
Trans. of the Society of Instrument
and Control Engineers

Vol. E-3, No.1, 1 / 7 (2004)

Proposition of New Neighborhood Structures

in a Local Search Method for Job Shop Scheduling Problems

Hitoshi Iima∗ and Nobuo Sannomiya∗∗

Local search methods are effective for solving scheduling problems in the case where the computation time is

limited. However, the performance of the local search methods depends on the neighborhood structure, that is,

the procedure to generate a new solution In this paper, a local search method with new neighborhood structures

is proposed for the job shop scheduling problem of minimizing the makespan. The solution in the proposed

method is represented by an operation sequence. In this representation a same schedule is generated generally

from different operation sequences, and such redundancy reduces the search efficiency. The proposed neigh-

borhood structures generate necessarily a schedule which is different from the incumbent one. Moreover, two

neighborhood structures based on this idea are used alternately for escaping from local optimal solutions. The

proposed method is applied to some benchmark instances. It is shown from the computational result that the

proposed method outperforms other local search methods.

Key Words: scheduling, local search method, job shop, neighborhood structure

1. Introduction

Scheduling problems 1), 2) in manufacturing systems are

one of the most important problems in the manufacturing

industry. Typical scheduling problems are classified into

the one-machine, the parallel-machine, the flow shop and

the job shop problems. Of these the job shop problem is

hard to solve. Local search based algorithms, in which a

procedure is iteratively executed to update a solution, are

promising for solving the job shop problems with the ad-

vance of computer technology. Typical local search based

algorithms are the local search method, the tabu search

method, the simulated annealing method and the genetic

algorithm. The performance of these methods depends on

the solution representation and the neighborhood struc-

ture. Gen et al. 3), Ono et al. 4) and Shi et al. 5) propose,

respectively, similar solution representations in which a

solution is represented by sequencing jobs or operations.

In the real job site, a solution, that is, a schedule must

be determined in a limited time. Hence, a heuristic rule

is often used for obtaining a solution in short time. The

tabu search method, the simulated annealing method and

the genetic algorithm can be regarded as a method en-

hancing the local search method, and consume much time

to obtain a slightly better solution than the local search

method. Therefore, they are not desirable in real time

∗ Kyoto Institute of Technology, Faculty of Engineering and

Design, Sakyo-ku, Kyoto
∗∗ Okayama Prefectural University, Soja, Okayama

(Received April 25, 2002)

(Revised November 5, 2002)

applications. To obtain a solution in short time, Nakano

et al. 6) propose a local search method in which a solution

is represented by an operation sequence. In this method,

the local search and the global search are used effective-

ly. However, the operation sequence is redundant, be-

cause different sequences are decoded to the same sched-

ule. Consequently, a schedule is often unchanged, even

if the operation sequence is changed. Such redundancy

reduces the search efficiency.

In order to overcome this disadvantage, new neighbor-

hood structures are proposed for the local search method

to solve the job shop scheduling problems in this paper. In

these neighborhood structures, a new operation sequence

is generated by shifting an operation to a forward or back-

ward position. In this shift, an idea not to generate useless

solutions is introduced in consideration to the redundan-

cy of operation sequence. Moreover, these neighborhood

structures are used alternately for escaping from local op-

timal solutions. The proposed method is applied to sev-

eral benchmarks, and the computational result is shown.

2. Job Shop Scheduling Problem

A set of I kinds of jobs Ji (i = 1, 2, · · · , I) is processed

by using K kinds of machines Mk (k = 1, 2, · · · , K). A

machine can process only one job at a time. A job Ji

consists of K operations Oij (j = 1, 2, · · · , K) which are

executed on the respective machines given in advance. No

preemption of operation is allowed. There exists a prece-

dence constraint between operations belonging to a job,

and the operations must be executed in the order of j.

2

For this problem, the following data set is given:

Rij : Machine number on which operation Oij is execut-

ed (Rij ∈ {1, 2, · · · , K}).
Pij : Processing time for operation Oij .

