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Relation between Spectrum Density and Wavelet Transform of

Correlation Function
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This paper concerns properties of the wavelet transform of a correlation function from the viewpoint of spec-

trum analysis. First of all, a basic characteristic is derived as a relation between the wavelet transform and the

corresponding spectrum density. The relation shows that the wavelet transform can be treated as an estimate of

the spectrum density if a mother wavelet is chosen appropriately. Its bias from the true value is also obtained

for this case. Moreover, a selection of the mother wavelet is considered to reduce the bias. This consideration

provides validity of using the Gabor function as a mother wavelet for applications of the wavelet transform of

the correlation function.
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1. Introduction

There are many applications of the continuous wavelet

transform in various areas, for example, signal process-

ing, health monitoring, measurement and system identi-

fication 1), 2). Through the applications, its usefulness is

revealed widely. We focused the wavelet transform of a

correlation function 3) and have continued theoretical re-

searches and application studies, for instance, dead time

estimation of linear systems 4), 5) and system identification

of a boiler plant 6).

Our preceding studies showed that the wavelet trans-

form of the correlation fucntion can be treated as a kind

of estimate of the corresponding spectrum density if a

mother wavelet (analyzing wavelet) is a complex sinusoid

(ejωpt) multiplied by a real window function, like the Ga-

bor function (also known as Complex Morlet wavelet) 3).

However, there was no study about essential properties

of the estimate, such as a bias and a variance. It is im-

portant for both theory and applications to analyze these

properties quantitatively.

In addition, it is expected that there is a strong relation

between the wavelet transform of the correlation function

and the spectrum density even when the mother wavelet

is not a product of the sinusoid and the window func-

tion. The reason is the following: the wavelet transform

is very similar to the windowed Fourier transform except

for frequency dependence of window functions, and the

Blackman-Tukey method, which is one of the spectrum

estimation methods, is identical to the windowed Fourier
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transform of the correlation function. In order to prove

the relation, we also have to investigate the case of using

general mother wavelets.

By the way, there is another problem related mother

wavelets. In our preceding studies, the Gabor function

was employed as a mother wavelet to obtain the wavelet

transform of the correlation function. Although it is em-

pirically known that use of the Gabor function leads good

results, there is no theoretical proof. If we analyze the

relation between the wavelet transform of the correlation

function and the spectrum density including the case of

general mother wavelets, it should be possible to gives a

theoretical validity of using the Gabor function.

This paper reveals the relation between the wavelet

transform of the correlation function and the correspond-

ing spectrum density. The derivation of the relation will

provides the bias of the spectrum density estimated from

the wavelet transform of the correlation function. In addi-

tion, we will prove that this bias is suppressed if a mother

wavelet is a product of the complex sinusoid and specific

window functions. That is, such a mother wavelet is ap-

propriate when the continuous wavelet transform is ap-

plied to the spectrum analysis, in particular, if the clear

relation is expected between the wavelet transform of the

correlation function and the spectrum density.

This paper is organized as follows. In section 2, a ba-

sic relation is derived between the wavelet transform of

the correlation function and the spectrum density. Then,

we show the condition that the wavelet transform can be

treated as an estimate of the spectrum density and de-

scribe the bias from the true value. Section 3 illustrates

that the bias stated above is suppressed if and only if

a mother wavelet is expressed as the complex sinusoid
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windowed by even functions. In section 4, a numerical

experiment is carried out to confirm validity of our re-

sult. Section 5 concludes this paper and mentions further

researches.

Notation: The set of real numbers will be represented

by R and the set of complex numbers by C . The aster-

isk ∗ denotes complex conjugation.

The Fourier transform of a signal x(t) is represented by

X(ω) and its definition is the following.

X(ω) =
1√
2π

∫ +∞

−∞
x(t)e−jωtdt

An inner product over the space of square integrable

functions L2(R) is defined by

〈x, y〉 =

∫ +∞

−∞
x∗(t)y(t)dt.

