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New Direct Closed-Loop Identification Method for Unstable

Systems and Its Application to Magnetic Suspension System
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Closed-loop identification is essentially needed in control of an unstable plant stabilized by a feedback controller.

A new direct closed-loop identification approach is proposed based on an output inter-sampling scheme, in which

by taking faster sampling of the output than the input of the system the restrictive identifiability condition is

removed. In a case of unstable system, since the noise model becomes non-minimum phase system, the predic-

tion error method is not available. In order to solve these problems we clarify that the output inter-sampling

yields the SIMO structure of the plant model and give a new identification method in which the denominator

polynomial can be identified in an open-loop manner and the numerator polynomial can also be obtained by a

modified instrumental variable method. The proposed algorithm is validated in an experimental study using a

magnetic suspension system.
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1. Introduction

Unstable plants such as magnetic suspension systems

are always stabilized by feedback controller so it is of great

interest to identify model parameters of the plants oper-

ating in closed-loop. Conventional approaches to closed-

loop identification can be categorized into 3 groups 1), 2):

(a) direct method, (b) indirect method and (c) joint input-

output method. The direct methods use the control in-

put and plant output directly to identify the plant model

as if it were operating in open loop, while the indirect

methods obtain the estimation of the closed-loop system

regarding the externally exciting test signal as input first

then determine the plant model from the estimate and

the known controller. On the other hand, the joint input-

output methods regard the control input and plant out-

put as the outputs of a multivariable innovation system.

Some approaches of these three categories could deal with

closed-loop identification problem of unstable plants, nev-

ertheless most of them are indirect ones 3)∼7), and except

the controller-switching approach 8) few direct algorithm

is reported. Obviously the indirect and joint input-output
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methods require that the controller be linear to calculate

the transfer function of unknown plant model. Although

it is a very simple approach that identifies the plant model

only from the control input and plant output no matter

whether the controller is nonlinear, the effective direct

method for unstable plant has not been developed yet. In

practical applications, when the plant is nonlinear, an ap-

propriate nonlinear controller is often required for plant

model linearization or estimation of plant physical pa-

rameters, so it is very attractive if the direct methods can

work for unstable plant identification. Then, the main

objective of this work is to develop an effective direct ap-

proach to identify unstable plant operating in closed-loop.

Compared with open loop identification, two serious

problems must be considered in closed-loop identification.

One problem is the bias caused by the correlation of con-

trol input and the output noise in closed-loop systems, the

other one is the deficient data rank due to the feedback

loop. They can be avoided by some specified identifiabil-

ity conditions 9), 10), in which the orders of controller are

higher than that of the transfer function of plant model.

Nevertheless, the controller is usually designed using a

reduced low order plant nominal model, which may con-

flict to the identifiability conditions. On the other hand,

the prediction error method (PEM) or maximum likeli-

hood method (ML) requires that the noise model should

be a minimum phase model. Thus the conventional direct

method that uses PEM or ML cannot be applied to unsta-

ble plant identification directly since the noise model be-
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comes to a non-minimum phase model. Furthermore the

cancellation of zeros and unstable poles occurs in unsta-

ble plant identification, and such difficulties require some

special techniques to be handled.

The identifiability of direct closed-loop identification

approach based on output inter-sampling scheme has been

investigated 11), however, the unstable plant case has not

been discussed in detail yet. In this paper, the output

inter-sampling based direct closed-loop identification ap-

proach is presented for unstable plant identification. The

new approach is a two-stage algorithm. The first stage

utilizes subspace-based methods to estimate the denomi-

nator polynomial of the unstable plant model by making

use of the particular inter-sampled model structure. Then

in the second stage the specified instrumental variable

is generated to estimate the numerator polynomial even

though the noise model is a non-minimum phase model.

Furthermore for the magnetic suspension system a more

convenient approach to numerator identification is given

by making use of the physical model structure. The iden-

tifiability of the proposed identification approach is also

investigated. Finally the effectiveness of the proposed ap-

proach for unstable plant identification is demonstrated

through identification experiments on the magnetic sus-

pension system.