Q : Total number of operations. Q = IK.

This problem is to determine the completion time of

operations in such a way that the makespan should be

minimized. The makespan Z is formulated as

Z = max
i

ciK (1)

where cij is the completion time of operation Oij .

3. Design of Local Search Method

The local search method is a method to find a local

optimal solution by the following algorithm.

Step 1 Generate an initial solution as the incumbent so-

lution.

Step 2 Generate a new solution existing in the neighbor-

hood of the incumbent solution.

Step 3 If the new solution is better than the incumbent

solution, change the incumbent solution to the

new one.

Step 4 If the termination condition is satisfied, termi-

nate this algorithm. The incumbent solution is

adopted as the suboptimal solution. Otherwise,

return to Step 2.

The performance of the local search method depends on

the solution representation and the neighborhood struc-

ture. Hence, these procedures should be defined in a suit-

able form. In this section, a local search method is de-

signed for solving the job shop scheduling problems.

3. 1 Solution Representation

Direct solution representation for job shop problems is

to use the processing order for each machine. However,

a set of the processing orders is often infeasible. To give

such an example, consider the set of the processing order

{O22, O11} for a certain machine and {O12, O21} for an-

other. According to the precedence constraint, O11 and

O21 must be executed before O12 and O22, respectively.

Therefore, this set of processing orders is infeasible. In

this direct representation, there does not exist a simple

rule to judge whether a set of processing orders is in-

feasible or not. Hence, it is hard to generate a feasible

neighboring solution.

In the proposed method, the indirect solution represen-

tation proposed by Nakano et al. is used to generate a fea-

sible neighboring solution easily. In this representation,

all the operations are sequenced. The length of this op-

eration sequence is equal to the number Q of operations.

The operation sequence represents basically a processing

order, and the schedule of operations is determined in turn

according to the schedule decision procedure. Let `ij be

the position of operation Oij in the operation sequence.

If `ij+1 < `ij (∃(i, j); i = 1, 2, · · · , I, j = 1, 2, · · · , K − 1),

the operation sequence is infeasible because of the vio-

lation of the precedence constraint. (A feasible schedule

can not be generated from the operation sequence by us-

ing the schedule decision procedure.) Since there exists

the simple rule to judge whether an operation sequence

is infeasible or not, the proposed method can be designed

in such a way that only feasible solutions are searched.

The procedure to determine a schedule from an opera-

tion sequence is explained as follows:

[Schedule decision procedure]

Step 1 Set m(k) ← 0 (∀k = 1, 2, · · · , K). The variable

m(k) represents the completion time of operation

to be executed last on machine Mk.

Step 2 Set `← 1. The variable ` represents the position

in the operation sequence.

Step 3 The completion time of operation Oi`j` (i` ∈
{1, 2, · · · , I}, j` ∈ {1, 2, · · · , K}) at the `-th po-

sition is given by

ci`j` = max(m(Ri`j`), ci` j`−1) + Pi`j` (2)

It is noted that ci0=0 (∀i).
Step 4 Set m(Ri`j`)← ci`j` .

Step 5 If ` = Q, terminate the procedure. If not, set

`← ` + 1 and return to Step 3.

Operation Oi`j` at the `-th position in the operation

sequence is denoted as O(`) simply.

Example 1 . In instance EX shown in Table 1, oper-

ation sequence {O21, O11, O22, O31, O32, O23, O12, O33,

O13} is decoded to the schedule shown in Fig. 1. In this

figure, the symbol O for an operation is omitted.

As for the operation sequence, the following theorem

holds.

Theorem 1 . For operation Oij executed on the ma-

chine MRij in the operation sequence, the following vari-

ables are defined:

`a : Position of Oij−1.

`b : Position of operation executed just before Oij on

the same machine MRij .

`c : Position of Oij+1.

`d : Position of operation executed just after Oij on

the same machine MRij .
(1)

(1) We assume a pseudo operation O(0) before O(1) if Oij−1

or O(`b) does not exist. Similarly, we assume a pseudo oper-

ation O(Q + 1) after O(Q) if Oij+1 or O(`d) does not exist.