A cross correlation function between x(t) ∈ R and

y(t + t′) ∈ R is denoted by φx(t),y(t+t′)(τ ). We employ

the following definition in this paper.

φx(t),y(t+t′)(τ ) = lim
T→∞

1

2T

∫ T

−T

x(t)y(t + t′ + τ )dt

Thus Φx(t),y(t+t′)(ω), which is the Fourier transform of

φx(t),y(t+t′)(τ ), is the cross spectrum density between x(t)

and y(t + t′). When t′ = 0, they are simply denoted by

φxy(τ ) and Φxy(ω) respectively. Similarly, an auto corre-

lation function and a power spectrum density of x(t) ∈ R

are denoted by φxx(τ ) and Φxx(ω) respectively.

A mother wavelet (or analyzing wavelet) is expressed

by ψ(t). In general, ψ(t) is a complex function. Wavelet

bases are represented by ψa,b(t) and defined by

ψa,b(t) =
1√
a

ψ
(

t − b

a

)
.

The parameter a is the dilation parameter (or scaling pa-

rameter, scale parameter) and b is the location parameter

(or translation parameter, shift parameter). The wavelet

transform of x(t) is defined by using these bases as fol-

lows.

x̃(a, b) = 〈ψa,b(t), x(t)〉

=

∫ +∞

−∞
x(t)

1√
a

ψ∗
(

t − b

a

)
dt

In this paper, the dilation parameter a is limited to posi-

tive real numbers and the domain of the shift parameter

b is R.

2. Wavelet Transform of Correlation
Function and Spectrum Density

First, we will show a basic relation between the wavelet

transform of a cross correlation function and the corre-

sponding cross spectrum. Next, a discussion will be given

for the case that the wavelet transform can be regarded

as an estimate of the spectrum.

2. 1 Basic Relation between Wavelet Trans-

form of Correlation Function and Spec-

trum Density

This subsection describes a basic analysis of a relation

between the wavelet transform of a correlation function

and the corresponding spectrum density.

Let φ̃xy(a, b) denote the wavelet transform of φxy(τ ),

which is the cross correlation function between x(t) and

y(t). The definition of the wavelet transform directly

yields

φ̃xy(a, b) = 〈ψa,b(τ ), φxy(τ )〉. (1)

The next theorem provides the relation between φ̃xy(a, b)

and the cross spectrum density.

Theorem 1. Assume that ω0 is an arbitrary constant

and a cross spectrum density Φxy(ω) is n-times differen-

tiable in R. Then,

φ̃xy(a, b) =

√
2πψ∗(0)√

a
Φx(t),y(t+b)

(
ω0

a

)

+

n−1∑
k=1

Qk + Rn, (2)

where

Qk =

√
a

k!
Φ

(k)

x(t),y(t+b)

(
ω0

a

)∫ +∞

−∞
λkΨ∗(ω0+aλ)dλ. (3)

In addition, |Rn| is bounded as follows.

|Rn| ≤
√

a

n!
max

ω

∣∣∣Φ(n)

x(t),y(t+b)
(ω)

∣∣∣
×
∫ +∞

−∞
|λnΨ∗(ω0+aλ)|dλ (4)

Proof :

φ̃xy(a, b) = 〈ψa,b(τ ), φxy(τ )〉
= 〈ψa,0(τ − b), φx(t),y(t+b)(τ − b)〉
= 〈ψa,0(τ ), φx(t),y(t+b)(τ )〉

Since inner products satisfy the following identity∫ +∞

−∞
x∗(t)y(t)dt =

∫ +∞

−∞
X∗(ω)Y (ω)dω,

we obtain

φ̃xy(a, b) =
√

a

∫ +∞

−∞
Ψ∗(aω)Φx(t),y(t+b)(ω) dω. (5)

This equation is transformed as follows by applying ω =

ω0/a + λ.