2. Closed-Loop Identification Problem
of Unstable Plant

Consider a continuous time unstable plant operating in

closed-loop. The plant is stabilized by a discrete-time con-

troller, which adds the control input to plant through a

zero-order holder with holding period T . Then the iden-

tification problem of the closed-loop can be considered in

discrete-time formulation, as illustrated in Fig. 1. Here

r(mT ), u(mT ), y(mT ) are the samples of reference, plant

input, i.e. control input, plant output at instant mT re-

spectively, and are denoted as r(m), u(m), y(m) for the

simplicity of notation in the following discussion. In order

to illustrated the effectiveness of the proposed method,

the severe case where the reference signal r(mT ) = 0 is

considered. w(mT ) is a white output noise with zero-

mean and variance σ2
w. The plant model corresponding

to the sampling interval T is denoted as T -model, which

is given by

B(z−1)

A(z−1)
=

bτ
T

z−τ
T + · · · + bnbz−nb

1 + a1z−1 + · · · + anaz−na
(1a)

D(z−1)

C(z−1)
=

d0 + d1z
−1 + · · · + dndz−nd

1 + c1z−1 + · · · + cncz−nc
(1b)

where z−1 = e−sT , τT is the delay time and τT ≥ 1. The

case in presence of input noise s(m) can also be coped

with in almost the same methodology, however we will

consider the case where s(m) = 0 for the purpose of no-

tation simplicity.
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Fig. 1 Discrete-time closed-loop control system

Under these configurations, the following identifiability

conditions

nc > nb − τT , or nd > na − τT (2)

are required for the full rankness of observation data ma-

trix in the conventional equation error model or subspace

based direct methods 9) 12), which use the plant input and

output signals {u(m), y(m)}. In practical application,

however, the identifiability conditions are almost not sat-

isfied due to the controller is usually designed by using a

order-reduced nominal plant model so the controller order

may be lower than that of the real plant model.

On the other hand, when using PEM for the unstable

plant in Fig. 1, the plant output y(m) becomes to

y(m) =
D(z−1)B(z−1)

C(z−1)A(z−1) + D(z−1)B(z−1)
r(m)

+
C(z−1)A(z−1)

C(z−1)A(z−1) + D(z−1)B(z−1)
w(m) (3)

then the noise model is a non-minimum phase model since

it has the unstable poles of the plant model. Consequently

it requires special technique even in indirect methods us-

ing PEM algorithm, and results in the computational

complicity consequently. The problem of cancellation of

zeros and unstable poles, which may result in the insta-

bility of the identification algorithm, also occurs in the

conventional direct methods for unstable plant.

Therefore the main objective of this work is to overcome

these severe problems of the closed-loop identification for

unstable plants.

3. Implementation and Property of Out-
put Inter-Sampling

The implementation of output inter-sampling is illus-

trated in Fig. 2, where the plant output is sampled at

p times shorter interval ∆ = T/p than the control pe-

riod T . Here p ≥ 2, p is denoted as inter-sampling rate,

and the inter-sampled output signal is denoted as y(k∆)

or y(k). When the output sampling is synchronized with

the feedback controller, the plant samples are added to the

controller at every p∆ like that in Fig. 1, then the output
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inter-sampling does not affect the controller design at all.

In the output inter-sampling scheme, the control input is

held for k ∈ [mp, (m+1)p), then u(k∆) = u(mT ) = u(m)

holds. Compared with the model in Fig. 1, the ∆-model

is given by

B∆(q−1)

A∆(q−1)
=

b∆,τ∆q−τ∆ + · · · + b∆,nb∆q−nb∆

1 + a∆,1q−1 + · · · + a∆,naq−na
(4)

where q−1 = e−∆s. τ∆ is the delay time and τ∆ =

p(τT − 1) + 1. The output noise in ∆-model becomes

to w(k∆), where k∆ is the sampling instant. Holding the

samples of plant output for p∆ has the same effects on

identification problem.
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Fig. 2 Closed-loop system with output inter-sampling

As illustrated in 11), the relation between T -model and

∆-model is summarized in Theorem 1.