 3

Table 1 Illustrative instance EX (I = K = 3)

Operation Rij Pij

O11 1 2

O12 2 3

O13 3 4

O21 2 5

O22 1 3

O23 3 2

O31 3 4

O32 1 5

O33 2 3

0 10

M1

M2

M3

21

11 22

31

32

23

12 33

13

Time

Fig. 1 Schedule for operation sequence {O21, O11, O22, O31,

O32, O23, O12, O33, O13}

The new operation sequence generated by shifting Oij af-

ter O(`) (` = max(`a, `b), · · · , min(`c, `d) − 1) is decoded

to the same schedule as the original operation sequence.

Proof. The schedule of O(`) (` = 1, 2, · · · , max(`a, `b))

in the new operation sequence is unchanged, because the

order of the sequence is unchanged. As for Oij , there

does not exist an operation executed on the same machine

MRij in the positions between max(`a, `b) and min(`c, `d).

Therefore, the value of m(Rij) is unchanged in equation

(2) of the schedule decision procedure. The value of cij−1

is also unchanged, because there is no operation belong-

ing to the same job as Oij in these positions. There-

fore, the completion time of Oij is unchanged. Similarly,

the completion times of the other operations in the posi-

tions are unchanged. Finally, the completion time of O(`)

(` = min(`c, `d) + 1, · · · , Q) is unchanged, because the

completion times of operations O(1), O(2), · · · , O(` − 1)

are unchanged.

Theorem 1 shows that different operation sequences

may be decoded to the same schedule. The operation

sequence is redundant in this sense.

3. 2 Neighborhood Structure

This subsection describes the procedure to generate a

new operation sequence from the incumbent one. Basical-

ly, a single operation Oij is selected at random, and the

new operation sequence is generated by shifting it for-

wardly or backwardly. The former shift is called forward

shifting, and the latter is called backward shifting. If Oij

is shifted before Oij−1 or after Oij+1, the precedence con-

straint is violated. To prevent this violation, Oij is shifted

between Oij−1 and Oij+1. Since the range between Oij−1

and Oij+1 is limited in this shift, a procedure is intro-

duced to increase the range. In this procedure, operation

Oij∗ ∈{Oi1, Oi2, · · ·, Oij−1} ({OiK , OiK−1, · · ·, Oij+1})
is shifted forwardly (backwardly) in such a way that the

schedule is unchanged. This procedure is called the pre-

liminary procedure, and is explained as follows:

[Preliminary procedure for forward shifting]

Step 1 Set j∗ ← 1.

Step 2 Set `AB ← max(`A, `B), where

`A : Position of Oij∗−1.

`B : Position of operation executed just before

Oij∗ on machine MRij∗ .

Step 3 Shift operation Oij∗ just after operation O(`AB).

Step 4 If j∗ = j−1, terminate the procedure. Otherwise,

set j∗ ← j∗ + 1 and return to Step 2.

[Preliminary procedure for backward shifting]

Step 1 Set j∗ ← K.

Step 2 Set `CD ← min(`C , `D), where

`C : Position of Oij∗+1.

`D : Position of operation executed just after

Oij∗ on machine MRij∗ .

Step 3 Shift operation Oij∗ just before operation

O(`CD).

Step 4 If j∗ = j+1, terminate the procedure. Otherwise,

set j∗ ← j∗ − 1 and return to Step 2.

Even if the preliminary procedure is applied, the sched-

ule is unchanged because of Theorem 1.

Example 2 . For instance EX in Table 1, consider op-

eration sequence

Oij O21 O11 O22 O31 O32 O23 O12 O33 O13

Rij 2 1 1 3 1 3 2 2 3

in Example 1. After the preliminary procedure for shifting

operation O13 forwardly, the operation sequence becomes

Oij O11 O21 O12 O22 O31 O32 O23 O33 O13

Rij 1 2 2 1 3 1 3 2 3

The schedule after the preliminary procedure is un-

changed, and is the same as that shown in Fig. 1.

