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Theoretical Analysis of the Unimodal Normal Distribution

Crossover for Real-coded Genetic Algorithms†

Hajime Kita∗, Isao Ono∗∗ and Shigenobu Kobayashi∗∗∗

Real-coded genetic algorithms (RCGAs) attract attention as global optimization methods for nonlinear func-

tions. For RCGAs, there have been proposed many crossover operators so far. Among them, the unimodal

normal distribution crossover (UNDX) developed by Ono et al. shows good performance in optimization of

multi-modal and highly non-separable fitness functions. However, the performance of the crossover operators

have been evaluated only through numerical experiments with some benchmark problems, and clear guidelines

to design operators have not been established.

In this paper, first, statistical characteristics of the UNDX is discussed theoretically. The results of the anal-

ysis show that the UNDX preserves the statistics of the parent population such as the mean vector and the

variance-covariance matrix well. Based on this finding, the authors propose several guidelines to design crossover

operators for the RCGAs.
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distribution crossover

1. Introduction

In optimization in nonlinear functions in continuous

search spaces, global search is needed if the objective func-

tion is multi-modal. Genetic Algorithms (GAs) 2), 3) at-

tract attention as effective optimization methods in this

field, and especially, real-coded genetic algorithms (RC-

GAs), GAs utilizing a floating point representation for

genetic coding, are expected as promising approaches be-

cause they exploit the nature of continuity of the search

spaces 4)∼8)．

As crossover operators for the RCGAs, there have been

proposed several methods such as crossover operators in-

herit the parental values in component-wise manner13),

those yield children as the midpoint or interior division

points of the parents 4)∼7), those yield children by inte-

rior/exterior division of parents in component-wise man-

ner 8). Ono et al. have proposed the Unimodal Nor-

mal Distribution Crossover (UNDX). It outperforms other

crossover operators in several benchmarking tests, and ap-

plied to the design of lens systems successfully10), 11).

However, including the UNDX, crossover operators for

RCGAs have been evaluated only through benchmarking

tests. Evaluation through benchmarking tests has diffi-

culty that the results depend on the selected test prob-
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lems, and sometime, due to inadequate selection of test

problems, it leads to over estimate of the performance of

the RCGAs 12).

On the other hand, as theoretical studies of the RC-

GAs, Qi et al. 13) and Nomura 14) have discussed the dis-

tribution of children generated by crossover operations as-

suming probability distribution of parents. That is, these

studies make analysis form a viewpoint of crossover op-

erators as transformation operation of population distri-

bution. While these studies have made analysis of exist-

ing crossover operators, they don’t propose any guidelines

for designing good operators. In the context of Evolu-

tion Strategies (ES), which are evolutionary algorithms

similar to GA, Beyer have made theoretical studies on

crossover (or recombination) operators15), 16). However,

in the ES, mutation is used as a primary search opera-

tor and crossover plays only secondary role. The findings

of Beyer’s studies clarified the nature of crossover in this

context.

In this paper, first, an overview of the UNDX proposed

by Ono et al. is given. Then, theoretical analysis of the

UNDX is given from the same viewpoint used by Qi et

al. and Nomura. The analytical results show that the

UNDX with the parameters recommended by Ono et al.

preserves the mean vector and variance-covariance matrix

of the population well. Based on this findings, the authors

propose some design guidelines for crossover operators for

RCGAs.
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2. Unimodal Normal Distribution Crossover
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Fig. 1 Unimodal Normal Distribution Crossover (UNDX).

In this section, the Unimodal Normal Distribution

Crossover (UNDX) proposed by Ono et al. is described

briefly.

2. 1 Algorithm of the UNDX

We assume n dimensional real space Rn as the search

space. First, as shown in Fig. 1 (a), Parent 1 (�1 ∈ Rn),

and Parent 2 (�2 ∈ Rn) are selected randomly from the

population of a genetic algorithm randomly. Let �p and

� be the midpoint and difference vector of these parents,

respectively:

�
p =

1

2
(�1 + �

2) (1)

� = �
2 − �

1 (2)

In the following, we call the direction expressed by � ‘the

primary search direction’, and the subspace orthogonal to

this vector ‘the secondary search space’.

