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Nonlinear Adaptive H∞ Control Systems

for Bounded Variations of Parameters†

Yoshihiko Miyasato∗

A new class of adaptive nonlinear H∞ control systems for processes with bounded variations of parameters, is

proposed in this manuscript. Those control schemes are derived as solutions of particular nonlinear H∞ control

problems, where unknown system parameters are regarded as exogenous disturbances to the processes, and thus,

in the resulting control systems, the L2 gains from system parameters to generalized outputs are made less than γ.

The proposed control strategy can be applied to any time-varying (or time-invariant) systems, and the resulting

control systems are bounded for arbitrarily large but bounded variations of time-varying parameters. Also, the

control schemes are shown to be sub-optimal to some H∞ cost functionals (or certain differential games), when

the high-frequency gains are time-invariant.
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1. Introduction

In the study of adaptive control, the main topics have

been an asymptotic stability of adaptive control systems.

So much attention has not been paid on the control perfor-

mances such as transient performance and other perfor-

mances 1). On the contrary, the backstepping procedures

in the last few years, have not only made it possible to an-

alyze the stability of adaptive control systems in simpler

forms, but also made it possible to discuss the transient

performance of responses (L∞/L2 performances) of many

kinds of adaptive and nonlinear control systems 2). Fur-

thermore, recent researches on nonlinear H∞ control and

inverse optimality, could derive adaptive or nonlinear con-

trol systems which are optimal to certain meaningful cost

functionals 3) 4) 5) 6) 7).

Additionally, in the past study of adaptive control,

there has been another problem that the stability anal-

ysis of adaptive control systems have been focused on

time-invariant processes mainly; no enough discussion for

the case of time-varying systems has been made. Al-

though several approaches have been examined for time-

varying processes in the study of robust adaptive con-

trol schemes 1), those results could be applied to limited

classes of time-varying systems, that is, only sufficiently

small variations of time-varying parameters are accepted

in those robust adaptive schemes.

The purpose of the present paper is to provide a new
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class of adaptive nonlinear H∞ control systems for pro-

cesses with bounded variations of parameters, where the

control performances are discussed explicitly, and the sta-

bility analysis for time-varying systems are carried out

successfully. Those control schemes are derived as solu-

tions of particular nonlinear H∞ control problems, where

unknown system parameters are regarded as exogenous

disturbances to the processes, and thus, in the resulting

control systems, the L2 gains from system parameters to

generalized outputs are made less than γ∗i (the prescribed

positive constant). The proposed control strategy can

be applied to any time-varying (or time-invariant) sys-

tems, and the resulting control systems are bounded for

arbitrarily large but bounded variations of time-varying

parameters. Also, the control schemes are shown to be

sub-optimal to some H∞ cost functionals (or certain dif-

ferential games), when the high-frequency gains are time-

invariant.

2. Problem Statement and System Descrip-
tion

We consider the following single-input single-output

nonlinear system.

d

dt
e(t) = L(e(t)) + L(f(e, t)) + b0ufn∗−1(t)

+ΦT ω1(t) (1)

ufi(t) =
1

(s + λ)i
u(t) (λ > 0) (2)

where e(t) is a control variable (an output or a tracking

error, et al.), u(t) is a control input, and f(e, t) is an un-

known nonlinear term. ω1(t) is a vector composed of mea-

surable signals, b0 and Φ are unknown system parameters
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which can be time-varying, and L(·) is an unstructured

element defined by

L(v(t)) = G0(s)v(t) (G0 ∈ RH∞) (3)

λ (> 0) is a design parameter which is known, and n∗ is

a relative degree of the controlled process. The following

assumptions are introduced.

Assumption 1. 1) Although b0 can be time-varying,

the sign of it remains unchanged (b0 > 0 or b0 < 0), and

is known a priori. It is assumed that b0 > 0 without loss

of generality.

2) The unknown nonlinear term f(e, t) is evaluated by

f(e, t)2 ≤ f0 · φ(e) · e2 (4)

where f0 is an unknown positive constant, and φ(e)(> 0)

is a known function of e which is n∗−1 times differentiable

with respect to its argument.