After the preliminary procedure, operation Oij is shift-

ed. To explain the procedure to shift it, the following

variables are defined for forward (backward) shifting in

the operation sequence:

n1 : Number of operations between Oij−1 (Oij+1) and

Oij .

n2 : Number of operations executed on machine MRij in

operations between Oij−1 (Oij+1) and Oij .

om(∈ {O11,O12,· · ·,OIK}) (m = 1, 2, · · · , n2) :

Operation executed on machine Mij in operations be-

tween Oij−1 (Oij+1) and Oij . These operations are

numbered in the order of the operation sequence.

4

O11 O21 O12 O22 O31 O32 O23 O33 O13

Rij : 1 2 2 1 3 1 3 2 3

(b) (c) (d) (e)(a)

Fig. 2 Example of shifting O13

There exist n1 kinds of shifting Oij in such a way that the

precedence constraint is satisfied. Even if Oij is shifted to

any position between om and om+1, the schedules gener-

ated are the same because of the redundancy of operation

sequence shown in Theorem 1. Therefore, only n2 sched-

ules are different from the incumbent one. Thus, Oij is

shifted just before om in forward shifting so that dupli-

cate solutions are not generated in the proposed method.

Similarly, Oij is shifted just after om in backward shifting.

Example 3 . For instance EX in Table 1, consider op-

eration sequence

Oij O11 O21 O12 O22 O31 O32 O23 O33 O13

Rij 1 2 2 1 3 1 3 2 3

generated by applying the preliminary procedure in Ex-

ample 2. In the case where operation O13 is shifted for-

wardly, there exist five kinds of shifting (a)–(e) shown in

Fig. 2. (i.e. n1=5.) The schedule generated by (a) is the

same as that by (b). Similarly, the schedule generated by

(c) is the same as that by (d). Moreover, the schedule gen-

erated by (e) is the same as the incumbent one. Therefore,

the available shifts are only (b) and (d). (n2=2, o1=O31,

o2=O23.)

After the n2 shifts are selected, they are tried in the or-

der of m. If an operation sequence generated is accepted,

or all the shifts have been tried, then the procedure to

shift Oij ends, and another operation to be shifted is se-

lected. The acceptance condition is described in the next

subsection.

3. 3 Flow of Algorithm

An initial operation sequence is generated at random in

such a way that it is decoded to a feasible solution. From

this operation sequence, a new one is generated by means

of the procedure described in 3. 2. If the objective value

is equal or better, then the new operation sequence is ac-

cepted, and the incumbent one is replaced with it. This

procedure is iterated T times, and the schedule obtained

from the last operation sequence is adopted as the subop-

timal solution. The total iteration number T is given in

advance.

As mentioned in 3. 2, there are two neighborhood struc-

tures: forward shifting and backward shifting. In the for-

mer neighborhood structure, a single operation is shifted

forwardly. Since the completion time of this operation

becomes earlier, it is expected that the objective value

becomes better. On the other hand, in the latter neigh-

borhood structure, an operation is shifted backwardly.

Although the completion time of this operation becomes

later, those of other some operations may become earlier.

As a result, it is expected that the objective value be-

comes better. These neighborhood structures have differ-

ent influence in this sense. Thus, they are used alternate-

ly in the proposed method. A neighborhood structure is

changed, if the search process converges to a local optimal

solution. It is judged that the search process converges in

the case where operation sequences generated are rejected

0.05T times continuously.

The detail algorithm is described as follows:

[The whole algorithm]

Step 1 Generate an initial operation sequence x at ran-

dom, and calculate the objective value Z(x). Set

t← 1, m∗ ← 0, w ← 0 and ne← 0, where

t : Iteration step.

m∗ : Operation number to which operation Oij

is shifted.

w : Number of times which the operation se-

quence generated is rejected.

ne : Neighborhood structure used. ne = 0 (1)

means that forward (backward) shifting is

used.

Step 2 If m∗ > 0, go to Step 6.