φ̃xy(a, b) =

√
a

∫ +∞

−∞
Ψ∗(ω0 + aλ)Φx(t),y(t+b)

(
ω0

a
+ λ
)
dλ (6)
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The Taylor series of Φx(t),y(t+b)(ω0/a + λ) at ω0/a is

Φx(t),y(t+b)

(
ω0

a
+λ
)

= Φx(t),y(t+b)

(
ω0

a

)

+

n−1∑
k=1

λk

k!
Φ

(k)

x(t),y(t+b)

(
ω0

a

)

+
1

n!
Φ

(n)

x(t),y(t+b)

(
ω0

a
+ ξ(λ)

)
, (7)

where 0 < ξ(λ) < λ for λ > 0 and λ < ξ(λ) < 0 for λ < 0.

By substituting this into the equation (6), we have

φ̃xy(a, b) =
√

aΦx(t),y(t+b)

(
ω0

a

)∫ +∞

−∞
Ψ∗(ω0 + aλ)dλ

+
√

a

∞∑
k=1

1

k!
Φ

(k)

x(t),y(t+b)

(
ω0

a

)∫ +∞

−∞
λkΨ∗(ω0+aλ)dλ

+

√
a

n!

∫ +∞

−∞
Φ

(n)

x(t),y(t+b)

(
ω0

a
+ξ(λ)

)
λnΨ∗(ω0+aλ)dλ.

(8)

Let Rn denote the last term of this equation. Thus the

equation (2) is obtained by using

1√
2π

∫ +∞

−∞
Ψ∗(ω0 + aλ)dλ =

ψ∗(0)
a

.

The upper bound of Rn can be also derived from∣∣∣∣
∫ +∞

−∞
Φ

(n)

x(t),y(t+b)

(
ω0

a
+ ξ(λ)

)
λnΨ∗(ω0+aλ)dλ

∣∣∣∣
≤
∫ +∞

−∞

∣∣∣Φ(n)

x(t),y(t+b)

(
ω0

a
+ ξ(λ)

)∣∣∣ |λnΨ∗(ω0+aλ)|dλ

≤ max
ω

∣∣∣Φ(n)

x(t),y(t+b)
(ω)
∣∣∣ ∫ +∞

−∞
|λnΨ∗(ω0+aλ)|dλ.

(9)

When Φxy(ω) is infinitely differentiable, the following

result is obtained similarly.

Corollary 1. Assume that ω0 is an arbitrary constant.

If Φxy(ω) is infinitely differentiable,

φ̃xy(a, b) =

√
2πψ∗(0)√

a
Φx(t),y(t+b)

(
ω0

a

)
+ R, (10)

where

R =

∞∑
k=1

Qk

=

∞∑
k=1

√
a

k!
Φ

(k)

x(t),y(t+b)

(
ω0

a

)∫ +∞

−∞
λkΨ∗(ω0+aλ)dλ

(11)

2. 2 Spectrum Density Estimation by Wavelet

Transform of Correlation Function and Its

Bias

Suppose that Qk and Rn in the equation (2) are suf-

ficiently small. For Corollary 1, suppose that R in the

equation (10) is so. Then
√

a√
2πψ∗(0)

φ̃xy(a, b) ≈ Φx(t),y(t+b)

(
ω0

a

)
. (12)

This implies that the left hand of the equation can be

regarded as an estimate of the cross spectrum density be-

tween x(t) and y(t + b). (1).

The bias of this estimate from the true spectrum density

is

√
a√

2πψ∗(0)

(
n−1∑
k=1

Qk + Rn

)
(13)

for the equation (2) and

√
a√

2πψ∗(0)
R =

√
a√

2πψ∗(0)

∞∑
k=1

Qk (14)

for the equation (10). If the approximation of the equa-

tion (12) is proper, we can treat the wavelet transform of

the cross correlation as the estimate of the corresponding

spectrum density. It requires that the equation (13) or

(14) is small enough.

In order to make (13) and (14) small, it is sufficient that

the magnitude of Qk, defined in the equation (3), is small

for each k. Consider the terms which constitute Qk. It is

impossible to adjust the k-th derivative of Φx(t),y(t+b)(ω)

since it depends on the spectrum to be estimated. In

contrast, the absolute value of∫ +∞

−∞
λkΨ∗(ω0 + aλ)dλ (15)

can be smaller by choosing a mother wavelet ψ(t) and ω0

adequately. As a result, this suppresses the magnitude of

Qk. Further discussions about these choices will be shown

in the next section.