3) The magnitude of ω1(t) is evaluated as follows 7):

‖ω1(t)‖ ≤ M1 · sup
t≥τ

|e(τ)|+ M2 (M1, M2 > 0) (5)

Furthermore ω̇1(t) ∼ ω
(n∗−1)
1 (t) are measurable signal

vectors and are evaluated by

‖ω(i)
1 (t)‖ ≤ M3 · sup

t≥τ

|e(τ)|+ M4 · sup
t≥τ

|ufn∗−i(τ)|

+M5 (6)

(M3 ∼ M5 > 0), (1 ≤ i ≤ n∗ − 1)

4) The upper bounds of the magnitudes of the nomi-

nal values Φ∗, θ∗1 , θ∗2 (time-invariant) of Φ, θ1, θ2 (θ1 and

θ2 are to be introduced later, and those may be time-

varying), are known a priori. Also, the upper bound of b̄0

and lower bound of b0 on the high-frequency gain b0 are

known such that

0 < δ ≤ b0 ≤ b0 ≤ b̄0 ≤ M < ∞ (7)

and the upper bound of p̄ and lower bound of p on the

parameter p are known, too.

p ≡ 1

b0
, p̄ ≡ 1

b0

, p ≡ 1

b̄0

(8)

(For simplicity of notation, upper bounds are evaluated

by M , and lower bounds are evaluated by δ in the

manuscript, and M and δ are known.)

The control problem of this paper is to determine a

control input u(t) adaptively such that the overall system

is stabilized for arbitrary but bounded time-varying sys-

tem parameters, and additionally, the control variable e(t)

converges to zero asymptotically in the ideal case (stabil-

ity condition), while the resulting control system becomes

optimal or sub-optimal to some meaningful cost function-

als (optimality condition).

Remark. The controlled process (1), (2), is shown to

be the generalized form which appears in many conven-

tional adaptive control problems. It should be noted that

Assumption 1-3 is concerned with the minimum-phase

property of processes

3. Nonlinear Adaptive H∞ Control

The design of control systems are based on backstep-

ping procedures 2) composed of step 1 ∼ step n∗, and in

each steps, the control signals vi(t) are determined by

applying nonlinear H∞ control scheme. In the last step

(Step n∗), the actual control input u(t) is obtained.

Step 1) Define z1(t), z2(t) by

z1(t) ≡ e(t) (9)

z2(t) = ufn∗−1(t)− α1(t) (10)

The virtual control input α1(t) is determined as follows:

α1(t) = −p̂(t)Φ̂(t)T ω1(t) + v1(t)

≡ −p̂(t)v0(t) + v1(t) (11)

where v1(t) is to be determined later based on nonlinear

H∞ control strategy. In this manuscript, the projection-

type adaptive laws 1), where tuning parameters θ̂ are con-

strained to certain closed regions S, are defined by

˙̂
θ = Pr(Γφε)

=

{
Γφε Case I

Γφε− Γ ∇g∇gT

∇gT Γ∇g
Γφε Case II

(12)

where

Case I : θ̂ ∈ So, or θ̂ ∈ ∂S & (Γφε)T∇g ≤ 0

Case II : Otherwise

S = {θ̂ : g(θ̂) ≤ 0}
So = interior of S, ∂S = boundary of S

By utilizing those descriptions, θ̂1(t), θ̂2(t), p̂(t) are tuned

in the following ways:

˙̂
θ1(t) = Pr{g11z1(t)

2} (13)

˙̂
θ2(t) = Pr{g12φ(z1(t))z1(t)

2} (14)

˙̂p(t) = Pr{g13v0(t)z1(t)} (15)

where g11, g12, g13 > 0, and each constraints are given by

gθ1(θ̂1) = θ̂2
1 −M2, gθ2(θ̂2) = θ̂2

2 −M2

gp(p̂) =
(
p̂− δ + M

2

)2

−
(

M − δ

2

)2

(16)

M and δ are properly selected positive constants based

on Assumption 1-4. Hereafter, we are to obtain the input

signal v1(t) by applying nonlinear H∞ control strategy.
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For this purpose, define V1(t) by