Step 3 Select a single operation Oij at random.

Step 4 If ne = 0, apply the preliminary procedure for

forward shifting. If ne = 1, apply the prelimi-

nary procedure for backward shifting. Set x to

the operation sequence changed.

Step 5 Find the n2 operations {om} (m = 1, 2, · · · , n2)

to which Oij is shifted. Set m∗ ← 1.

Step 6 If ne = 0, generate a new operation sequence

x∗ by shifting Oij just before operation om∗ . If

ne = 1, generate a new operation sequence x∗ by

shifting Oij just after operation om∗ .

Step 7 Calculate the objective value of the new opera-

tion sequence x∗. If Z(x) ≥ Z(x∗), accept x∗ and

set x ← x∗, Z(x) ← Z(x∗), m∗ ← 0 and w ← 0.

If Z(x) < Z(x∗), reject x∗ and set m∗ ← m∗ + 1

and w ← w + 1.

Step 8 If m∗ = n2 + 1, set m∗ ← 0.

Step 9 If w ≥ 0.05T and ne = 0, set w ← 0 and ne← 1.

If w ≥ 0.05T and ne = 1, set w ← 0 and ne← 0.

 5

Step 10 If t = T , terminate this algorithm and output

the schedule obtained from x as the suboptimal

solution. If t < T , set t ← t + 1 and return to

Step 2.

4. Computational Experiment

In order to examine the performance of the proposed

method, it is applied to several benchmark instances, and

is compared with other methods. Moreover, the objective

value obtained is compared with the optimal value or the

upper bound.

4. 1 Computational Condition

The proposed method (called LS-I) is compared with

Nakano’s method 6) (LS-N) and a local search method

(LS-T) with Taillard’s neighborhood structure 7). In this

neighborhood structure, a schedule is represented by a

graph. In this graph, a node and an arrow correspond

to an operation and a precedence relation between op-

erations, respectively. A new schedule is generated by

applying the following steps:

[Taillard’s neighborhood structure]

Step 1 On the critical path, select randomly two neigh-

boring nodes (operations) executed on one ma-

chine.

Step 2 Reverse the direction of arrow between these

nodes.

The objective value of new schedule does not become bet-

ter for reversing the direction of arrow between nodes each

of which is not on the critical path. Moreover, an infeasi-

ble schedule may be generated in this case.

Taillard’s neighborhood structure and neighborhood

structures similar to it are often used in local search

based algorithms, and good results are obtained 8). Thus,

Taillard’s neighborhood structure is used as a typical one

in this paper. Taillard uses this neighborhood structure

in the tabu search method. In this paper, a local search

method is used with this neighborhood structure, because

we intend to compare the neighborhood structures in the

local search method. LS-T is designed in the following

way:

[LS-T]

Step 1 Generate an initial graph xg at random, and cal-

culate the objective value Z(xg). Set the itera-

tion step t← 1.

Step 2 Generate a new graph x∗g according to Taillard’s

neighborhood structure.

Step 3 Calculate the objective value Z(x∗g). If Z(xg) ≥
Z(x∗g), accept x∗g and set xg ← x∗g and Z(xg) ←
Z(x∗g).

Table 2 Benchmark instances

Instance I K

abz6 10 10

la16 10 10

la23 15 10

la24 15 10

abz7 20 15

abz8 20 15

yam2 20 20

yam3 20 20

ta41 30 20

ta43 30 20

ta64 50 20

ta65 50 20

Table 3 Total iteration number

Instance T

abz6 10000

la16 10000

la23 45000

la24 45000

abz7 200000

abz8 200000

yam2 640000

yam3 640000

ta41 1500000

ta43 1500000

ta64 6000000

ta65 6000000

Step 4 If t = T , terminate this algorithm and output

the schedule obtained from xg as the suboptimal

solution. If t < T , set t ← t + 1 and return to

Step 2.

