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Kinematics of Manipulation Using the Theory of

Polyhedral Convex Cones and its Application to

Grasping and Assembly Operations

Shinichi Hirai∗

A new approach to the kinematic analysis of object motion constrained by mechanical contacts is presented.

In robotic manipulation, such as grasping and assembly, robots manipulate objects through mechanical contacts

with the grasped object and with the environment. We need to understand the kinematic behavior of the object

motion under the constraints by the mechanical contacts in order to find appropriate strategies for manipulation

tasks.

In this paper, we first show that the constraints by mechanical contacts are generally described by a set of

homogeneous linear inequalities. In task planning, it is often necessary for the planner to treat the complex

inequalities. Thus, we develop an efficient mathematical tool based on the theory of polyhedral convex cones

in order to treat the inequalities in a simple and systematic manner. Furthermore, we develop computation

algorithms of the polyhedral convex cones in order to treat the inequalities on a computer. We apply the method

to the planning of form-closure grasps, workpiece fixturing, and hybrid position/force control. Several examples

demonstrate the usefulness of the algorithms.
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1. Introduction

Kinematics and statics of arm linkages have been stud-

ied extensively in past decades. An arm linkage is a

holonomic system consisting of multiple bodies, for which

standard analytic methods have been established. In con-

trast, process models of manipulative tasks such as as-

sembly are generally non-holonomic. Objects are in con-

tact with each other and thereby constrained mechani-

cally, but constraints are unidirectional since the objects

may separate in one direction. The difference between the

bidirectional and the unidirectional constraints is critical,

since the latter refers to non-holonomic constraints, to

which standard techniques do not apply.

In screw theory, unidirectional constraints have been

characterized by repelling and reciprocal screws 1). In

grasp analysis, the unidirectional nature of constraints

by fingers has been addressed in the analysis of form

closure 2) and force closure 1), 3). Contacts between fin-

gers and objects are also analyzed extensively 4)∼6). In

fixture analysis, the accessibility and detachability con-

ditions have been derived from a non-holonomic model

of workpiece positioning 7). Assembly tasks such as peg-

into-hole mating are non-holonomic processes with unidi-

rectional constraints. These assembly processes have been
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analyzed based on unidirectional constraint models 8), 9).

In these papers, the unidirectional constraints are de-

scribed by a set of inequalities or in some equivalent for-

mulae. In these analyses, the intractable nature of in-

equalities creates difficulties; simultaneous inequalities are

much harder to solve explicitly than equalities. Solutions

are complex to represent and difficult to interpret. Un-

like the solutions to simultaneous equations, the solutions

to simultaneous inequalities are not given in an explicit,

comprehensive, and understandable form, even if the in-

equalities are linear. This is a bottleneck in the analysis

of manipulative tasks where objects are subject to unidi-

rectional constraints.

The goal of this paper is to establish an underpinning

mathematical tool for dealing with a variety of manipula-

tive tasks that are governed by unidirectional constraints.

We will introduce a coherent representation for formulat-

ing various problems including grasping, fixturing, and

hybrid position/force control, all of which are treated as

problems of solving a certain class of simultaneous in-

equalities. To solve these problems, we will develop a sys-

tematic method based on the theory of polyhedral convex

cones. The new method not only produces simple, sys-

tematic solutions, but also provides a general perspective

over many different problems and useful insight of non-

holonomic systems with unidirectional constraints.
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Fig. 1 Model of grasping by robotic hand

2. Description of Constrained Object
Motion by Inequalities

2. 1 Object Grasping by Robotic Hand

Grasp is to constrain an object by means of fingers that

provide unidirectional constraints. Let us investigate the

condition for an object to be totally constrained, regard-

less of friction between the fingertips and the object. This

condition requires the fingers to surround an object so

that no geometrically admissible displacement is allowed

for the object. We deal with a rigid body consisting of a

finite number of smooth surfaces, called face j. Let gj(x)

be the distance between face j and an arbitrary point

in space whose coordinates are x as illustrated in Figure

1. The distance function gj(x) is defined to be a signed

distance so that it is negative inside the rigid body. We

assume that all of the contacts are formulated by a finite

number of point contacts.