V1(t) =
1

2
z1(t)

2 +
1

2

2∑
i=1

{θ̂i(t)− θ∗i }2/g1i

+
b0

2
{p̂(t)− p̄}2/g13

+
1

2
{Φ̂(t)− Φ∗}T G−1

14 {Φ̂(t)− Φ∗}

+
1

2
{b̂0(t)− b0}2/g15 (17)

where G14 = G14
T > 0, g15 > 0, Φ∗ is a nominal value

(time-invariant) of the parameter Φ (time-varying), and

θ∗i are also nominal values (time-invariant) of the parame-

ters θi (time-varying) determined later. We take the time

derivative of it.

V̇1(t) ≤ z1(t){L(z1(t)) + L(f(z1, t)) + ΦT ω1(t)}
−Φ∗0

T
ω0(t)z1(t) + (b0 − b0)p̂(t)v0(t)z1(t)

+θ̂1(t)z1(t)
2 + θ̂2(t)φ(z1(t))z1(t)

2

+{b̂0(t) + (b0 − b0)}v1(t)z1(t) + b0z1(t)z2(t)

+{Φ̂(t)− Φ∗}T G−1
14 { ˙̂

Φ(t)− τφ1(t)}
+{b̂0(t)− b0}{ ˙̂b0(t)− τb1(t)}/g15 (18)

ω0(t) = [z1(t), φ(z1(t))z1(t), ω1(t)
T ]T (19)

Φ∗0 = [θ∗1 , θ∗2 , Φ∗T
]T (20)

τφ1(t) = G14ω1(t)z1(t) (21)

τb1(t) = g15v1(t)z1(t) (22)

Since L(·) is defined by (3), there exist bounded θ11, θ12

(positive) satisfying the next inequality.

∫ t

0

z1(τ){L(z1(τ)) + L(f(z1, τ))}dτ

≤
∫ t

0

{θ11(τ)z1(τ)2 + θ12(τ)φ(z1(τ))z1(τ)2}dτ + N0

(23)

where N0 is a constant which depends on initial condi-

tions. Then, the following relation is obtained by inte-

grating V̇1(t).

　V1(t)− V1(0)

≤
∫ t

0

[θ̂1(τ)z1(τ) + θ̂2(τ)φ(z1(τ))z1(τ)]z1(τ)dτ

+

∫ t

0

Θ̃T
1 ω̃1(τ)z1(τ)dτ

+

∫ t

0

{b̂0(τ) + b̃0(τ)}v1(τ)z1(τ)dτ

+

∫ t

0

b0z1(τ)z2(τ)dτ

+

∫ t

0

{Φ̂(τ)− Φ∗}T G−1
14 { ˙̂

Φ(τ)− τφ1(τ)}dτ

+

∫ t

0

{b̂0(τ)− b0}{ ˙̂b0(τ)− τb1(τ)}dτ/g15 + N0

(24)

Φ01 ≡ [θ11, θ12, ΦT ]T (25)

Θ̃1 ≡ [(Φ01 − Φ∗0)
T , b0 − b0]

T (26)

b̃0 ≡ b0 − b0 (≥ 0) (27)

ω̃1(t) ≡ [ω0(t)
T , p̂(t)v0(t)}]T (28)

From that evaluation of V1(t), we introduce the following

virtual process

ż1 = θ̂1z1 + θ̂2φ(z1)z1 + ω̃T
1 Θ̃1 + (b̂0 + b̃0)v1

≡ f1(z1) + g11d1 + g12v1 (29)

f1(z1) = θ̂1z1 + θ̂2φ(z1)z1

g11 = ω̃T
1 , d1 = Θ̃1, g12 = b̂0 + b̃0 (30)

and stabilize it via v1 by utilizing nonlinear H∞ control

strategy, where unknown parameters Θ̃1 are regarded as

exogenous disturbances to the process. For this purpose,

consider the Hamilton-Jacobi-Isaacs equation

∂Ṽ1

∂z1
f1 +

1

4

(
‖g11‖2
γ∗1

2
− g2

12

r1

)(
∂Ṽ1

∂z1

)2

+h1z
2
1 ≤ 0 (31)

where the solution Ṽ1 is given by the next equation

Ṽ1(t) =
1

2
z1(t)