As for the instance data, twelve benchmarks 9) are ex-

amined. Table 2 shows the size of the instances, i.e. the

number I of jobs and the number K of machines. Of

these instances, those with I ≤ 20 are also examined in

Nakano’s study. Although the remaining instances are not

examined in Nakano’s study, they are examined in this pa-

per in order to examine the performance for larger-scale

instances.

In LS-I the value of total iteration number T must be

given in advance. Table 3 shows the value of T giv-

en for each instance. The values for the instances with

I ≤ 20 are decided in such a way that the number of

schedules generated in LS-I is the same as that in LS-N.

This is because both methods are compared fairly. The

values for the remaining instances are decided through a

preliminary calculation in such a way that the process of

LS-I converges to a suboptimal solution. The algorithm

is coded in C and is performed on a 2GHz, Pentium IV

PC, running under Linux.

6

800

1000

1200

1400

1600

1800

2000

0 200000 400000 600000
Iteration step t

O
bj

ec
tiv

e
va

lu
e

 Z

Fig. 3 Convergence process of LS-I (yam2)

4. 2 Computational Result

Fig. 3 shows the convergence process of LS-I for a cer-

tain trial in yam2. It is confirmed from this figure that

the process of LS-I converges within the total iteration

number T given in advance. Since the initial solution is

generated at random, it is not good. Hence, the solution

is frequently updated, and a better schedule is gradually

obtained. At t ≈ 80000, the neighborhood structure is

changed in order to escape from a local optimal solution.

Consequently, a better solution is obtained at t ≈ 100000.

Then, the neighborhood structure is changed again at t ≈
200000, and a slightly better solution is obtained after this

change. Although the neighborhood structure is changed

several times in t > 450000, the solution is updated no

longer. It is concluded from this result that a better solu-

tion is obtained by using the two neighborhood structures

alternately.

Table 4 and Table 5 show the average and the best

objective value of solutions obtained by each method, re-

spectively. The upper bound of the objective value is also

shown in Table 5. The result of LS-N in the instances

used by Nakano et al. cites their paper, and is the result

for ten trials with different random seeds. The others are

obtained by running each program in this paper, and are

the results for one hundred trials with different random

seeds. It is needless to say that the best objective value

for the one hundred trials tends to be better than that for

the ten trials.

It is confirmed from these tables that LS-T is worse than

LS-I and LS-N in all the instances. Therefore, the oper-

ation sequence is effective as the solution representation.

In LS-T, the number of neighboring solutions is relative-

ly small, because a neighboring solution is generated by

reversing only the processing order of two successive op-

Table 4 Comparison of average objective value

Instance LS-I LS-N LS-T

abz6 985 988 1112

la16 997 992 1155

la23 1042 1047 1288

la24 988 997 1278

abz7 699 714 864

abz8 710 734 900

yam2 953 982 1250

yam3 942 971 1210

ta41 2180 2277 2823

ta43 2011 2110 2653

ta64 2709 2866 3527

ta65 2765 2986 3615

Table 5 Comparison of best objective value

Instance LS-I LS-N LS-T Upper bound

abz6 945 958 1013 943∗

la16 959 959 1074 945∗

la23 1032 1032 1196 1032∗

la24 943 976 1164 935∗

abz7 674 702 821 655

abz8 693 718 849 638

yam2 932 961 1172 861

yam3 913 945 1100 827

ta41 2120 2201 2668 2026

ta43 1933 2043 2441 1886

ta64 2702 2830 3498 2702∗

ta65 2726 2926 3461 2725∗

∗: Optimal value

erations on the critical path. Hence, the process of LS-T

converges to a local optimal solution as soon as it starts.

The average objective value for LS-I is compared with

that for LS-N. In small-scale instances abz6, la16, la23

and la24, LS-I is almost as good as LS-N. On the other

hand, LS-I is better than LS-N in middle-scale instances

abz7, abz8, yam2 and yam3. Similarly, the average objec-

tive value for LS-I is much smaller than that for LS-N in

large-scale instances ta41, ta43, ta64 and ta65.