Theorem 1. Provide that the plant input is held for

T . A∆(q−1) and B∆(q−1) are the denominator and nu-

merator polynomials of the plant ∆-model, while A(z−1)

and B(z−1) are those of the corresponding T -model. Then

the parameters of A(z−1) and B(z−1) can be given by

A(z−1) = det(I − Λpz−1) (5a)

B(z−1) = z
− τ∆−1

p
−1
ψ · adj(I − Λpz−1)

p−1∑
i=0

Λiϕ (5b)

where Λ, ϕ, ψ are the state space realizations of ∆-model.

Following Theorem 1, once A∆(q−1) and B∆(q−1) are

identified, the estimates of A(z−1) and B(z−1) can be de-

termined uniquely. It has also been demonstrated that

the severe identifiability conditions are relieved greatly in

the new direct closed loop identification approach based

on Theorem 1 11).

In this work another distinctive feature of the output

inter-sampling will be utilized in the closed-loop iden-

tification for unstable plant. As illustrated in Fig. 3,

the inter-sampled plant model can be described by a

single-input multi-output model with common denomi-

nator polynomial and different numerator polynomials in

the transfer function. Furthermore, the numerator poly-

nomials can be given by Theorem 2.

Theorem 2. The SISO ∆-model, which is described

in the formulation of sampling interval ∆, can be con-

verted into a SIMO model structure described by sam-

pling interval T , as illustrated in Fig. 3. The numer-

ator polynomial Bj(z
−1) of the subsystem with output

y(mT + j∆) is given by

Bj(z
−1) = z

− τ∆−1
p ψ · adj(I − Λpz−1)

·
(

j−1∑
i=0

Λiϕ+

p−1∑
i=j

Λiϕz−1

)
(6a)

B0(z
−1) = B(z−1), j = 0 (6b)

where j = 0, · · · , p − 1.
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Fig. 3 SIMO expression of output inter-sampled plant model

4. Closed-Loop Identification Algorithm
for Unstable Plant

4. 1 Basic Idea of Identification Algorithm

Following Theorem 2, the transfer function of subsys-

tem, whose output is y(mT + j∆), is described as follows.

yj(m) =
Bj(z

−1)

A(z−1)
u(m) + wj(m) (7)

where yj(m) = y(mT + j∆), wj(m) = w(mT + j∆).

Next we will use the observation data {u(m), yj(m); j =

0, 1, . . . , p − 1; m = 1, 2, . . . M} within period MT

for identification. Here the noise wj(m) is a white i.i.d

noise with zero-mean and finite 4-th order moment, and

is independent of the reference r(m).

Note that the inter-sampled signal yj(m) is the noise

wj(m) corrupted output of subsystem Bj(z
−1)/A(z−1)

in Fig. 3. On the other hand, from the assumptions on

noise, wj(·)（j = 1, · · · , p − 1）is independent of w0(·)
and r(m). Furthermore, only the output of last subsys-

tem is added into the controller, whereas the rest outputs

for j = 1, · · · , p − 1 are just for identification other than

for control. Then it leads to that noise wj(m) (j =

1, · · · , p − 1) does be independent of u(m), consequently,

the single-input (p − 1)-output model can be considered

as if it were operating in open loop, so its identification

can also be performed in open loop form. Moreover, the

feature that the subsystems of SIMO model have com-

mon denominator polynomial yields that identification of

the single-input (p − 1)-output model can be performed

using subspace methods, then the denominator polyno-

mial A(z−1) is estimated, and the remaining problem is

how to estimate the numerator B(z−1), i.e. the enumer-
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ator polynomial B0(z
−1) of the last subsystem. As illus-

trated later, the noise model in error equation becomes to

a non-minimum phase model, which we will use a modi-

fied instrumental variable method to deal with. That is

the two-stage algorithm of the proposed new closed-loop

identification approach.

4. 2 Closed-Loop Identification Algorithm

Next the closed-loop identification algorithm is pre-

sented for unstable plant.

