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Its Application 
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 A new method for designing multivariable model reference adaptive control system is presented. In many 
adaptive control approaches, at least the following two assumptions regarding the plant have to be made. (1) 
The number of plant poles and zeros is known. (2) The plant is the minimum phase. The proposed method can 
avoid these restrictions by using the adaptive controller designed for an autoregressive model with dead time, 
based on Lyapunov’s direct method. Next, in order to illustrate the effectiveness of this model for the both 
minimum phase and non-minimum phase plants, the results of computer simulation are given. Finally, the 
method is successfully applied to the real plant testing the performance of refrigerant compressors. 
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1. Introduction 
 
 Thus far many different approaches to adaptive control 
system have been proposed 1),2). Generally, it has been 
said that the adaptive control problem is difficult to 
establish the systematic design theory. However, since 
the model reference adaptive control system (MRACS) 
can clearly be investigated based on the stability theory 
in these attempts, it attracts most of the current interest 
and has made steady progress in practical design method. 
 Usually, the adaptive control algorithm is best 
implemented with a digital computer, since the controller 
requires complicated computations especially for the 
multi variable case. From this point of view, the adaptive 
control system must be designed in the discrete-time 
form. 
 In recent years, many approaches for a discrete adaptive 
control system have been developed 3)-15). However, in 
the design of MRACS, it must be assumed at least two 
conditions; 1) the number of plant poles and zeros is 
known, and 2) the zeros of the plant lie inside the unit 
circle of the z-plane (it is called the minimum phase 
system). In practical cases, the exact number of plant 
poles and zeros is rarely known. Moreover, the plant may 
be a distributed parameter system, which often appears in 
process control. The assumption 2) restricts the 
application of such methods to plants controlled using a 

digital computer. It often occurs that the discrete-time 
form of the plant interconnected by a set of samplers and 
a zero-order hold device becomes a system which has the 
zeros outside the unit-circle of the z-plane (called as non- 
minimum phase system), depending on the dynamic 
behavior of the plant and the sampling period, even if the 
continuous-time linear plant is the minimum phase 
system. In the multivariable case, the assumption of 
minimum phase is more restrictive. We should note that a 
multivariable transfer function with interaction could 
have zeros outside the unit circle of the z-plane even if 
each transfer function in the system has no zeros outside 
of the unit circle of the z-plane. This leads to the serious 
problem in the application to the multivariable real 
processes. 
 For this problem, the conventional model reference 
adaptive control scheme has been extended to handle 
non-minimum phase systems by modification in terms of 
zero shifting16) and dynamic compensation of the 
reference model 17). However, in these schemes, it may 
be difficult to design for an unknown plant so that the 
augmented system becomes a minimum phase system, 
and also so that the adaptive control system has fast 
convergence. Especially in multivariable cases, the 
design procedure is complicated and not clear. 
 In order to circumvent the assumptions 1) and 2), we 
propose a new approach in which the discrete-time 
model reference adaptive control is carried out using a 
controller designed for a multivariable AR model with 
dead time of the plant. Thus far, a plant is assumed to be 
modeled by an ARMA model, and an adaptive controller 
is designed for the model. In this case, if the plant has 
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unstable zeros, the adaptive control system becomes 
unstable, since the adaptive controller is designed for 
model matching and acts so as to cancel the zeros.  This 
is fatal in the case of an ARMA modeling. Thus, the 
fixed idea that a plant is described by an ARMA model 
will be changed. In general, a model is defined to be an 
approximate description of a plant constructed in terms 
of the objective.  Let us consider what model of a plant 
is useful for the objective of adaptive control.  A model 
reference adaptive control acts always so as to obtain 
pole-zero cancellation.  If an AR model with dead time 
is adopted as the plant model, the adaptive controller 
does not generate structurally poles to cancel zeros, since 
the model has no zeros.  Therefore, the stable control is 
expected even for non-minimum phase systems. 
Although there is a difference in degree, any model is an 
approximation of a plant, we think it advisable to avoid 
the ill-suited model to the design of adaptive control. 
However, the fitness of the AR model with dead time for 
any plant may be questionable. Such fitness should be 
evaluated by the control performance of the adaptive 
controller designed for the model. In fact, this scheme 
could work fairly well for many different types of 
single-input, single-output plants 18). Moreover, this 
method enables the design of the adaptive control system 
only by knowing approximately a step response of the 
plant to be controlled, without a priori knowledge about 
the transfer function, orders, and parameters etc. of the 
plant. This method can be readily applied to weakly 
nonlinear plants, slowly time-varying plants, and 
distributed parameter plants. From the practical point of 
view, the structure of the adaptive controller becomes 
simpler than that for an ARMA model, since the AR 
model with dead time has no zeros. 
 In the present study, the above method is extended to 
handle multi-input, multi-output plants and the 
experimental results of the proposed adaptive control 
system are presented. First, a stable adaptive control 
system is designed for an AR model with dead time. 
Next, in order to illustrate the effectiveness of this model, 
the results of computer simulation for both minimum 
phase and non-minimum phase multivariable plants are 
given. Finally, the proposed method is applied to a real 
plant. The real plant is a plant testing the performance of 
refrigerant compressors. The plant is the 3-inputs, 
3-outputs system, which contains an unknown 
compressor, whose characteristics must be evaluated. 
The set point changes stepwise over a wide range of the 
operating condition. Since the operating condition of the 
plant varies very wide, the stable control is not always 
obtained using the conventional PID controller with 
fixed parameters.  Moreover, since the plant is the 
thermal process, the very long testing time is required.  
Thus, an adaptive control is necessary to obtain a stable 
control behavior for a wide range of the operating 
condition and to reduce the testing time. On-line 
computer experiments have been carried out using the 
plant testing the performance of refrigerant compressors. 