Let xi be the coordinates of the i-th vertex of the mov-

ing object. When the i-th vertex of the moving object is

on the j-th face of the fixed object, the following equation

is satisfied:

gj(xi) = 0 (1)

Let ∆x0 is an infinitesimal displacement of the object po-

sition and ∆θ0 is that of the object orientation. When

the moving object changes its location slightly, the signed

distance between the i-th vertex and j-th face changes to:

d = gj(xi −∆x0 −∆θ0 × xi), (2)

where × represents the outer product of vectors. We as-

sume that the function gj is differentiable. Let nij be

the inward normal vector of the j-th face at coordinates

xi. Expanding eq.(2) and substituting eq.(1) into the ex-

panded function, we have

d = −∂gj

∂x
(xi)(∆x0 +∆θ0 × xi)

= −(nij)
T∆x0 − (xi × nij)

T∆θ0

= −(dij)
T∆q (3)

where

dij =

[
nij

xi × nij

]
, (4)

∆q =

[
∆x0

∆θ0

]
. (5)

Since vertex i of the moving object lies on or outside the

face j of the fixed object, the value of eq.(3) must be pos-

itive or equal to zero. Thus, the following condition must

be satisfied:

dT
ij∆q ≤ 0. (6)

Contact conditions for other types of contact pairs can

be expressed by an appropriate combination of inequali-

ties in the form of eq.(6). For example, when a fingertip

contacts with a concave edge, the condition is given by the

intersection of two inequalities corresponding to adjacent

faces of the concave edge. When a fingertip contacts with

a convex edge, the condition is described by the union

of two inequalities corresponding to adjacent faces of the

convex edge.

The possible infinitesimal displacements of the object

position and orientation must satisfy all of the conditions

due to individual contact points. Expanding these condi-

tions, a set of geometrically admissible displacements can

be derived as:

A =

N⋃
n=1

An (7)

where

An = {∆q | (hnm)
T∆q ≤ 0, ∀m ∈ [1, Mn]}, (8)

hnm ∈ {dij}, ∀n, m.

Set A is referred to as Admissible Displacement Set in this

paper. If the set A involves a non-zero element, the object

is not geometrically constrained in that particular direc-

tion. Thus, the admissible displacement set A must be a

set that has no elements other than 0 for the grasping.

constraint is referred to as Form Closure Grasp 2).

2. 2 Accessibility and Detachability of Work-

piece

In assembly, a workpiece is positioned at a designated

location relative to a fixed object. Fundamental questions
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(a) (b)

(c)

Fig. 2 Examples of planar object disassembly

are to investigate whether the desired location is accessi-

ble for the workpiece and whether the workpiece is de-

tachable from the fixture. Asada and By have formulated

accessibility and detachability conditions by considering

the local behavior of a workpiece in the vicinity of the

designated location 7). Workpiece in Figure 2-(a) and (b)

is accessible and detachable in the vicinity of final loca-

tion while workpiece in Figure 2-(c) is not accessible nor

detachable.

Assuming that all the contacts are described by a finite

number of point contacts, the conditions can be restated

with regard to the admissible displacement set A. Namely,

the workpiece is accessible and detachable in the vicinity

of the designated location, if and only if a non-zero dis-

placement ∆q is involved in the set A.

∃∆q 
= 0 s.t. ∆q ∈ A (9)

Admissible translational displacements ∆x are shown in

the figure.

2. 3 Hybrid Position/Force Control

In order to perform a task by using hybrid posi-

tion/force control, we need to find the position-controlled

space and the force-controlled space so that the robot mo-

tion may conform to the geometric constraints of the envi-

ronment 10). The position-controlled space in the hybrid

control is equivalent to the space of admissible infinitesi-

mal displacements, while the force-controlled space is the

space of forces that satisfy the static equilibrium condi-

tion.