As stated above, we can make the bias smaller for an

unknown object by reducing the magnitude of the equa-

tion (15). However, to suppress |Qk|, it is also necessary

that the magnitude of

Φ
(k)

x(t),y(t+b)

(
ω0

a

)
(16)

is not too large. This brings another problem. The mag-

nitude is dependent on the location parameter b. It can

be seen from Φx(t),y(t+b)(ω) = ejωbΦxy(ω). The deriva-

tive and high order derivatives of Φx(t),y(t+b)(ω) may be

very large depending on the value of b. Hence we must be

aware that not all b allow use of the approximation (12).

The range of b which suppress the magnitude of (16) de-

pends on the object to be estimated. Therefore we don’t

(1) This result matches the one of the article 3), though

the difference of the Fourier transform definition causes the

difference of the constant multiplier
√

2π.
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discuss it anymore and leave it for further studies. For the

analyses in the rest of the paper, the location parameter

b is assumed to be such that the equation (16) is not too

large.

3. Analysis for Windowed Complex Si-
nusoid Wavelets

This section will focus mother wavelets which can be ex-

pressed as a product of a even function w(t) and a complex

sinusoid, i.e.

ψ(t) = w(t)ejωpt. (17)

We shall call these wavelets the windowed complex sinu-

soid wavelets in this paper. The main purpose of this

section is to advance the analysis stated in the previous

section for the wavelets. When w(t) = e−t2 , the wavelet

is known as the Gabor wavelet (Complex Morlet wavelet).

It is employed often in wavelet analysis applications and

its usefulness is confirmed experimentally.

Section 2. 2 illustrated that the wavelet transform of a

cross correlation function can be considered as an estimate

of the corresponding cross spectrum density (Eq. (12)) if

the bias of the equation (13) or (14) is small. To do this, a

mother wavelet ψ(t) must be selected appropriately. We

will show that the windowed complex sinusoid wavelets

are proper for this purpose. That is to say, if the wavelets

are employed, the wavelet transform of the cross correla-

tion is equivalent to the estimate of the cross spectrum.

In addition, its inverse is also true. If a mother wavelet

is chosen such that |Qk| is small in a sense and the bias

is suppressed, it becomes a windowed complex sinusoid

wavelet. This implies that it is desirable to select the

windowed complex sinusoid as the mother wavelet if the

connection is emphasized between the wavelet transform

of the correlation function and the spectrum density.

First, we explain the windowed complex sinusoid

wavelet and define its center frequency. Next, validity

of the definition is shown from the viewpoint that it sup-

press the bias considered in the section 2. 2. The proof

of the validity will also reveal that the wavelets reduce

the bias. Next, we will show that if a mother wavelet is

chosen such that the bias is suppressed, then it becomes

a windowed complex sinusoid wavelet. Finally, a relation

with the Blackman-Tukey method will be discussed.

3. 1 Windowed Complex Sinusoid Wavelet and

Center Frequency

As stated before, the windowed complex sinusoid

mother wavelets are represented by

ψ(t) = w(t)ejωpt, (18)

where w(t) ∈ R is an even function. Let us call ωp the

center frequency of the mother wavelet.

If a function w(t) is a real and even function, its Fourier

transform W (ω) is also real and even. From the equation

(18), the Fourier transform of ψ(t) satisfies

Ψ(ω) = W (ω − ωp). (19)

Therefore Ψ(ω) is symmetrical about ω = ωp and ωp is

the center frequency of the mother wavelet. Also note

that Ψ(ω) is real function.

The Gabor function 3), 8) (Complex Morlet wavelet) is

one of the typical this type mother wavelets. If the Ham-

ming or Hanning window, commonly used in the spec-

trum analysis 9), are chosen as w(t), the mother wavelet

also becomes this type wavelet.