Further, in the UNDX, a third parent �3 ∈ Rn is picked

up randomly also from the population, and let D be the

distance between vtx3 and the line connecting �
1 and �

2.

D is given by the following equation:

D = |�3 − �
1|

×
(

1 −
(

(�3 − �
1)T(�2 − �

1)

|�3 − �1||�2 − �1|

)2
) 1

2

(3)

Then, as shown in Fig. 1 (b), a child �
c is yielded by the

equation:

�
c = �

p + ξ�+

n−1∑
i=1

ηi�iD (4)

where ξ is a random number following a normal distri-

bution N(0, σ2
ξ ) and ηi are n − 1 random numbers inde-

pendently following a normal distribution N(0, σ2
η). The

vectors �i, i = 1, · · · , n−1 are normalized orthogonal bases

that span the secondary search space. In the following,

the second term in the RHS of Eq. (4) is called ‘the par-

allel component’ because it is parallel with the primary

search direction, and the third term ‘the normal compo-

nents’ because they are orthogonal to it.

Ono et al. have recommended the following values for

the parameters of the UNDX based on numerical experi-

ments:

σ2
ξ = 1/4 (5)

σ2
η = (0.35)2/n (6)

Ono et al. have carried out comparison study of the

UNDX with the Blend Crossover (BLX-α) proposed by

Eshelman et al. BLX-α is designed for the RCGA taking

the continuity of the search space. It yields children by

interior or exterior division of the parents in a component-

wise manner. Their experiments are carried out by using

non-separable or multimodal test functions in the search

spaces up to 20 dimension. The results show that the

UNDX has similar performance to the BLX-α in mul-

timodal test functions, and outperforms it in the non-

separable test function.

2. 2 Distribution of Children Obtained by the

UNDX

In this section, we show statistical characteristics of the

UNDX using a simple examples. The setting of the ex-

periments is as follows:

• Population sizes of parents and children are 1000 re-

spectively.

• Dimension of the search space is 3. The coordinate

system of the search space is denoted by x1, x2, x3.

• Initial population is generated randomly following

the normal distribution of zero mean and the variance-

covariance matrix of

Γ =


 σ2 0 0

0 1 0

0 0 1/σ2


 (7)

where σ = 5.

• Recommended parameters for the UNDX is used. No

selection operation is introduced, and generation alter-

nation is carried out by replacing simply the parent pop-

ulation by the children yielded by the UNDX.

Calculation for 10 generations is carried out. The results

are shown in Figs. 2 and 3. Figure 2 shows the dis-

tribution of the individuals in the initial, first and 10th

generation. Figure 3 shows the changes of the variance of

the population in each dimension. The mean and covari-

ance are almost zero in all the generations, and therefore

omitted.

As characteristics of distribution change of population,

these figures show that

• The primary search direction of the UNDX tends to

be the direction x1 having the broadest distribution.

The change of the distribution in this direction is small.
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• The secondary search space tends to be the subspace

spanned by x2 and x3. In this subspace, due to the

effect of the normal components of the UNDX, the dis-

tribution is slowly widen in the direction of x2, and

distribution in the direction of x3 become close to that

in x2.

That is, the UNDX is a crossover operator that yields chil-

dren distributed similar to the distribution of the parents.
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Fig. 3 Variation of variances of the population generated by

the UNDX.

3. Theoretical Analysis of UNDX

3. 1 A Stochastic Model of Parental Population

So as to examine the statistical characteristics of the

UNDX, we assume that the population size of a GA is

sufficiently large, and it can be represented by a proba-

bility distribution function (p.d.f.). Statistical properties

of the parental population are denoted by

• The mean vector of the parental population is given

by 〈�〉 = �̄.

• The variance-covariance matrix of the parental pop-

ulation is given by 〈(xi − x̄i)(xj − x̄j)〉 = γij .