One moving object is in contact with fixed objects. The

moving object is stable in the initial state. Assume that

force f and moment m are applied to the moving object

and that an infinitesimal displacement ∆q occurs, as il-

lustrated in Figure 3. Since we have no energy source

except a robotic hand, work done by the hand ∆Work

is equal to the sum of the increment of kinetic energy of

Moving Object

Fixed Object

Fixed Object
m

f

Fig. 3 Moving object constrained by contact with fixed ob-

jects

the object, ∆T , and the increment of dispersing energy,

∆C ≥ 0. Since the moving object moves, the kinetic en-

ergy increases, say, ∆T > 0. Thus, we have

∆Work = f ·∆x +m ·∆θ = pT q > 0 (10)

where

p =

[
f

m

]
. (11)

From the contraposition of the above discussion, we find

that the moving object is stable if the following condition

is satisfied:

∆Work = pT q ≤ 0 (12)

Thus, the space of forces that satisfy the static equilib-

rium condition is described as follows:

F = {p | pT∆q ≤ 0, ∀∆q ∈ A}. (13)

Namely, the force-controlled space is given by the above

equation.

Thus, the above problems concerning assembly, grasps,

and hybrid position/force control are all described with

regard to a simultaneous system of linear inequalities. For

these problems , we will develop a systematic computation

method based on the theory of polyhedral convex cones.

3. Theory of Polyhedral Convex Cones

3. 1 Definition of Polyhedral Convex Cones

All the problems discussed in the previous section are

represented generally in the same form, that is, simulta-

neous inequalities in terms of inner products of two vec-

tors. Problems associated with differential motions, or

instantaneous kinematics and statics, are thus reduced to

the problems of solving a simultaneous system of linear

inequalities. From this section, we will develop a system-

atic method for solving these problems by applying the
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theory of polyhedral convex cones attributed to Goldman

and Tucker 11).

Let u1 through uk be k real vectors. A set of a lin-

ear combination of the vectors u1 through uk with non-

negative coefficients

A = {
k∑

j=1

cjuj | cj ≥ 0, ∀j ∈ [1, k]}. (14)

is called a polyhedral convex cone and is abbreviated to

PCC. Note that the coefficients cj are all non-negative

and that in general the vectors uj are not linearly inde-

pendent. Since vectors u1 through uk span the cone, we

write the above equation simply by

A = span{u1, u2, · · · , uk}. (15)

This form is referred to as the Span Form of the poly-

hedral convex cone, and each vector involved is called a

span vector.

3. 2 Solving Simultaneous Linear Inequalities

Let a1 through am be m real vectors. Let us consider

a set of real vectors x given by

A = {x | aT
i x ≤ 0, ∀i ∈ [1, m]}. (16)

Set A represents a semi-infinite region surrounded by hy-

perplanes. Note that a vector ai represents the normal to

the i-th hyperplane. It has been proven that the above

region is a polyhedral convex cone 11). Namely, set A can

be described as follows:

A = span{u1, u2, · · · , uk}.
Vectors u1 through uk can be computed from vectors a1

through am. For the sake of simplicity, the set given by

eq.(16) is expressed as

A = face{a1, a2, · · · , am} (17)

which is referred to as the Face Form of the polyhedral

convex cone. Each vector involved is called a face vector.

3. 3 Polar of Polyhedral Convex Cone

Let X be an arbitrary set of real vectors x. The set

defined by

X∗ = {y | xT y ≤ 0, ∀x ∈ X} (18)

is called the polar of the set X.

Let us consider the relationship between a polyhedral

convex cone and its polar. Figure 4 illustrates a simple

example of a two-dimensional polyhedral convex cone and

its polar. The face form of the polyhedral convex cone A

is given by A = face{a1, a2}. The cone A can be de-

scribed in the span form as A = span{u1, u2}. From the

figure, we can find that the vectors a1 and a2 span the

polar A∗. Namely, A∗ = span{a1, a2}. Thus, we can de-
scribe the polar in the face form as A∗ = face{u1, u2}.

A

A

a 1

a 2

u1

u2

*

Fig. 4 Polyhedral convex cone and its polar

According to Goldman and Tucker, the following theorem

is satisfied for an arbitrary polyhedral convex cone and its

polar 11).