Step 1 Estimation of A(z−1)

The single-input (p−1)-output model excluding the last

subsystem involved in feedback controller in Fig. 3, can

be identified through MOESP algorithm 13) or N4SID 14),

by making use of the property that the SIMO model

holds common denominator polynomial. The correspond-

ing estimates are denoted as Â(z−1) and B̂j(z
−1), for

j = 1, · · · , p − 1 respectively.

Step 2 Estimation of B(z−1)

Step 2-a Separation of unstable part and stable part

from Â(z−1)

Factorizing the denominator estimate Â(z−1) yields

Â(z−1) = Âs(z
−1)Âu(z−1) (8)

where the stable part Âs(z
−1) have the roots all inside the

unit circle, whereas the unstable part Âu(z−1) have the

roots outside the unit circle. Denote the unstable part as

Âu(z−1) = 1 + α̂1z
−1 + · · · + α̂nusz−nus (9)

where nus is the order of Âu(z−1). Neglecting the esti-

mation error, the subsystem for j =0 in (7) becomes to

y0(m) =
B0(z

−1)

Âs(z−1)Âu(z−1)
u(m) + w0(m) (10)

Step 2-b Expression of relation between filtered input

and output signals

Since As(z
−1) is stable, filtering the plant input signal

u(m) leads to

uf (m) =
u(m)

Âs(z−1)

Then (10) becomes

y0(m) =
B0(z

−1)

Âu(z−1)
uf (m) + w0(m) (11)

Moreover, by multiplying Âu(z−1) the above relation be-

comes to

y0f (m) = B0(z
−1)uf (m) + Âu(z−1)w0(m) (12)

where y0f (m) = Âu(z−1)y0(m).

Step 2-c Generating instrumental variable

The noise model Âu(z−1)w0(m) in (12) is a non-

minimum model due to Âu(z−1) is unstable, so PEM is

not applicable for this case. Here we use an IV method

by generating a special instrumental variable. Provide

that the observation data length is large enough, then the

instrumental variable is generated through a non-causal

filter 15) as follows.

1) First the time index of the filtered signal uf (m) is in-

versed as follows.

ūf (m) = uf (M − m)

2) Next the signal ūf (m) is filtered by a causal filter to

generate a new signal v̄(m).

v̄(m) =
ūf (m)

α̂nus + α̂nus−1z−1 + · · · + z−nus

where the denominator parameters are the order-reversed

parameters of Âu(z−1).

3) Then the instrumental variable v(m) is obtained by

inversing the time index of v̄(m).

v(m) = v̄(M − m)

Step 2-d IV based estimation of B0(z
−1)

Now the numerator polynomial of B0(z
−1) can be esti-

mated as follows.

θ̂b = [ b̂τb · · · b̂nb ]T =
(
V T Φ

)−1
V Ty0f (13)

where

V = [v(1) · · · v(M) ]T

Φ = [φ(1) · · · φ(M) ]T

y0f = [ y0f (1) · · · y0f (M) ]T (14)

v(m) = [ v(m − τb) · · · v(m − nb) ]T

φ(m) = [ uf (m − τb) · · · uf (m − nb) ]T

Remark: An alternative instrumental variable v(m) can

also be given by v(m) = uf (m − n1) in Step 2-c, where

n1 = max(0, 1+nus−τb). Then Step 2-d can be performed

in the same way as (13).

4. 3 Identification Algorithm Using Priori In-

formation of Physical Structure

In practical applications, the numerator of transfer

function for some continuous time plant is just a constant

η. If such information has been deduced from the physical

property of the plant, the estimation of B0(z
−1) in Step

2 can be implemented in an alternative simple way. Or-

dinarily the numerator order of the discrete-time model

transfer function discretized via a zero-order holder is the

same as the denominator order, even though the numer-

ator of the original continuous time model is only a con-

stant. When its parameters are estimated independently

regardless their interactive relations, the estimation accu-

racy is often deteriorated greatly. Here we will consider

a new simple but effective method to estimate the static

gain of numerator using Theorem 2.