 
2. Statement of problem 

 
 Consider the case where the multi-inputs, multi-outputs, 

continuous-time plant is controlled using the adaptive 
algorithm implemented with a digital computer. 
 It is assumed that the plant interconnected by sets of 
samplers with the sampling period T and zero-order hold 
devices is adequately modeled by a multivariable AR 
model with dead time of the form: 
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where )(),( kuky  are the mth order output vector and 
input vector, respectively. )( 1−qAi

, mi ,,1 K=  denotes 

the ν th order scalar polynomial in the unit delay 
operator 1−q . il , mi ,,1 K=  represents .the equivalent 

dead time between the input )(ku  and ith output )(kyi
†. 

 It can be seen that Eq. (1) consists of a set of 
multi-input, single-output systems having a common 
input vector. 
 In this study, the plant is basically modeled by 
discrete-time multivariable AR model with dead time. 
However, there exists the modeling error, parameter 
variation, constant disturbance and so on, we introduce 
the mth order residual vector 'd  into the model, which 
corresponds these errors. 
 The plant model Eq. (1) can also be represented as: 

  ∑ ∑
= =

+−+−=
ν

1 1

')(')(')(
i

m

i
iii dlkuBikyAky  (2) 

 
†  In this study, it is assumed that )( 1−qAi

 has the 

common order ν . This is only for simplifying the design 
procedure and the computation in implementation. If the 
orders of )( 1−qAi

 are independently known, we can 
easily modify the control scheme under the condition.  
The assumption that the equivalent dead time between 
the input )(ku j

( mj ,,1 K= ) in the input vector )(ku  

and ith output has the common value 
il , is related to the 

condition about the stable invariant zeros. If the 
equivalent dead time between the input 