Theorem 1. The polar of a polyhedral convex cone

A = face{a1, a2, · · · , am} is given by a span form:
A∗ = span{a1, a2, · · · , am}.

The polar of a polyhedral convex cone in span form

A = span{u1, u2, · · · , uk} is given by a face form:
A∗ = face{u1, u2, · · · , uk}.

From this theorem, it follows that the polar of a poly-

hedral convex cone is a polyhedral convex cone as well.

The polar A∗ is referred to as the dual polyhedral convex

cone of A. Note that the following property is derived

from the above theorem.

(A∗)∗ = A. (19)

Let us consider the conversion between face and span

forms. The problem is to derive a set of span vectors from

a given set of face vectors, and vise versa. The conver-

sion from face to span form can be performed by solving

linear programming (LP) problems. The conversion from

span to face form can also be performed by solving lin-

ear programming problems and using the above theorem.

We first convert a polyhedral convex cone A to its dual

polyhedral convex cone, and then solve linear program-

ming problems in order to derive vectors a1 through am

from vectors u1 through uk. Note that we regard ai as

a span vector and uj as a face vector in the dual polyhe-

dral convex cone. Thus, the conversion can be performed

in both ways by simply solving linear programming prob-

lems. This algorithm is referred to as CONVERT.

3. 4 Basic Properties of Polyhedral Convex

Cones

Let X and Y be two sets of real vectors. The set defined

by
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X + Y = {x + y | x ∈ X, y ∈ Y } (20)

is called the convex sum of sets X and Y .

Polyhedral convex cones possess the following proper-

ties. The intersection of two polyhedral convex cones is

also a polyhedral convex cone and is given by

face{a1, a2, · · · , am} ∩ face{b1, b2, · · · , bn}
= face{a1, a2, · · · , am, b1, b2, · · · , bn}. (21)

The convex sum of two polyhedral convex cones is also a

polyhedral convex cone and is given by

span{u1, u2, · · · , uk}+ span{v1, v2, · · · , vl}
= span{u1, u2, · · · , uk, v1, v2, · · · , vl}. (22)

Applying the theorem to the above intersection and con-

vex sum respectively, we can derive:

(A ∩ B)∗ = A∗ +B∗, (23)

(A+B)∗ = A∗ ∩ B∗. (24)

Consequently, the polar of a PCC, the intersection of

PCC’s, and the convex sum of PCC’s are PCC’s. The

polar of dual PCC, the polar of the intersection, and the

polar of the convex sum are given by eqs.(19), (23), and

(24), respectively.

4. Methods for Solving the Inequality
Problems

In this section, we will extend the theory of PCC’s in

order to obtain procedures for solving the inequality prob-

lems associated with assembly and grasps as described

in Section 2. From the basic properties of PCC’s, we

can derive the following algorithms for the operations of

PCC’s.

DUAL(A) = compute the dual PCC of a given PCC.

Using Theorem 1, the dual PCC’s can be ob-

tained in both face and span forms.

INTERSECT(A,B) = compute the intersection of

two PCC’s, A and B.

If A and B are given in the span form, the al-

gorithm CONVERT is first applied to the given

PCC’s in order to get face forms. For the face

form PCC’s, the intersection is directly obtained

by eq.(21).

CONVEXSUM(A,B) = compute the convex sum of

two PCC’s, A and B.

If A and B are given in the face form, the al-

gorithm CONVERT is first applied to the given

PCC’s to obtain span forms. For the span form

PCC’s, the convex sum is directly attained by

eq.(22).

By using the above four algorithms, we can solve the

fundamental inequality problems in a simple manner.

[1] The problem to examine whether a polyhedral

convex cone A involves non-zero elements

If a polyhedral convex cone A is described in a face form,

we apply algorithm CONVERT in order to describe it in

the span form:

A = span{u1, u2, · · · , uk}
An arbitrary non-zero elements x involved in A is de-

scribed by a linear combination of span vectors. It im-

plies that no non-zero elements are involved in A if k = 0.