3. 2 Mean of Children

First, we examine the mean vector of the children

yielded by the UNDX. In the following ‘〈〉’ represents ex-

pectation over parents �1, �2, �3 independently sampled

from the parental population, and independent random

numbers ξ, ηi used in the UNDX. If we have to express

the expectation over particular probabilistic variable ex-

plicitly, we write that variable in subscription like 〈〉ξ or

〈〉ηi .

Theorem 1 (Mean of Children). The mean vector of

the children yielded by the UNDX is equal to the mean

of the parental population.

Proof. A child is yielded by

�
c = �

p + ξ�+

n−1∑
i=1

ηi�iD (8)

Since random numbers ξ, ηi are independent, we obtain

〈�c〉 =

〈
�

p + ξ�+

n−1∑
i=1

ηi�iD

〉

= 〈�p〉
�1 ,�2 + 〈ξ〉ξ〈�〉�1,�2

+

n−1∑
i=1

〈ηi〉ηi〈�iD〉
�1,�2,�3

= 〈�p〉
�1,�2 =

1

2

(
〈�1〉

�1 + 〈�2〉
�2

)
= �̄ (9)

3. 3 Analysis of the Parallel Component

Next, we examine the UNDX without normal compo-

nents. Then, we obtain the following theorem about the

variance-covariance matrix yielded by the UNDX

Theorem 2 (Variance-Covariance Matrix of Child).

The variance-covariance matrix of the child {γc
ij} yielded

by the UNDX without the normal components is (2σ2
ξ +

1/2) times larger than that of the parental population

{γij}. That is,

γc
ij = γij

(
2σ2

ξ +
1

2

)
(10)

Proof. So as to avoid confusion with notation of power,

The i-th components of a parent �j and a child �c are de-

noted by xj,i and xc,i respectively using two subscripts.

For xc,i,

xc,i = xp,i + ξdi

=
1

2
(x1,i + x2,i) + ξ(x2,i − x1,i) (11)

From Theorem 1, �̄c = 〈�c〉 = �̄, and hence

xc,i − x̄c,i = xc,i − x̄i

=
(

1

2
+ ξ
)

(x2,i − x̄i) +
(

1

2
− ξ
)

(x1,i − x̄i)

Then, we obtain

γc
ij = 〈(xc,i − x̄c,i)(xc,j − x̄c,j)〉

=

〈(
1

2
+ ξ
)2

(x2,i − x̄i)(x2,j − x̄j)

+
(

1

2
+ ξ
)(

1

2
− ξ
)

(x2,i − x̄i)(x1,j − x̄j)

+
(

1

2
+ ξ
)(

1

2
− ξ
)

(x1,i − x̄i)(x2,j − x̄j)

+
(

1

2
− ξ
)2

(x1,i − x̄i)(x1,j − x̄j)

〉

= γij

(
1

2
+ 2σ2

ξ

)
(12)

Theorem 2 shows that with the UNDX having only the

parallel component, the variance-covariance matrix of a

child coincides with that of the parental population by
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Fig. 2 Distribution of individuals generated by the UNDX. The upper panels are pro-

jections onto the x1-x2 plane, and The lower panels onto the x3-x2 plane.

using a parameter value σ2
ξ = 1/4. It is the value recom-

mended by Ono et al. shown in Eq. (5). In other words,

the parallel component of the UNDX preserves the mean,

variance-covariance matrix of the parental population.

3. 4 Analysis of Normal Components

In the UNDX, the distance D from the third parent �3

to the primary search line is used so as to decide the mag-

nitude of the normal components. Hence, analysis of the

statistics of a child is not easy in a general situation. In

this section, we make analysis in the following manner:

• As a simple case, assuming that the parental popula-

tion is isotropically distributed, we obtain 〈D2〉 analyt-

ically.

• As for other cases of parental distribution, we observe

the change of 〈D2〉 through numerical computation as-

suming a typical distribution.

