is sub-

stitued into the first and the third rows to obtain

V3,3 = 0 and V1,3 = −In, respectively. These results are
substituted into the fourth row to get V2,3 = (

tb)−1 ta.

•The fourth column,
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
0 0 In −a
0 0 0 −b
−In 0 0 −c
ta tb tc 0



V1,4

V2,4

V3,4

V4,4

=


V3,4 − aV4,4
−bV4,4

−V1,4 − cV4,4
taV1,4 +

tbV2,4 +
tcV3,4



=


0

0

0

Im

 . (B. 5)

From the second row we have V4,4 = 0, which is

substitued into the first and the third rows to obtain

V3,4 = 0 and V1,4 = 0, respectively. These results are

substituted into the fourth row to get V2,4 = (
tb)−1.

These are summraized to obtain the inverse matrix as

follows,

K−1 =


0 cb−1

−(tb)−1 tc (tb)−1(tca−tac)b−1
In −ab−1
0 −b−1

−In 0

(tb)−1 ta (tb)−1

0 0

0 0

 . (B. 6)

Appendix C. A derivation of the gen-

eralized Hamilton-Jacobi

equation from the linear

wave equation

We show that taking the real part projection of the lin-

ear wave equation imposed on the complex-valued wave

function leads to the generalized Hamilton-Jacobi equa-

tion for the affine system.

We first note that the following formula holds, for arbi-

trary functions f , g and W of the state variable ~x,

∇fi∇gjW =
∇fi∇gjW +∇gj∇fiW

2

= fg
∂2W

∂xi∂xj

+
1

2

(³
f
∂g

∂xi
+ g

∂f

∂xi

´
∂W

∂xj
+
³
f
∂g

∂xj
+ g

∂f

∂xj

´
∂W

∂xi

)

+
1

4

³
f

∂2g

∂xi∂xj
+

∂f

∂xi

∂g

∂xj
+ g

∂2f

∂xi∂xj

´
W. (C. 1)

So when the “kinetic energy” part of the Hamiltonian

operator (56) is operated on the decomposed form of the

wave function of Eq.(58), we have,

(−ûαRα,βûβ − λ̂iûαgi,α)ψ

= −H
2
R

2

¡
R̄−1

¢
α,β
∇gi,αi ∇gj,βj ψ

= −H
2
R

2

¡
R̄−1

¢
α,β

"
gi,αgj,β

∂2ψ

∂xi∂xj

+
1

2

n¡
gi,α

∂gj,β

∂xi
+ gj,β

∂gi,α

∂xi

¢ ∂ψ
∂xj

+
¡
gi,α

∂gj,β

∂xj
+ gj,β

∂gi,α

∂xj

¢ ∂ψ
∂xi

o
+
1

4

³
gi,α

∂2gj,β

∂xi∂xj
+
∂gi,α

∂xi

∂gj,β

∂xj
+ gj,β

∂2gi,α

∂xi∂xj

´
ψ

#
. (C. 2)

The operation of the “convex” term is calculated as,

−λ̂jFj(~x)ψ = −iHR∇
Fj

j ψ

= −iHR

³
Fj

∂ψ

∂xj
+
1

2

∂Fj

∂xj
ψ
´
. (C. 3)

The partial derivatives of the wave function are expressed

by the partial derivatives of the absolute value function

and those of the phase function as follows,

∂ψ

∂xi
=

∂(Rqe
i

HR
Sq

)

∂xi

=
³
∂Rq

∂xi
+

i

HR
Rq

∂Sq

∂xi

´
e

i
HR

Sq

, (C. 4)

∂2ψ

∂xi∂xj
=
³
∂2Rq

∂xi∂xj
+

i

HR

∂Sq

∂xi

∂Rq

∂xj

+
i

HR

∂Sq

∂xj

∂Rq

∂xi
+Rq

¡ i

HR

¢2 ∂Sq
∂xi

∂Sq

∂xj

+Rq
i

HR

∂2Sq

∂xi∂xj

´
e

i
HR

Sq

, (C. 5)

∂ψ

∂t
=
³
∂Rq

∂t
+

i

HR
Rq

∂Sq

∂t

´
e

i
HR

Sq

. (C. 6)