)(ku j
( mj ,,1 K= ) and ith output has the independent 

value, the invariant zeros of the AR model with dead 
time cannot be obtained from Eq. (3) and may not exist 
inside the unit circle of the z-plane. 
 It is very difficult to assign the values of 

il  and ν  
independently and accurately. However, in many cases 
(in case of the application mentioned later), the adaptive 
controller using the AR model with dead time whose 
values of il  and ν  are simply assigned based on the 
response of each output for the dominant input, gives 
fairly well control performance. 
It seems that the rare cases require the accurate 
assignment of il  and ν . 
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where iA' , mi ,,1 K=  is the mm× coefficient matrix 

and iB' , mi ,,1 K=  is the mm× matrix with the 

element of  ith row is 
ijb , mj ,,1 K=  and all elements 

except for ith row are zeros.  
 In this case, the invariant zeros of the system Eq. (2) are 
defined by the roots of the following equation. 
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From this equation, it can be seen that all zeros of the 
plant model lie at the origin of the z-plane. 
 Equation (2) can be represented by rewriting the 
multi-input, single-output system in the plant model 
corresponding each dead time, as follows. 
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where 

iA , 1,,0 −= νKi , 
iB , 1,,0 −= li K  are the 

unknown constant matrices depending iA'  and il , iA' , 

iB'  and il , respectively. The overall equivalent dead 

time d is determined from iA' , 'd  and il . 
 In the design of the adaptive control system, we assume 
that the equivalent dead time il , mi ,,1 K=  and the 

order of the plant model ν  can be determined from a 
priori knowledge about the plant which can be estimated 
using the step response of the plant. In Eq. (4), 1B  is 
assumed to be non-singular. This condition is equivalent 
to the necessity and sufficient condition that the plant 
model can be decoupled by a state feedback 20), and the 
sufficient condition that the plant input )(ku  can always 
be calculated.  
 We can derive the control algorithm with less redundant 
parameters and less computational time, in which the 
dead time for each output is independently taken into 
account. However, for simplicity, we only show the 
control algorithm based on the maximum dead time in 
the plant model. 
 Let the reference model with decoupled structure for 
the plant Eq. (2) be described by: 
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where, the coefficients *

ija , *
ijb  ( mi ,,1 K= ; *,,1 νK=j ) 

are prescribed by the designer so that the model may 
yield a stable and desired response. )(kri  ( mi ,,1 K= ) is 

the input to the ith reference model. *
il  ( mi ,,1 K= ) 

should be selected 
ii ll ≥* ( mi ,,1 K= ) so as to avoid using 

the future values of the signals. For simplicity, we assign 

ii ll =*  in the design of the adaptive control system. 
 Define the following signals about the reference model 
corresponding to Eq. (4). 
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3. Design of control system 
 
 Define the output error and the parameter error as 
follows. 
 
  )()(*)( kykyke −∆    (9) 

  )()(*)( kykyke −∆    (10) 

  iii AD −∆Θ , 1,,1 −= νKi    (11) 
 
where iΘ , 1,,0 −= νKi  is the arbitrary constant 
matrix. Using the above definition and from Eqs. (2) and 
(8), we obtain the following error equation. 
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In order to perform PID control action with respect to the 
output error )(ke , we add )1( −+ lkeα + )2( −+ lkeβ  
to both sides of Eq. (12) (The coefficients α  and β  

are chosen so that the polynomial βα ++ zz 2 z is stable. 
Note that these coefficients can be assigned for each 
error independently but we simply assign the common 
values.) and introduce the new variables as follows. 
 
  )2()1()()( −+−+= kekekeke f βα  

  )2()1()()( **** −+−+= kykykyky ffff βα  

  )2()1()()( −+−+= kykykyky f βα   (13) 

  )2()1()()( −+−+= kukukuku f βα  

 
Using the above variables, Eq. (12) can be written as 
follows. 
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Next, we shall determine the control input )(ku  as 
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follows. 
 

  )2()1()()( −−−−= kukukuku f βα   (15) 
 
where, 
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where )(ˆ kBi

, 1,,0 −= li K ; )(ˆ kDi
, 1,,0 −= νKi  

are the adaptive gain matrices. Both the adaptive gain 
matrices and the adaptive gain vector )(kg  are updated 
by the following adaptive law. 
 Substituting Eq. (16) into Eq. (14), we have 
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In this case, using the following adaptive law, the 
stability of the overall control system is assured when the 
plant is modeled by the AR model with dead time. 
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Fig. 1 Schematic diagram of the model reference 
adaptive control system 

 A schematic block diagram of the adaptive control 
system is shown in Fig. 1. 
 Consider the following Lyapunov function of Γ  and 
µ for the system described by Eqs. (17)-(23). 
 