3. 4. 1 Evaluation of Normal Components

Assuming isotropical distribution as the parental pop-

ulation, we obtain 〈D2〉 analytically. The assumed situ-

ation corresponds to the early stage of the search where

the initial population is generated randomly.

For analysis, we make the following assumptions

Assumption 1. Parental population is distributed

isotropically.

By this assumption, the variance-covariance matrix of

parental population is proportional to the identity ma-

trix. It is denoted by γI where I is the n dimensional

identity matrix, and γ is a positive constant.

Assumption 2. The subspace spanned by the se-

lected three parents is not degenerated.

Theorem 3. Under the above assumptions,

(n − 1)γ ≤ 〈D2〉 ≤ 3

2
(n − 1)γ +

1

2
γ (13)

Proof. Without loss of generality, we can choose the

n-th basis of the coordinate system in the direction of the

primary search direction. Then, the projection of �3−�
p

onto the secondary search space is to extract the first n−1

elements. Hence,

D2 =

n−1∑
i=1

(x3,i − xp,i)
2, (14)

where the subscript i represents the i-th component.

Then,

〈D2〉 =

〈
n−1∑
i=1

(x3,i − xp,i)
2

〉

=

〈
n−1∑
i=1

(x3,i − x̄i)
2

〉
+

〈
n−1∑
i=1

(xp,i − x̄i)
2

〉

= (n − 1)γ +

〈
n−1∑
i=1

(xp,i − x̄i)
2

〉
�1,�2

(15)

= (n − 1)γ

+
〈
‖�p − �̄‖2

〉
�1,�2 −

〈
(xp,n − x̄n)2

〉
�1 ,�2

= (n − 1)γ +
n

2
γ −
〈
(xp,n − x̄n)2

〉
�

1 ,�2 (16)

where the second line is obtained using independence of

�
3, �1 and �2, the third line is obtained from the isotropic

distribution of the �3. The fifth line is obtained from the
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isotropic distribution of �p = (�2 + �
1)/2 and the sec-

ond term of the fourth line has expectation independent

from the coordinate system. It should be noted that the

last terms of Eqs. (15) and (16) can’t be rewritten by γ

since the coordinate system is selected depending on the

selected parents.

From Eqs. (15) and (16),

(n − 1)γ ≤ 〈D2〉 ≤ 3

2
(n − 1)γ +

1

2
γ (17)

As stated in the proof, evaluation of the last term in

the Eq. (16) is difficult because the coordinate system is

selected depending on the parent �1, �2. If it is indepen-

dent from the selected parents, we obtain an estimation

〈D2〉 � 3

2
(n − 1)γ (18)

From Eq. (4), the variance of the random number ηi is

given by

〈(ηiD)2〉 = σ2
η〈D2〉 � σ2

η
3

2
(n − 1)γ

Then, by choosing the parameter value by

σ2
η =

2

3

1

n − 1
(19)

The magnitude of the variance of the normal components

is similar to that of the parental population.

3. 4. 2 Numerical Experiments

In this section, the distribution of D2 in the case of

non-isotropic parental distribution through numerical ex-

periment. Setting of the experiment is as follows:

• The parental distribution follows the three dimen-

sional normal distribution whose mean is 0, and

variance-covariance matrix is given by Eq. (7).

The parameter σ represents the magnitude of asym-

metry of the distribution. A case of σ near to 1 repre-

sents the early stages of search. On the other hand,

larger σ represents a situation of later stage of GA

search where the population distributes along the valley

of the fitness.

• Three parents are sampled from Eq. (7) indepen-

dently, and D2 is calculated.

• With 10001 samples of parents, we obtain the mean

and median of the D2.

• Observe change of the above statistics by changing

the value of σ from 1 to 100.

The result of the experiment is shown in Fig. 4. From

this figure,

• If the parental distribution is isotropic (σ = 1), The

mean of D2 is close to the theoretical estimate

3

2
(n − 1) · 1 = 3

1

10

100

1000

1 10 100 1000 10000

Mean

Median

σ 2

D
2

Fig. 4 Variation of D2 according to change of σ 2.