(1) The poles of the estimated model are denoted as ¯̂xi.

Since the control input is held by a zero-order holder, the

poles of the continuous time plant model x̂i can be given

by

¯̂xi = exp(−x̂iT ), i = 1, . . . , na

Denote a continuous time model Ĝ(s) whose numerator
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is 1 and its poles are x̂i, then the continuous time plant

model could be given by ηĜ(s).

(2) Discretizing ηĜ(s) through a zero-order holder yields

the following discrete-time transfer function

η(λ̂1z
−1 + λ̂2z

−2 + · · · + λ̂naz−na)

1 + â1z−1 + â2z−2 + · · · + ânaz−na

where η is remained unknown yet.

(3) Following (6a) in Theorem 2, we have that

B0(1) = · · · = Bp−1(1)

then substituting the relation of η in (15) yields that

(p − 1)η(λ̂1 + λ̂2 + · · · + λ̂na)

= B̂1(1) + · · · + B̂p−1(1) (15)

Thus the estimate B̂0(z
−1) can be given by

B̂0(z
−1) = η(λ̂1z

−1 + λ̂2z
−2 + · · · + λ̂naz−na)

4. 4 Identifiability Study

Consider the identifiability of the closed-loop new iden-

tification algorithm for unstable plant proposed in this

paper. From Fig. 1 and Fig. 3, the input-output relations

from w0(m) to u(m) and from wj(m) to yj(m) are

u(m) =
H(z−1)

Γ(z−1)
(r(m) − w0(m))

y0(m) =
F (z−1)

Γ(z−1)
w0(m) +

F0(z
−1)

Γ(z−1)
r(m) (16)

yj(m) =
Fj(z

−1)

Γ(z−1)
(r(m) − w0(m)) + wj(m)

where j = 1, · · · , p − 1, and

Γ(z−1) = CA + DB = 1 + γ1z
−1 + · · · + γnγ z−nγ

H(z−1) = DA = hτdz−τd + · · · + hnhz−nh

F (z−1) = CA = 1 + g1z
−1 + · · · + gnf z−nf

Fj(z
−1) = DBj = sj,τd+τbz−(τd+τb) + · · · + sj,nFj

z
−nFj

Recall the assumptions of the problem. Under the case

where the reference signal is not a persistently exciting

(PE) signal, for example r(m) = 0, the assumption that

the output noise w(k∆) is a white i.i.d noise implies that

wj(m) is mutually independent for different j and m, and

it ensures the PE property in the proposed algorithm.

From (16), the following results can be deduced.

(1) u(m) holds PE property.

(2) u(m) is independent of wj(m + i) for 1 ≤ j < p, and

i is an integer.

(3) wj(m) is a white noise.

Except the extremely low-passing ones, the feedback con-

troller band for unstable plant is wide enough and the PE

property of w(k∆) ensures that of u(m). Therefore the

single-input (p − 1)-output model can be identified un-

biasly using subspace methods no matter what structure

the controller has.

Moreover, when substituting the estimated denomina-

tor Â(z−1) into T -model, only the numerator parameters

remained unknown so the conventional identifiability con-

dition (2) is satisfied obviously because there is not an

unknown denominator in the identification model (12).

Now we illustrate the effectiveness of the proposed IV

method. The expansion of z−nus
/
Âu(z−1) about z, which

is a non-causal sequence, is given by

z−nus

Âu(z−1)
=β0 + β1z + β2z

2 +· · ·=Ω(z) (17)

On the other hand, the coefficients of Ω(z) are just the

impulse response of the following model

1
/
(α̂nus + · · · + α̂1z

−nus+1 + z−nus)

By inversing its time index, v(m) can be written as fol-

lows.

v(m) = Ω(z)uf (m) (18)

Then v(m) can be written in

v(m) = Ω(z)uf (m)

=
Ω(z)Au(z−1)As(z

−1)D(z−1)

Âs(z−1)Γ(z−1)
(r(m) − w0(m))

≈
M→∞

D(z−1)

Γ(z−1)
(r(m − nus) − w0(m − nus)) (19)

When i ≥ 0, v(m) and Âu(z−1)w0(m+i) are independent,

then the following property

E
{
v(m)

(
Âu(z−1)w0(m)

)}
= 0 (20)

holds. Furthermore, following Theorem 4.1 in Reference
16),

E
{
v(m)φT (m)

}
(21)

has full rank with probability 1, then the consistency of

the estimate B̂0(z
−1) obtained by IV method is also guar-

anteed.