  )1()1()]1()1([)( −−+−Γ−Γ= kkkktrkV TT µµ  (24) 
 
Then, from Eqs. (17), (21)-(23), we have the l th  
difference )(kV∆  as follows. 
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 If there is no divergence within finite time, )(kV∆  
becomes negative semi definite. Since 0)( →∆ kV  as 

∞→k , it converges that )()( lkVkV −= , 
)()( lkk −Γ=Γ  and )()( lkk −= µµ , respectively. 

Moreover, if the signals in the vector )(kδ  is 
sufficiently rich, then )(kV  becomes zero and it follows 
that 0)( =Γ k  and 0)( =kµ . It also means that )(kΓ  
and )(kµ  are bounded. On the other hand, the fact that 

0)( →∆ kV as ∞→k  leads to the following property. 

0)]()()([)()( →+−− klklkkeke T
f

T
f ηδδ    

 Since the AR model with dead time has no unstable 
zeros, then 0→fe  and fu  becomes bounded when 

the reference model is stable and its input is bounded.   
 Moreover, if the coefficients α  and β  are chosen so 
that the polynomial βα ++ zz 2 z is stable, it can be 
proven that 0)( →ke  as ∞→k  and )(ku is bounded 

for all k  7),13),18). 
 

4. Numerical examples 
 
 To investigate the effectiveness of the adaptive control 
system mentioned above, computer simulations are 
performed for two different types of plants. 
 
[Example 1]  
The plant is a minimum phase system and the reference 
model is chosen as a decoupled second order systems 
with 2* =iν  ( 2,1=i ) as follows: 
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  )()14.1()( 1
24.0*

1 sRssesY s ⋅++= −  

  )()14.1(4)( 2
24.0*

2 sRssesY s ⋅++= −  
 
Discretizing the above systems with the sampling period 
T=0.2, and design the adaptive control system based on 
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the plant model Eq. (4) with 10=ν  and 3=il  

( 2,1=i ).  
 In this case, the reference model Eq. (7) with 2* =iν , 

3* =il  ( 2,1=i ). The reference inputs are given by step 

changes 0.1)(1 =kr  and 0.2)(2 =kr  respectively.  
 Figure 2 shows the simulation result when the plant is 
modeled by Eq. (4) with 0=d . 
 The design parameters are: 
 
 0.1=ρ , 0.1'' == βα , 0.0=η , ),()0(ˆ *

22
*
110 bbdiagB = , 

),( 12
*

11
*

++=Θ iii aadiag  ( 1,0=i ), 0=Θi  ( 9,...,2=i ), 

and 0)( ≡kg ( 0=d ).  
 
where, )''( βαα +−= , )1(' βαββ ++= . 
 The initial values of the adaptive system are set at zero 
except for )0(ˆ

0B . 

Fig. 2 Simulation results for the minimum phase plant 
 
 In Fig. 2, ● denotes the plant output, ○ the output of 
the reference model and the solid line indicates the step 
response of the plant for ]0.2,0.1[)( =kuT .  It can be 
seen that the plant outputs are close to the model outputs, 
and it is confirmed that the plants can be well controlled 
by the AR model with dead time. In the cases where 

0)( ≠kg ( 0≠d ) is adopted, more stable control results 
can be obtained. 
 
[Example 2]  
 The plant is a non-minimum phase system with an 
unstable invariant zero in the right half area of the 
s-plane. The transfer function matrix is as follows.  
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 In this case, the discrete time form of the plant with the 
sampling period T=0.2 has one invariant zero outside the 
unit circle of the z-plane. In the design of the adaptive 
control system, the above plant is modeled by the AR 
model with dead time, with 10=ν , 31 =l  and 22 =l  
in Eq. (4). The reference model has the same structure 

and parameters as the first example except for 3*
1 =l  

2*
2 =l  in Eq. (7). 