• If σ gets larger, the mean and the median of D2 are

deviated from each other.

• The mean of D2 increases almost in proportion to σ.

• On the other hand, the median of D2 stays un-

changed.

Let’s discuss the reason of deviation of the mean and

the median of D2. If σ is large, with high probability,

the primary search line connecting parent 1 and 2 has the

direction of the basis having largest variance (x1, the first

primary component). Then D2 takes value near to vari-

ance of x1 (the second primary component). However,

with low probability, it takes direction far from the first

component. In this case, the D2 takes values near to (σ2)

with high probability. Hence, the median of D2 takes

value near to the variance of x2 on one hand, and on the

other hand, the mean takes value between the variances

of x1 and x2.

Thus, statistically, D2 takes value between the variance

of the first and second primary components of the parental

distribution.

3. 4. 3 Discussion

From Eq. (19), if the distribution of the parental pop-

ulation is isotropic, by selecting σ2
η = 2/3(n − 1), the

magnitude of the normal component of the UNDX be-

come similar to the variance of the parental population.

The above numerical experiment shows that in the case

of asymmetrical distribution of parental population, the

mean or median of the D2 will be smaller than the mag-

nitude of the first principal component of the parental

distribution, and it takes values between it and the mag-

nitude of the second principal component.

The parameter value recommended by Ono et al. is
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σ2
η = (0.35)2/n = 0.1225/n, and

• The coefficient on the dimension n has same order

o(n−1) with Eq. (19) and, it cancels the dependency on

the dimension appears in the normal components given

by Eq. (13).

• The value of parameter 0.1225 is smaller than the

value 2/3 given by Eq. (19). Considering that the par-

allel component preserves variance-covariance matrix,

and the secondary role of the normal components, it

will be an adequate choice.

4. Design Guidelines for Crossover for
RCGAs

In this section, we propose several design guidelines for

crossovers for RCGAs based on the findings obtained in

the previous sections.

In GAs, search is accomplished by repetitively apply-

ing selection, crossover and mutation operations to the

population. The roles of these operators are

Selection: To focus search in the promising region by

choosing individuals having better fitness values among

the population.

Crossover and Mutation: Generate novel search

points utilizing information of the current population.

The features of the GAs are to accumulate information

obtained through the search process into the population,

and to utilize it in generation of novel search points in

the crossover operation. Generation of search points by

crossover is adaptive to the distribution of population, and

it is a salient difference from the mutation having pertur-

bation of fixed magnitude. In the following, we focus our

discussion on crossover operations.

(a) Parent Population

(b) Too Narrow (d) Too Wide(c) Adequate

Crossover

Fig. 5 Desirable crossover.

First, we discuss desirable generation of novel search

points by a crossover. If the parental population is given

as shown in Fig. 5 (a), it implies that as the consequence

of the search carried out so far, the area where the pop-

ulation resides is the promising area to search the opti-

mum. If the crossover generate novel search points nar-

rower than the parental population as shown in Fig. 5(b),

it has large risk to miss the optimum. On the other hand,

the crossover yield search points in the region wider than

the parental population as shown in Fig. 5(b), it will be

inefficient. Hence, the adequate generation of novel search

points is to generate solutions having a distribution simi-

lar to that of the parental distribution as shown in (Fig.

5 (c)).

Hence, we propose a design guideline for crossovers for

RCGAs

Guideline 0: Children generated by a crossover should

have a similar distribution with the parental distribu-

tion.

Since the search space is continuous in the RCGAs,

statistics such as the mean vector and the variance-

covariance matrix will be adequate indexes that charac-

terize the distribution. Then, we can propose a more con-

crete guideline instead of the Guideline 0.

Guideline 1 (preservation of statistics): The chil-

dren generated by a crossover should preserve the mean

vector and variance-covariance matrix of the parental

population.