On the other hand, the IV estimation error can be eval-

uated by√
M(θb − θ̂b) ∼ N (0,P )

where

P =
(
V T Φ

/
M
)−1
S
(
ΦTV

/
M
)−1

S = σ2
wE

{( ∞∑
i=0

v(m + i)αi

)( ∞∑
i=0

αiv
T (m + i)

)}

If the roots of Au(z−1) are close to the unit circle, the

singular values of matrix V T Φ
/
M are larger than those

when uf (m−n1) is taken as instrumental variable. Then

tr{P } becomes smaller so better accuracy is obtained.

5. Closed-Loop Identification Experi-
ment on Magnetic Suspension System

5. 1 Experiment Device and Conditions

We use the magnetic suspension system, which is il-

lustrated in Fig. 4, as an unstable plant to demonstrate

the effectiveness of the proposed new direct closed-loop

identification algorithm. Let M [kg] be the mass quan-

tity of steel ball, Y + y(t)[m] the gap distance between

the steel and electromagnet, R[Ω] the resistance. Denote
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Fig. 4 Magnetic suspension system

U +u(t)[V ] and I + i(t)[A] as the circuit voltage and cur-

rent respectively, where U and I are the stationary ones

when the steel is at the stationary position Y , while u(t),

i(t) and y(t) are the corresponding variation from the sta-

tionary position. The objective of the stabilization con-

troller is to keep the position of the steel ball at reference

r[m]. The position of steel ball and the deviation from the

reference are measured through a laser senor. The control

voltage U + u(t) is generated through a PID controller as

shown later.

The behavior of the physical mechanic and electric ele-

ments are described by

M
d2(Y + y(t))

dt2
= Mg − F (t) (22a)

U + u(t) = R(I + i(t)) +
d

dt
L(t)(I + i(t)) (22b)

where L(t) is the inductance of the coil and is approxi-

mated by

L(t) =
Q

Y + y(t)
+ L∞ (23)

Q and L∞ are the constants depending on the coil, mag-

netic core and the steel ball. Substituting the electromag-

netic force given by

F (t) = 0.5(I + i(t))2
∂L(t)

∂y(t)
(24)

into (22a) and (22b) leads to

M
d2y(t)

dt2
= Mg − 0.5Q

(
I + i(t)

Y + y(t)

)2

(25a)

u(t) = Ri(t)− Q(I + i(t))

(Y + y(t))2
+

(
L∞+

Q

Y + y(t)

)
di(t)

dt

(25b)

On the other hand, at the stationary point we have that

0 = Mg − 0.5Q (I/Y )2 , U = RI (26)

(25a) and (25b) are the nonlinear differential equations

about i(t) and y(t), however, when the steel ball moves

within a small region around the stationary position, they

can be approximated by linear equations. Then the lin-

earized transfer function from the variation of control volt-

age u(t) to gap variation y(t) is written in 27.

G(s) =
y(s)

u(s)
=

η

(Ms2 − α)(Ls + R) + ηγ
(27)

where α = 2QI2
/
Y 3, η = 2QI

/
Y 2, γ = LI/Y . Ob-

viously there is an unstable pole s =
√

α/M in the lin-

earized model of the magnetic suspension system, and the

feedback controller is necessary for stabilization.

In the practical experiment device, the nominal mea-

surements of physical parameters are M = 0.54kg, R =

11.233Ω, respectively. The feedback controller is a PID

controller, whose control interval is T = 0.0024[s]. The ef-

fectiveness of the proposed approach is illustrated through

changing the inter-sampling rate p, for comparison with

the conventional method where p = 1.