 Figure 3 shows the simulation result when the 
non-minimum phase plant is modeled by Eq. (4). In this 
case, 0.0'' == βα , 0.2=η  are assigned. The other 
design parameters of the adaptive systems are the same 
as those of the first example. From this figure, it can be 
seen that the proposed method is effective for the 
non-minimum phase system. 
 
Fig. 3 Simulation results for the non-minimum phase 

plant 
 
The plant model parameters ν  and il  should be 
assigned carefully so that a desirable response of the 
adaptive system may be obtained. The assignation of il  

should be made more carefully than that of ν . il  is not 
the pure time delay. For stable plants, the standard value 
of il  is assigned the discrete time at which the tangent 
at the inflection point of the step response of the plant 
intersects the time-axis plus one sampling period. On the 
other hand, the value of ν  does not have much effect 
on the performance of the adaptive system. However, 
generally speaking, the larger the ν  is assigned, a more 
stable response is obtained.  
 If the design parameters α and β  are chosen as 
appropriate values, the oscillations in inputs )(kui  can 
be reduced and also the response can be improved 
 Finding the optimum adjustment of the design 
parameters for any plant is one of the most practical 
problems left for future study. 
 

5. Application to a real plant 
 
 The control objective is the plant testing the 
performance of refrigerant compressors.  In the actual 
testing method, the performance of the refrigerant 
compressor, which is indicated by an input power of the 
compressor and a refrigerating capacity, is evaluated at 
several sets of the operating condition. 
 Figure 4 shows the schematic diagram of the plant.  
The plant is composed of the four main elements, that is, 
compressor, condenser, expansion valve and 
heater-cooler (evaporator), in a cyclic manner.  
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 1: Evaporating pressure 
1y  

 2: Condensing pressure 
2y  

 3: Temperature of refrigerant at compressor  

  suction inlet y 3  

1’:Opening of expansion valve 1u  
2’:Flow rate of cooling water 

2u  

3’:Electrical input of the heater 3u  

Fig. 4 Schematic diagram of the plant testing a 
refrigerant compressor 

 
 The controlled variables are the evaporating pressure 

1y , the condensing pressure 2y  and the temperature of 
refrigerant at compressor suction inlet 

3y . The control 
inputs corresponding the outputs, are the opening of 
expansion valve 1u , the flow rate of cooling water 

2u  
and the electrical input to the heater 3u .  
  Corresponding to the testing conditions of refrigerant 
compressor, the set-point of plant outputs  1y , 2y  and 

3y  are changed in a step manner, and the performance 
of the refrigerant compressor for each testing condition is 
evaluated when all the plant variables become steady. 
 In general, since the plant testing the performance of 
refrigerant compressor contains thermal processes, the 
time required for the test is very long.  In addition, since 
the plant contains a compressor with unknown 
characteristics varying over a wide range of the operating 
condition, the stable control is not always obtained using 
the PID controller as shown later. The plant, from the 
control point of view, is the 3-inputs, 3-outputs 
continuous-time distributed parameter system which has 
nonlinear and unknown characteristics†.  
 Thus, the adaptive technique is needed and we adopt 
the proposed model reference adaptive control algorithm 
to the plant. In order to obtain the stable control behavior 
for a wide range of the operating condition, to reduce the 
testing time, and to improve the testing method, the 
model reference adaptive control algorithm proposed 
here is adopted. 
 The reference model is designed for the desired 
response time, stability and decoupling properties. The 
reference inputs are changed for the testing conditions in 
a step manner. 
 First, Fig. 5 shows the typical control behavior of the 

temperature of refrigerant at the compressor suction inlet 
3y  when a PID controller is used for each loop of three 

controlled variables. The control behavior using a PID 
controller with fixed parameters which are tuned for the 
first step change of the testing condition, changes to 
worse according to the step changes of the testing 
condition and eventually becomes unstable as shown in 
Fig. 5. 