Thus, the polyhedral convex cone A involves non-zero ele-

ments, if and only if there exists span vectors of the poly-

hedral convex cone A:

A 
= {0} ⇐⇒ k 
= 0
The above method for examining whether a polyhe-

dral convex cone involves non-zero elements is referred

to as procedure NONZERO in this paper. Procedure

NONZERO(A) returns a value of TRUE if a polyhe-

dral convex cone A has non-zero elements and a value

of FALSE otherwise.

[2] The problem to examine whether a vector r is

involved in a polyhedral convex cone A

If a polyhedral convex cone A is described in a span

form, we apply algorithm CONVERT in order to describe

it in the face form:

A = face{a1, a2, · · · , am}
From the definition of face form, eq.(16), a vector r is

involved in the polyhedral convex cone A if and only if

aT
i r ≤ 0, ∀i ∈ [1, m]

is satisfied.

The above method for investigating whether a vec-

tor is involved in a polyhedral convex cone is referred

to as procedure ELEMENT in this paper. Procedure

ELEMENT(r,A) returns a value of TRUE if a vector r

is involved in a polyhedral convex cone A and a value of

FALSE otherwise.

[3] The problem to examine whether a polyhedral

convex cone A is a subset of another polyhedral

convex cone B

When a polyhedral convex cone A is described in a face

form, we apply algorithm CONVERT in order to describe

it in the span form:

A = span{u1, u2, · · · , uk}
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Table 1 Algorithm to examine form closure grasp condition

for n := 1 to N do

begin

An := face{hn1, hn2, · · · , hnMn};
if NONZERO(An) = TRUE then

return(FALSE)

end;

return(TRUE)

The polyhedral convex cone A is a subset of another poly-

hedral convex cone B if and only if the following condition

is satisfied:

uj ∈ B, ∀j ∈ [1, m].

Using the procedure ELEMENT, we can find whether

each vector uj is involved in the polyhedral convex cone

B. Thus, we can examine whether the above condition is

satisfied or not. This method is referred to as procedure

SUBSET in this paper. Procedure SUBSET(A,B) returns

a value of TRUE if a polyhedral convex cone A is a subset

of another cone B and a value of FALSE otherwise.

5. Applications to Planning of Manipu-
lative Tasks

In this section, we apply the above methods to the ma-

nipulation problems described in Section 2.

5. 1 Object Grasping

Using the notation introduced in Section 3, the admis-

sible displacement set A of a grasped object is described

by

A =

N⋃
n=1

An (25)

and

An = face{hn1, hn2, · · · , hnMn}. (26)

The set A1 through AN are polyhedral convex cones.

Thus, the admissible displacement set A is a union of

polyhedral convex cones.

The condition for form closure grasps has been given by

A = {0}, which is equivalent to

An = {0}, ∀n ∈ [1, N ]. (27)

Using procedure NONZERO developed in the previous

section, this condition is described as follows:

NONZERO(An) = FALSE, ∀n ∈ [1, N ] (28)

The procedure to examine form closure grasps is listed

in Table 1. This subroutine returns a value of TRUE if

the form closure condition is met and a value of FALSE

otherwise.

Table 2 Procedure to compute admissible force set

A := {0};
for n := 1 to N

begin

An := face{hn1, hn2, · · · , hnMn};
A := CONVEXSUM(A, An)

end;

F := DUAL(A)

5. 2 Accessibility and Detachability

The admissible displacement set A of a workpiece at a

given final configuration is the same as eqs.(25) and (26).

Thus, we can examine the accessibility/detachability con-

dition using the procedure listed in Table 1.

5. 3 Hybrid Position/Force Control

Let A be the admissible displacement set, which is the

position-controlled space. Comparing eqs.(13) and (18),

the admissible force set F is denoted as follows:

F = A∗. (29)

In other words, the admissible force set F is the polar of

the admissible displacement set A.