It is desirable to choose a positive real function as Ψ(ω)

when the wavelet transform of a correlation function is

treated as an estimate of a spectrum density. This can

be understood from the equation (5), which shows that

φ̃xy(a, b) is a weighted moving average of the spectrum

density Φx(t),y(t+b)(ω) and Ψ∗(ω) is its weighting function.

Thus negative Ψ(ω) may cause troubles, for example, an

estimated power spectrum becomes negative and an esti-

mated cross spectrum has strange phase values. For the

above reason, it is better to use positive real Ψ(ω).

3. 2 Validity of Definition of Center Frequency

It is possible to justify the choice of the center frequency

in the section 3. 1 from another viewpoint, that is, the

choice also suppresses the bias in the section 2. 2. Con-

sider the integration∫ +∞

−∞
λkΨ∗(ω0+aλ)dλ (20)

included in the equation (3). It can be proven that for

each k, ω0 which minimizes the magnitude of the integra-

tion is coincident with the center frequency ωp defined in

the section 3. 1. Suppressing the integral (20) makes the

considered bias small since the sum of Qk are proportional

to the equation (13) and (14), which are the bias when

the wavelet transform of a correlation function is treated

as an estimate of a spectrum density. We will show the

result as the following theorem.

Theorem 2. For the mother wavelet of the equation

(17), ω0 such that minimize

Ik(ω0) =

∣∣∣∣
∫ +∞

−∞
λk|Ψ∗(ω0+aλ)|dλ

∣∣∣∣ (21)

is the same as the center frequency ωp in the section 3. 1.

Proof: From the equation (19),

Ik(ω0) =

∣∣∣∣
∫ +∞

−∞
λk|W ∗(ω0 − ωp + aλ)|dλ

∣∣∣∣ . (22)
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Now let ω = ω0 − ωp and define I ′
k(ω) = Ik(ω0 − ωp).

Then we obtain

I ′
k(ω) =

∣∣∣∣
∫ +∞

−∞
λk|W ∗(ω + aλ)|dλ

∣∣∣∣ . (23)

Apply the transformation λ′ = ω + aλ to this equation

and let us reuse λ to represent λ′ after the translation.

Since a > 0 is assumed, thus

I ′
k(ω) =

∣∣∣∣
∫ +∞

−∞

(
λ − ω

a

)k

|W ∗(λ)|dλ

a

∣∣∣∣
=

1

ak+1

∣∣∣∣
∫ +∞

−∞
(λ − ω)k|W ∗(λ)|dλ

∣∣∣∣ . (24)

i) k is odd: It is trivial that I ′
k(ω) is zero and minimum

at ω = 0, that is, when ω0 = ωp. This is easily derived by

the fact that the integrand is odd function.

ii) k is even: Let us calculate ak+1I ′
k(ω) first. When k

is even, the integrand is always positive. It follows that

ak+1I ′
k(ω) =

∣∣∣∣
∫ 0

−∞
(λ − ω)k|W ∗(λ)|dλ

∣∣∣∣
+

∣∣∣∣
∫ +∞

0

(λ − ω)k|W ∗(λ)|dλ

∣∣∣∣ . (25)

Apply the transformation λ′ =−λ to the first integration

and recall that k is even and W (ω) is even function. Then

ak+1I ′
k(ω) =

∣∣∣∣
∫ 0

+∞
(−λ′ − ω)k|W ∗(−λ′)|d(−λ′)

∣∣∣∣
+

∣∣∣∣
∫ +∞

0

(λ − ω)k|W ∗(λ)|dλ

∣∣∣∣ (26)

=

∣∣∣∣
∫ +∞

0

(λ′ + ω)k|W ∗(λ′)|dλ′
∣∣∣∣

+

∣∣∣∣
∫ +∞

0

(λ − ω)k|W ∗(λ)|dλ

∣∣∣∣ (27)

=

∣∣∣∣
∫ +∞

0

((λ + ω)k+(λ − ω)k)|W ∗(λ)|dλ

∣∣∣∣ .
(28)