5. 2 Experiment Results

Let the stationary position be Y = 6mm, the nominal

discrete-time model for position Y , i.e. the T -model is

given by

B(z−1)

A(z−1)
≈ 10−6(−0.0411z−1 − 0.1631z−2 − 0.0404z−3)

1 − 2.9793z−1 + 2.9488z−2 − 0.9698z−3

(28)

where the 3 poles are 1.1058 (unstable), 0.9666,

0.9071respectively. (28) is the nominal model obtained

from the physical equations by substituting their corre-

sponding coefficient values, and will be used as a compar-

ative reference for estimation evaluation.
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Fig. 5 Control input and inter-sampled output data. From

the top: u(m), yj(m) (p = 2), yj(m) (p = 3). •: Out-

puts at mT , ◦: Outputs at mT + j∆ for 1 ≤ j ≤ p− 1

As for the stabilization of the unstable system, a sim-

ple PID controller is adopted in the experiment, whose

transfer function is

D(z−1)

C(z−1)
=

−105(0.5973 − 1.1897z−1 + 0.5833z−2)

1 − z−1

Obviously the identifiability condition (2) is not satisfied,

and the full rankness of the input-output data matrix does

not hold, as shown later.

In the nominal model (27) the numerator is just a con-

stant then the identification method given in Section 4.3
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is applicable by using the results of Theorem 2. When

the steel ball is well controlled to the reference level, little

noise enters into the system so the assumptions on the PE

property of noise are not satisfied, and any method will

fail to work for this case. Here a white i.i.d noise is added

into the inter-sampled data in the experiment, where the

variance of the noise is within a specified range. Com-

pared with the conventional indirect methods using the

values of the external signals, the proposed new approach

does not use any measurement of the noise, which is the

distinct feature of the direct methods. The noise used in

the experiment is a white Gaussian noise with zero-mean

and standard deviation 0.1mm, a small value compared

with the reference level. Fig. 5 shows an example of the

input and output data. The observation data collected

for 18s are used for identification. Further, the sampling

rate p is changed from p = 2 to p = 6, and the identi-

fication results are compared with the conventional one

where p = 1. The experiments are performed for 10 times

at every sampling rate p respectively.
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Fig. 6 Sigular values of Φ. Solid line: p = 1, dashed line:

p = 2, dotted line: p = 3

Case 1 p = 1 (Conventional method)

As discussed previously, the identifiability condition (2)

is not satisfied under this case, then the data matrix used

in subspace method in Step 1 given by

Φ =




yj(m1 − 1) · · · yj(m1 + M − 2)
...

...

yj(m1 − L) · · · yj(m1 − L + M − 1)

u(m1 − 1) · · · u(m1 + M − 2)
...

...

u(m1 − L) · · · u(m1 − L + M − 1)




T

is rank deficient, and it is verified easily by calculating the

singular value of Φ. The singular values σi for j = p − 1,

L = 20, M = 2500 is plotted in Fig. 6. When p = 1 (con-

ventional method), {σi} falls extremely from i = 22 then

the condition number becomes very large so the conven-

tional direct method is ill-conditioned and fails to identify

the plant model. As illustrated in Fig. 7, the estimated

poles for 10 times are almost inside or close to the unit

circle, and the unstable pole is not identified well.
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Fig. 7 Estimated poles (p = 1). “*”: estimate, “o”: theoret-
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Fig. 9 Estimated poles (p = 3). “*”: estimate, “o”: theoret-

ical nominal value

Case 2 p = 2 and p = 3 (Proposed approach)