The admissible displacement set A is a union of poly-

hedral convex cones A1 through AN , as shown in eq.7:

A = A1 ∪ A2 ∪ · · · ∪ AN

Note that the union of polyhedral convex cones is not al-

ways a polyhedral convex cone. The polar of the union is,

however, a polyhedral convex cone. The following equa-

tion is satisfied for arbitrary polyhedral convex cones, X

and Y :

(X ∪ Y )∗ = (X + Y )∗. (30)

Applying eq.(30) into eq.(29), we have

F = [A1 ∪ A2 ∪ · · · ∪ AN ]
∗

= [A1 + A2 + · · ·+ AN ]
∗. (31)

We find that the admissible force set F is the dual polyhe-

dral convex cone of the convex sum of polyhedral convex

cones A1 through AN . Using algorithm CONVEXSUM,

we can compute the convex sum. Next, using algorithm

DUAL, we can compute the polar F of the convex sum.

Thus, we can compute the admissible force set F using

the procedure shown in Table 2. The polyhedral convex

cone F computed in this procedure gives the admissible

force set.

It should be noted that both the admissible displace-

ment set and the admissible force set are linear subspaces

and orthogonal complements with each other when the

geometric constraints are bidirectional 10). On the other

hand, both sets are not linear subspaces but a union of
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Fig. 5 Simple example of planar object and fixed points

PCC and its dual PCC when the constraints are unidirec-

tional. Moreover, bidirectional constraints are holonomic

while unidirectional constraints are non-holonomic.

We explain the key techniques of the computation by

taking a simple example shown in Figure 5. The fixture is

modeled by four points P1 through P4. Point P1 is in con-

tact with surface L1, and points P3 and P4 with surface

L4. Point P2 is in contact with a convex vertex defined as

the intersection of surfaces L2 and L3. Let xi be coordi-

nates of point Pi and nj be the outward normal vector of

surface Lj . Let us compute the admissible displacement

set A. Inequality conditions for displacement ∆q to be

admissible at individual contact points are derived as:

dT
11∆q ≤ 0

dT
22∆q ≤ 0 or dT

23∆q ≤ 0

dT
34∆q ≤ 0

dT
44∆q ≤ 0

where

dij =

[
nj

xi × nj

]
. (32)

Computing the value of vector dij , we have

d11 = [0, 1, 1]T

d22 = [−1, 1, −2]T

d23 = [−1, −1, 2]T

d34 = [0, −1, 0]T

d44 = [0, −1, −2]T

Expanding the above inequalities, the admissible displace-

ment set A is described by

A = A1 ∪ A2 (33)

where

A1 = face{d11, d22, d34, d44},
A2 = face{d11, d23, d34, d44}.

Let us compute the admissible force set F from the

admissible displacement set A = A1 ∪ A2 by using the

procedure listed in Table 2. The admissible force set F is

then given by

F = face{[1, 0, 0]T }. (34)

Namely,

F = {[fx, fy , m]T | fx ≤ 0}, (35)

where fx and fy are translational forces along the x- and

y-axes, respectively, and m is a moment. This equation

shows that while the translational force fx is non-positive,

the force acting upon the object by a robot is balanced

with reaction forces against the fixed points P1 through

P4 and the object is not accelerated. Describing the ad-

missible force set in the span form, we have

F = span{d11, d34, d44, [−1, 0, 0]T }. (36)

Forces d11, d34, and d44 are balanced with reaction forces

against the fixed points P1, P3, and P4, respectively. Force

[−1, 0, 0]T is balanced with a reaction force against point

P2. This example shows a case where a reaction force

is generated between convex vertices though no reaction

forces act usually at the contact point between convex

vertices.

6. Concluding Remarks

In this paper, we have established an underpinning

mathematical and computational method for dealing with

manipulative tasks that are governed by unidirectional

constraints. A variety of manipulation problems have

been treated separately in different streams of robotics

research. We have formulated those problems using a co-

herent mathematical tool, that is, the theory of polyhedral

convex cones. We have extended the theory of polyhe-

dral convex cones and have developed several procedures,

which allow us to solve manipulation problems in a sys-

tematic and straightforward manner. In addition, use of a

coherent mathematical representation allows us to obtain

a general perspective over many different manipulation

problems and to understand the fundamental nature of

manipulative tasks, which are governed by unidirectional

constraints.
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