We can calculate ak+1I ′
k(0) similarly.

ak+1Ik(0) =

∣∣∣∣
∫ +∞

0

2λk|W ∗(λ)|dλ

∣∣∣∣ (29)

Since k is even,

(λ + ω)k + (λ − ω)k − 2λk = 2

k/2∑
l=1

kC2lλ
2lωk−2l

≥ 0. (30)

Integrands in both the equations (28) and (29) are always

positive. Therefore

I ′
k(ω) − I ′

k(0)

=
1

ak+1

∫ +∞

0

2

k/2∑
l=1

kC2lλ
2lωk−2l|W ∗(λ)|dλ

≥ 0. (31)

The equality holds if ω = 0, i.e. ω0 = ωp. Hence ω0 = ωp

minimizes Ik(ω0).

We chose ωp in the equation (17) for the center fre-

quency of the mother wavelets. As seen above, this re-

duces Qk and Rn of the equation (2) and R in the equation

(10) and, in consequence, the bias is suppressed when the

wavelet transform of the correlation function is treated as

an estimate of the spectrum density. Also in this sense,

the choice has validity.

The integration (20) coincides with (21) if Ψ(ω) is pos-

itive. Hence, ω0 such that minimize∣∣∣∣
∫ +∞

−∞
λkΨ∗(ω0+aλ)dλ

∣∣∣∣ (32)

is the center frequency ωp defined in the section 3. 1.

3. 3 Windowed Complex Sinusoid Wavelet and

Bias

As we saw in the proof of Theorem 2, the equation (20)

becomes zero if k is odd. This implies that Qk of the

equation (2) disappear for odd k. The windowed complex

sinusoid wavelets suppress the bias in this sense, too.

Moreover, its inverse also holds. Suppose that a mother

wavelet is chosen so that Qk is zero for odd k, i.e.∫ +∞

−∞
λ2l+1Ψ∗(ωp + aλ)dλ = 0, l = 0, 1, · · · . (33)

Then, the wavelet becomes a windowed complex sinusoid.

Theorem 3. The equation (33) is satisfied and Ψ(ω)

is real if and only if ψ(t) is the windowed complex sinusoid

mother wavelet.

Proof:

(Sufficiency) It is already shown in the section 3. 1 that

Ψ(ω) is real if ψ(t) is the windowed complex sinusoid

mother wavelet. The proof of Theorem 2 also shows that

the equation (33) holds under the same condition.

(Necessity) Let us define Ψe(ω) and Ψo(ω) as

Ψe(ω) =
1

2
(Ψ(ω) + Ψ(−ω + 2ωp)) (34)

Ψo(ω) =
1

2
(Ψ(ω) − Ψ(−ω + 2ωp)) . (35)

These are defined to satisfy the following equations.

Ψ(ω) = Ψe(ω) + Ψo(ω) (36)

Ψe(ωp + ω) = Ψe(ωp − ω) (37)

Ψo(ωp + ω) = −Ψo(ωp − ω) (38)

It means that Ψ(ω) is decomposed into two components

Ψe(ω) and Ψo(ω), and the formar is symmetric about

ω = ωp and the latter is anti-symmetric.

Since the above decomposition gives∫ +∞

−∞
λ2l+1Ψ∗

e(ωp+aλ)dλ = 0



30                                                                               
                                                                               
∫ +∞

−∞
λ2lΨ∗

o(ωp+aλ)dλ = 0,

the following equations are satisfied.∫ +∞

−∞
λ2l+1Ψ∗(ωp+aλ)dλ

=

∫ +∞

−∞
λ2l+1Ψ∗

o(ωp+aλ)dλ (39)

∫ +∞

−∞
λlnΨ∗(ωp+aλ)dλ

=

∫ +∞

−∞
λ2lΨ∗

e(ωp+aλ)dλ (40)

The equations imply that the equation (33) holds if Ψo(ω)

is set to zero. Thus, it is sufficient to let Ψ(ω) = Ψe(ω)

and choose ψ(t) satisfying

Ψ(ωp + ω) = Ψ(ωp − ω). (41)