The full rankness of the inter-sampled data matrix is

confirmed in Fig. 6 and the estimated poles in Step 1 for
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Table 1 Estimated parameters(results of 10 experiments)

nominal p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

a1 -2.9793 -2.9130 -2.9714 -2.9630 -2.9520 -2.9568 -2.9672

±0.0461 ±0.0250 ±0.0205 ±0.0127 ±0.0131 ±0.0082

a2 2.9488 2.8310 2.9310 2.9184 2.8991 2.9077 2.9274

±0.0888 ±0.0521 ±0.0385 ±0.0240 ±0.0254 ±0.0160

a3 -0.9698 -0.9179 -0.9599 -0.9556 -0.9473 -0.9511 -0.9605

±0.0429 ±0.0274 ±0.0181 ±0.0113 ±0.0124 ±0.0080

b1[×10−6] -0.0411 0.1660 -0.0532 -0.0418 -0.0325 -0.0356 -0.0391

±0.4858 ±0.0215 ±0.0116 ±0.0052 ±0.0064 ±0.0067

b2[×10−6] -0.1631 -0.2165 -0.2104 -0.1655 -0.1282 -0.1408 -0.1547

±0.8399 ±0.0840 ±0.0461 ±0.0207 ±0.0252 ±0.0264

b3[×10−6] -0.0404 0.1126 -0.0519 -0.0409 -0.0316 -0.0347 -0.0383

±0.3276 ±0.0201 ±0.0115 ±0.0051 ±0.0063 ±0.0065

Table 2 Estimated parameters for various reference r

r = 3mm r = 4mm r = 6mm

nominal estimate nominal estimate nominal estimate

a1 -2.9843 -2.9674 -2.9826 -2.9712 -2.9795 -2.9630

±0.0160 ±0.0180 ±0.0205

a2 2.9549 2.9229 2.9530 2.9298 2.9488 2.9184

±0.0304 ±0.0354 ±0.0385

a3 -0.9710 -0.9559 -0.9707 -0.9590 -0.9698 -0.9556

±0.0145 ±0.0354 ±0.0181

b1[×10−6] -0.05881 -0.0516 -0.0537 -0.0587 -0.0411 -0.0418

±0.0079 ±0.0090 ±0.0116

b2[×10−6] -0.2336 -0.2042 -0.2134 -0.2325 -0.1631 -0.1655

±0.0315 ±0.0355 ±0.0461

b3[×10−6] -0.0579 -0.0505 -0.0529 -0.0575 -0.0404 -0.0409

±0.0079 ±0.0088 ±0.0115

10 experiments are plotted in Fig. 8 and Fig. 9 respec-

tively. The nominal poles, which are denoted as ◦, are

all real ones and one of them is unstable. The clusters of

estimated poles obtained by the proposed approach are

almost distributed around their theoretical locations, and

imply that the estimation results are appropriate in the

new approach. Furthermore, the values of estimate mean

and standard deviation of the estimated parameters for

10 times corresponding to the inter-sampling rate from

p = 1 to p = 6 are summarized in Table 1. It can be

seen that the estimates are very close to the nominal ones

for p ≥ 2, and the effectiveness of the proposed method

is verified. Moreover, the same identification experiments

are performed for the cases where the stationary posi-

tions are taken as Y = 3[mm], Y = 4[mm], Y = 6[mm],

and the identification results are summarized in Table 2.

It is illustrated that the estimates are also near to the

nominal theoretical ones in every case, so the proposed

direct identification algorithm can be applicable to unsta-

ble plant just using the plant input and output data. As

shown above, once the parameters of unstable plant are

identified directly, it is possible to re-design or update the

controllers, and it provides a potential way to realize the

iterative system identification and controller design.

6. Conclusions

The direct closed-loop identification approach for un-

stable plant is developed by inter-sampling the plant out-

put at p times faster rate than that of the control input.

Making use of the SIMO model structure obtained in the

output inter-sampling scheme, it is demonstrated that the

single-input (p − 1)-output model, whose output noise is

not fed back into the controller, is identifiable and the un-

stable denominator polynomial can be identified by sub-

space methods. Moreover, a new instrumental variable is

generated to overcome the non-minimum phase problem

for numerator estimation, and an estimation algorithm is

also proposed by using the physical structure of the prac-

tical plant. The identifiability in the new approach is also

studied and finally the effectiveness of the proposed new

approach is demonstrated through some identification ex-

periments on a magnetic suspension system.
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