Substituting these Eqs.(C. 4), (C. 5) and (C. 6) into

Eq.(C. 2), after multiplying e
− i
HR

Sq

and taking the real

part, we have, for the kinetic part,

Re
h
(−ûαRα,βûβ − λ̂iûαgi,α)ψ · e−

i
HR

Sq
i

= −H
2
R

2

¡
R̄−1

¢
α,β"

gi,αgj,β

³
∂2Rq

∂xi∂xj
+
¡ i

HR

¢2
Rq

∂Sq

∂xi

∂Sq

∂xj

´
+
1

2

n³
gi,α

∂gj,β

∂xi
+ gj,β

∂gi,α

∂xi

´
∂Rq

∂xj

+
³
gi,α

∂gj,β

∂xj
+ gj,β

∂gi,α

∂xj

´
∂Rq

∂xi

o
+
1

4

³
gi,α

∂2gj,β

∂xi∂xj
+
∂gi,α

∂xi

∂gj,β

∂xj
+ gj,β

∂2gi,α

∂xi∂xj

´
Rq

#
. (C. 7)

The convex and the time derivative terms are given as,

Re
h
−λ̂jFj(~x)ψ · e−

i
HR

Sq
i
= FjR

q ∂S
q

∂xj
, (C. 8)
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Re
h
iHR

∂ψ

∂t
e
− i
HR

Sq
i
= −Rq ∂S

q

∂t
, (C. 9)

respectively. Taking the real part of the linear wave equa-

tion (57) after multiplying e
− i
HR

Sq

, we finally have,

−Rq ∂S
q

∂t
=
1

2

¡
R̄−1

¢
α,β
gi,αgj,βR

q ∂S
q

∂xi

∂Sq

∂xj

−VcostRq + FjRq ∂S
q

∂xj
− V qRq, (C. 10)

where the additional cost V q is defined by Eq.(60). Di-

viding the above Eq.(C. 10) by Rq leads to the generalized

Hamilton-Jacobi equation (59).

In the following, we extract a partial differential equa-

tion for the absolute value function Rq by taking the imag-

inary part of the wave equation. Substituting Eqs.(C. 4)

and (C. 5) into Eq.(C. 2) and taking its imaginary part af-

ter multiplication of e
− i
HR

Sq

, for kinetic energy part we

have,

Im
h
(−ûαRα,βûβ − λ̂iûαgi,α)ψ · e−

i
HR

Sq
i

= −H
2
R

2

¡
R̄−1

¢
α,β

"
gi,αgj,β

1

HR

³
∂Rq

∂xi

∂Sq

∂xj
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∂xi

∂Rq

∂xj
+Rq

∂2Sq

∂xi∂xj

´
+

1

2HR

n³
gi,α

∂gj,β

∂xi
+ gj,β

∂gi,α

∂xi

´
Rq

∂Sq

∂xj

+
³
gi,α

∂gj,β

∂xj
+ gj,β

∂gi,α

∂xj

´
Rq

∂Sq

∂xi

o#
. (C. 11)

The convex and the time derivative terms are given as,

Im
h
−λ̂jFj(~x)ψ · e−

i
HR

Sq
i
=

−HRFj
∂Rq

∂xj
− HR

2

∂Fj

∂xj
Rq, (C. 12)

Im
h
iHR

∂ψ

∂t
e
− i
HR

Sq
i
= HR

∂Rq

∂t
, (C. 13)

respectively. Taking the imaginary part of the linear wave

equation (57) after multiplying e
− i
HR

Sq

and dividing by

the common factor HR, we have,

∂Rq

∂t
= −1

2

¡
R̄−1

¢
α,β

"
gi,αgj,β

³
∂Rq

∂xi

∂Sq

∂xj

+
∂Sq

∂xi

∂Rq

∂xj
+ Rq

∂2Sq

∂xi∂xj

´
+
1

2

n³
gi,α

∂gj,β

∂xi
+ gj,β

∂gi,α

∂xi

´
Rq

∂Sq

∂xj

+
³
gi,α

∂gj,β

∂xj
+ gj,β

∂gi,α

∂xj

´
Rq

∂Sq

∂xi

o#

−Fj ∂R
q

∂xj
− 1
2

∂Fj

∂xj
Rq. (C. 14)

We note that in the above equation we have no HR both
in r.h.s. and l.h.s..
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