Next, consider ψ(t) which satisfies this equation. From

the inverse Fourier transform,

ψ(t) =
1√
2π

∫ +∞

−∞
Ψ(ω)ejωtdω

=
1√
2π

∫ +∞

−∞
Ψ(ω + ωp)ej(ω+ωp)tdω

=
1√
2π

ejωpt

∫ +∞

−∞
Ψ(ω + ωp)ejωtdω. (42)

Now, let us suppose that

w(t) =
1√
2π

∫ +∞

−∞
Ψ(ω + ωp)ejωtdω. (43)

Then, ψ(t) = w(t)ejωpt. We will show that w(t) becomes

even function, that is, w(−t) coincides with w(t). From

the previous equation,

w(−t) =
1√
2π

∫ +∞

−∞
Ψ(ω + ωp)ejω(−t)dω.

By using the transformation ω′ = −ω and the equation

(41) , we have

w(−t) =
1√
2π

∫ −∞

+∞
Ψ(−ω′ + ωp)ejω′tdω′

=
1√
2π

∫ +∞

−∞
Ψ(−ω′ + ωp)e

jω′tdω′

=
1√
2π

∫ +∞

−∞
Ψ(ω′ + ωp)ejω′tdω′

= w(t).

Hence w(t) is even function.

On the other hand, if Ψ(ω) is a real function, that

is when W (ω) is real (recall W (ω) = Ψ(ω + ωp)), then

w(t) = w∗(−t). From this and the fact that w(t) is even,

w(t) is a real function.

As seen in this proof, Qk depends on only Wo(ω) for

odd k (the equation (39)), and only We(ω) for even k

(the equation (40)). This fact yields the next corol-

lary.

Corollary 2. Assume that l is natural number and

We(ω) �= 0. For a given window function w(t) such

that its Fourier transform isn’t even function, there ex-

ists another window function w′(t) such that the same

Q2l, but Q2l+1 = 0, and its Fourier transform satisfies

W ′(ω) = We(ω).

The corollary states that we can select a mother wavelet

and the related window function such that Qk = 0 for

odd k, without any other effects from the viewpoint of

the bias. In other words, letting Qk = 0 for odd k doesn’t

alter the value of Qk for even k.

Consequently, the windowed complex sinusoid is a desir-

able mother wavelet to relate the wavelet transform of the

cross correlation function with the cross spectrum density.

3. 4 Relation with Blackman-Tukey Method

This subsection will treat the relation between two esti-

mates of a cross spectrum density: one is calculated from

a wavelet transform of a cross correlation function and an-

other is by the Blackman-Tukey method. In particular,

we will discuss their biases mainly.

The window function treated in this section, w(t), is

quite similar to the one in the Blackman-Tukey method

if the condition w(0) = 1 is added. The only difference is

that w(t) used in the Blackman-Tukey method must sat-

isfy one more condition: there exists a M > 0 such that

w(τ ) = 0 for τ satisfying |τ | > M . Since w(0) = 1 means

ψ∗(0) = 1, the equation (12) becomes simpler as follows.
√

a√
2π

φ̃xy(a, b) ≈ Φx(t),y(t+b)

(
ωp

a

)
(44)

Suppose that a mother wavelet is the windowed com-

plex sinusoid wavelet and it also satisfies w(0) = 1. Then,

Q2 = −
√

2π

2
√

a

w′′(0)
a2

Φ′′
x(t),y(t+b)

(
ωp

a

)
. (45)

From this and the equation (2), we obtain
√

a√
2π

φ̃xy(a, b) = Φx(t),y(t+b)

(
ωp

a

)
−1

2

w′′(0)
a2

Φ′′
x(t),y(t+b)

(
ωp

a

)
+ · · · .

(46)

Here, let us consider the spectrum density estimate cal-

culated from the wavelet transform of the corresponding

cross correlation function. The equation implies that the

bias of the estimate is inversely proportional to the square

of the width of the wavelet basis since the width is pro-

portional to a dilation parameter a in time domain.