However, only with the ‘preservation of the statistics,’

a nonsense crossover of ‘do nothing’ fulfills it. Crossover

operators are required to yield novel search points, and

therefore it should be taken into consideration as a design

guideline. We add

Guideline 2 (Diversity of children): Under the con-

straint of ‘preservation of statistics,’ crossover operators

should generate children having as much diversity as

possible.

As a diversity criterion along this guideline, e.g., maxi-

mization of entropy of generated children can be used.

The above guidelines assume ideal functional division

between selection and crossover. However, in the practi-

cal situation, selection operation may carried out inade-

quately and the optimum may resides outside the region

where the population is distributed. Considering such sit-

uation, we add a third guideline

Guideline 3 (Enhancement of robustness): To

make search more robust, the children generated by

a crossover and mutation operations should distribute

slightly wider than the distribution of parents.

This guideline may seems inconsistent with the previous

guidelines. However, Guidelines 1 and 2 give reference de-
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sign and the third guideline gives direction of adjustment.

Implementation of this guideline should carried out con-

sidering of trade off between robustness and efficiency.

It should be noted that the guidelines proposed above

assume that the initial population distributes in the re-

gion contains the optimum. Further, while discontinuity

and multimodality of the fitness are not taken into con-

sideration in the above discussion well, it doesn’t strongly

restrict global search ability of GAs to achieve efficient

local search.

Now, we can examine the conventional crossovers in-

cluding the UNDX along the proposed guidelines,

• In the crossovers such as the one-point, multi-point,

uniform and blend crossovers, correlation among vari-

ables are gradually lost by applying them to the pop-

ulation due to their component-wise operation13), 14).

Since the covariances get to zero, they don’t fulfill the

Guideline 1. As critically discussed by Salomon 12),

these crossover don’t have sufficient search ability for

highly non-separable fitness functions.

• In the crossovers that generate children as the mid-

point or interior division points of parents, the children

distribute narrower than that of the parents while it pre-

serves the correlation among variables14). Hence, these

crossovers also don’t fulfill the Guideline 1. Without,

e.g., mutation operation, GAs with these crossover will

fail in search due to lose of population diversity brought

about other than selection operation.

• In the UNDX, the parallel component fulfill the

Guideline 1.

• However, only with the parallel component, children

distributes only on the lines connecting pairs of par-

ents. It may not sufficient from the viewpoint of the

Guideline 2. (1)

• In the UNDX, the normal components complement

these points, and the work for robustness of the search

proposed as Guideline 3. As shown in the analytical

and numerical studies in this paper, the contribution of

the normal components is not strong and they play the

secondary part of the search.

• However, since the normal components use the dis-

tance D between the third parent and the primary

search line, the distribution of the children is sensitive

(1) The normal distribution is the distribution having max-

imum entropy under the constraints on the variance 17).

Hence, if we restrict generation of children on the lines con-

necting parents, the UNDX is the optimal crossover that

maximize the diversity of children under entropy as a crite-

rion, and constraint of the Guideline 1.

to the scaling of the coordinate system.

Considering these discussion, we can re-design the

UNDX along the design guidelines. The author proposes

an extension of the UNDX, and it outperforms the origi-

nal one 18)．

5. Conclusion

This paper discusses the characteristics of the Unimodal

Normal Distribution Crossover (UNDX) proposed by Ono

et al. for real-coded genetic algorithms (RCGAs) theoret-

ically, and shows that the UNDX preserves the statistical

properties of the parental population well. Based on this

finding, the authors propose some design guidelines for

crossover operator for RCGAs. The authors are studying

improvement of the UNDX based on the proposed design

guidelines 18).

The design guideline of “preservation of the distribution

of population” proposed in this paper is realized more

concretely as “preservation of the statistics” using con-

tinuity of the search space for the RCGAs. To extend

this concept to combinatorial optimization in a discrete

search space is an interesting subject of future study19).

In a discrete space, however, locality of the space is not

introduced naturally, and study should be made taking

discussion of the fitness landscape20) into consideration.
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