Fig. 5 Control behaviors of 
3y  and 3u  when a PID 

control is used 
 
 Next, Fig. 6 shows the simulation result, calculated 
using the proposed MRAC algorithm for a mathematical 
model of the plant.  The plant model of the refrigerant 
compressor had been determined by fitting multivariable 
autoregressive model19). This ARMA model has 30 state 
variables. For this ARMA model of the plant, the control 
is performed using an adaptive controller designed based 
on an AR plant model with 2=ν , and the dead time 

11 =l , 12 =l , 23 =l . This plant model is a 
non-minimum phase system, which has two zeros 
(0.602 ±  j1.037) outside of the unit circle of the z-plane. 
 
† The controlled plant can be approximately modeled 
by the reduced order linear lumped parameter time 
invariant system as shown in Fig. 4’. 
 The response of the each path depends on the 
operating condition. The average response times are 
about 1 minute for 11 yu → , 2 to 3 minutes for 

22 yu → , 15 to 20 
minutes for 

33 yu →  which. 
has the integral 
characteristic.  
Refer to 19) for 
the detailed 
specification of 
the main 
component of the 
plant.  

 
 
  Fig. 4’ Block diagram of the   
        controlled system  
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 The decoupled continuous-time transfer function of the 
reference model is composed of three second order lag 
system with dead time as: 
  )000025.001.0(000025.0)( 2* ++= − ssesY ist

i , 

  3,2,1=i , 01 =t , 02 =t , 603 =t  
 The discrete-time form of the reference model is 
obtained by discretizing the above system interconnected 
by a set of samplers with the sampling period T=60sec. 
 Then, 2* =iν ( 3,2,1=i ), 1*

1 =l , 1*
2 =l , 2*

3 =l , 
respectively. 
 The design parameters are selected as follows: 
  0.1=ρ , 0.5'=α , 0.15'=β , 0.3=η ,    

  )3.0,07.0,28.0()0(ˆ
0 −= diagB ,  

  )0.2,75.0,005.0(0 diag=Θ ,  

  )0.1,14.0,0.0(1 −−=Θ diag  
 From the simulation results Fig.6, the effectiveness of 
the proposed method is confirmed irrespective of the 
reduced modeling of the high order multivariable system. 
 Figure 7 shows the control behavior obtained by 
on-line adaptive control.  The reference model and the 
design parameters of the control system are the same as 
those of the simulation study. 
 Since the plant is a nonlinear and distributed parameter 
system with unknown parameters and stochastic 
disturbance affects the system, the control behavior is not 
the same as those of the simulation study.  However, it 
can be seen that the adaptive control algorithm proposed 
here can be successfully applied. 
 The adaptive control algorithm is performed by a 
minicomputer (Melcom 70/30, 16 bits word length). 

Both the program and the data storage need about 30 kW 
memory space. The computation time takes less than one 
second from the data input of the controlled variables to 
data output of the control variables. The resolution of 
A/D and D/A converters is 12 bits. The algorithm is 
corded by FORTRAN with 64 bits floating arithmetic. 
 

6. Conclusion 
 
 We have proposed the model reference adaptive 
controller for multi-input, multi-output plant using the 
AR model with dead time of the plant. The effectiveness 
of the proposed algorithm for different types of plants, 
e.g., minimum and non-minimum phase plants, was 
confirmed from the simulation studies and the 
experimental results for a real process. 
 This report may be the first case in which the 
multivariable adaptive control technique is successfully 
applied.  From the practical point of view, however, 
there are still many problems to investigate. Finding 
the optimum adjustment of the design parameters for any 
plant, the selection of the adaptive law and the 
consideration of the measurement noise are the practical 
problems left for future study. 
 The authors hope that the proposed adaptive control 
technique will be applied for many types of real 
processes as a one of the key technique and will be 
improved to more feasible method by feedbacking the 
experimental results and the problems in the operation. 
 This work was partly supported by Grant-in-Aid for 
Scientific Research from the Ministry of Education. I 
would like to acknowledge related persons of the found. 

Fig. 6 Simulation results of adaptive control in a refrigerant compressor test 
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Fig. 7 Experimental results of adaptive control in a refrigerant compressor test 
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