This result is almost the same as the one of the

Blackman-Tukey method 9), i.e. the bias is proportional
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to 1/M2, where M is the width of the window function.

The only difference is that the window width M is con-

stant for the Blackman-Tukey method while the width is

dependent on frequency for the wavelet case.

4. Numerical Experiment

This section illustrates the above results by a numerical

experiment. We estimate a power spectrum density from

the wavelet transform of a auto correlation function and

consider the experiment result.

To generate a test signal, a white noise of 0 (dB) was

passed through the filter whose transfer function was

G(s) =
1

s2 + 0.7s + 1
. (47)

The sampling rate was set to 0.5 second and the number of

samples was set to 4096. We calculated the wavelet trans-

form of the auto-correlation function of the test signal and

estimated its power spectrum density from the equation

(12). The location parameter b is fixed to 0 to obtain the

power spectrum density. We selected the Gabor function

for a mother wavelet. It is expressed as follows.

ψ(t) = exp

(
− ω2

p

2γ2
t2
)

exp(jωpt) (48)

In this experiment, ωp and γ were set to 1(rad/sec) and

2π respectively. To simplify the calculation, the mother

wavelet was multiplied by a constant so that ψ∗(0) = 1.

This function is obtained by using the Gaussian window

as follows.

w(t) = exp

(
− ω2

p

2γ2
t2
)

(49)

Figure 1 shows the caluculated result. The thick line

is the power spectrum estimated by the above way. The

thin line is ‖G(jω)‖2, that is, the true value of the spec-

trum. You can see that both lines are very similar each

other though there is a small bias between them. As this

example, a spectrum density can be estimated from the

wavelet transform of a correlation function if an appro-

priate mother wavelet are chosen.

Moreover, we calculated the true value of

Φxy

(
ωp

a

)
− 1

2

w′′(0)
a2

Φ′′
xy

(
ωp

a

)
, (50)

which is the first two terms of the right hand of the equa-

tion (46). The value is plotted by the dashed line in

Fig. 1. It can be seen that the difference becomes smaller

by adding the second order term.

5. Conclusion

This paper considers the relation between the wavelet

transform of a correlation function and the corresponding
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Fig. 1 Power spectrum estimation using the wavelet trans-

form of a correlation function. The thick line is the

estimated power spectrum by the wavelet transform

of the auto-correlation function of a signal. It is ob-

tained by the equation (12). The thin line is its true

value. The difference between them is small. This re-

sult shows that it is possible to estimate the spectrum

density by the wavelet transform of the correlation

function. The dashed line is the plot of (50), which

is the true value plus the first term of the estimate’s

bias. The difference becomes smaller.

spectrum density. It is desirable to use the windowed com-

plex sinusoid wavelet, which is a complex sinusoid ejωpt

multiplied by a real even window function, if we expect

to relate the wavelet transform of the correlation function

with the spectrum density. The Gabor function is one of

the commonly used wavelets of them. As mentioned in

the introduction, we employed the wavelet transform of

the correlation function for dead time measurement and

system identification. The result theoretically justifies use

of the Gabor function for these studies since they have a

close relation with the spectrum density. It has great sig-

nificance for the related application researches. Also for

general applications using the continuous wavelet trans-

form of the correlation function, we recommend to start

their developments with such mother wavelets. They en-

able us to link the wavelet transform with the notion of

frequency and spectrum, and it will be help to understand

the connection with conventional methods. We consider

that it is desirable and effective at the beginning of the
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development since many properties of the object are un-

known initially.

There are some further researches. We have to consider

the center frequency of wavelets quantitatively for general

mother wavelets. It is necessary to investigate a range of

the location parameter such that the discussion of this pa-

per is still valid. The evaluation of the variance is left in

spite of its importance. Another method was proposed to

estimate a spectrum density based on the wavelet trans-

form of a correlation fuction 10), 11). The method calcu-

lates a periodogram directly from the wavelet transform

of a signal. It may be necessary to study the properties

of the estimates by such a method.
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