The best objective value for LS-I is compared with the

optimal value or the upper bound. In la23 and ta64, the

optimal solutions are obtained. Moreover, the solutions

obtained in abz6 and ta65 are almost as good as the re-

spective optimal solutions. Judging from these results,

the proposed method is effective and efficient.

Finally, the average computation time in LS-I is shown

in Table 6. For small-scale instances, the solution is ob-

tained in a moment. Furthermore, the solution is obtained

in short time for large-scale instances. Therefore, the pro-

posed method is desirable so as to obtain a suboptimal

solution in short time.

 7

Table 6 Average computation time

Instance Time[s]

abz6 0.37

la16 0.38

la23 2.17

la24 2.35

abz7 22.32

abz8 23.04

yam2 117.06

yam3 115.09

ta41 326.07

ta43 315.58

ta64 830.90

ta65 859.36

5. Conclusion

This paper has dealt with a job shop scheduling prob-

lem of minimizing makespan in the case where the com-

putation time is limited. For solving this problem, new

neighborhood structures have been proposed for a local

search method in which a solution is represented by an

operation sequence. Since this operation sequence is re-

dundant, useless operation sequences decoded to the same

schedule are generated in the method proposed by Nakano

et al.. This paper has shown a condition of operation se-

quences decoded to the same schedule, and has presented

an effective procedure to generate necessarily an opera-

tion sequence which is different from the incumbent one.

In addition, two neighborhood structures based on this

idea have been used alternately for escaping from local

optimal solutions.

The proposed method has been compared with local

search methods with another neighborhood structure. It

is confirmed from the computational result that the pro-

posed method outperforms the other methods in almost

all the instances. Moreover, the solution is obtained in

short time by the proposed method.

References

1) P. Brucker: Scheduling Algorithms, Springer (1995)

2) M. Pinedo: Scheduling — Theory, Algorithms, and Sys-

tems, 2nd Edition, Prentice Hall (2002)

3) M. Gen and R. Cheng: Genetic Algorithms & Engineering

Design, John Wiley & Sons (1997)

4) I. Ono, M. Yamamura and S. Kobayashi: A Genetic Algo-

rithm for Job-Shop Scheduling Problems Using Job-Based

Order Crossover, Proceedings of 1996 IEEE International

Conference on Evolutionary Computation, 547/552 (1996)

5) G. Shi, H. Iima and N. Sannomiya: A New Encoding

Scheme for Solving Job Shop Problems by Genetic Algo-

rithm, Proceedings of 35th IEEE Conference on Decision

and Control, 4395/4400 (1996)

6) T. Nakano, Y.J. Tian and N. Sannomiya: An Improved Lo-

cal Search Method for Solving Job Shop Scheduling Prob-

lems, The Transactions of the Institute of Electrical Engi-

neers of Japan, 121C–10, 1627/1633 (2001) (in Japanese)

7) E.D. Taillard: Parallel Taboo Search Techniques for the

Job Shop Scheduling Problem, ORSA Journal on Com-

puting, 6–2, 108/117 (1994)

8) R.J.M. Vaessens, E.H.L. Aarts and J.K. Lenstra: Job Shop

Scheduling by Local Search, INFORMS Journal on Com-

puting, 8–3, 302/317 (1996)

9) http://www.ms.ic.ac.uk/info.html

Hitoshi IIMA (Member)

He received the B.E., M.E. and Dr. Eng. de-

grees from Kyoto Institute of Technology in

1991, 1993 and 1999, respectively. Since 1995,

he has been a Research Associate at the Facul-

ty of Engineering and Design in Kyoto Institute

of Technology. His research interests include

combinatorial optimization and manufacturing

systems.

Nobuo SANNOMIYA (Member)

He received Dr. Eng. from Kyoto University

in 1969. He was a Professor at the Faculty of

Engineering and Design in Kyoto Institute of

Technology from 1986 to 2003. He is now the

Professor Emeritus of Kyoto Institute of Tech-

nology and the President of Okayama Prefec-

tural University. His research interests include

system modeling and optimization.