2 (32)

h1 and r1 are positive functions to be determined from

the inequality (31) based on inverse optimality for the

given solution Ṽ1 (32) and the positive constant γ∗1 . The

substitution of (32) into (31) yields

θ̂1z
2
1 + θ̂2φ(z1)z

2
1 +

{
‖ω̃1‖2
γ∗1

2
− (b̂0 + b̃0)

2

r1

}
z2
1

4

+h1z
2
1 ≤ 0 (33)

Since the unknown element b̃0(≥ 0) is included in the

above inequality, we are to obtain h1 and r1 satisfying

the next relation, which is a sufficient condition for the

original inequality (33)

θ̂1z
2
1 + θ̂2φ(z1)z

2
1 +

(
‖ω̃1‖2
γ∗1

2
− b̂2

0

r1

)
z2
1

4
+ h1z

2
1 ≤ 0

(34)

From that, the control signal v1 is derived as a solution

for the nonlinear H∞ problem.

v∗1 = − 1

2r1
g12

∂Ṽ1

∂z1
= − 1

2r1
(b̂0 + b̃0)z1 (35)

Since the unknown element b̃0 is included in the above

equation, the actual input signal is replaced by
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v∗1 = − b̂0

2r1
z1 (36)

Then, we obtain the following relation for the original pro-

cess (1), (2), V1(t) (17), and the input signal v1(t) which

is not necessarily equal to v∗1(t) (35).

V1(t)− V1(0) ≤
∫ t

0

r1

{
b̂0(τ)z1(τ)

2r1
+ v1(τ)

}2

dτ

−
∫ t

0

{h1z1(τ)2 + r1v1(τ)2}dτ

−
∫ t

0

γ∗1
2

∥∥∥∥Θ̃1(τ)− 1

2γ∗1
2
ω̃1(τ)z1(τ)

∥∥∥∥
2

dτ

+γ∗1
2

∫ t

0

‖Θ̃1(τ)‖2dτ

+

∫ t

0

b̃0(τ)v1(τ)z1(τ)dτ +

∫ t

0

b0z1(τ)z2(τ)dτ

+

∫ t

0

{Φ̂(τ)− Φ∗}T G−1
14 { ˙̂

Φ(τ)− τφ1(τ)}dτ

+

∫ t

0

{b̂0(τ)− b0}{ ˙̂b0(τ)− τb1(τ)}dτ/g15 + N0

(37)

Step i) (2 ≤ i ≤ n∗) Take the time derivative of zi(t).

zi(t) ≡ ufn∗−i+1(t)− αi−1(t) (38)

żi(t) = −λufn∗−i+1(t) + ufn∗−i(t)− βi−1(t)

−γi−1(t){L(z1(t)) + L(f(z1, t))

+b0ufn∗−1(t) + ΦT ω1(t)}
−γKi−1(t)Pr{G1ṽ1(t)z1(t)}
−γφi−1(t)

˙̂
Φ(t)− γbi−1(t)

˙̂
b0(t) (39)

βi−1(t) =
∂αi−1

∂ωi−1
ω̇i−1(t)

+

i−1∑
j=2

∂αi−1

∂zj
{−λufn∗−j+1(t)

+ufn∗−j(t)− βj−1(t)} (40)

γi−1(t) =
∂αi−1

∂z1
−

i−1∑
j=2

∂αi−1

∂zj
γj−1(t) (41)

γKi−1(t) =
∂αi−1

∂K̂1

−
i−1∑
j=2

∂αi−1

∂zj
γKj−1(t) (42)

γφi−1(t) =
∂αi−1

∂Φ̂
−

i−1∑
j=2

∂αi−1

∂zj
γφj−1(t) (43)

γbi−1(t) =
∂αi−1

∂b̂0

−
i−1∑
j=2

∂αi−1

∂zj
γbj−1(t) (44)

K̂1(t) = [θ̂1(t), θ̂2(t), p̂(t)]T (45)

ṽ1(t) = [z1(t), φ(z1(t))z1(t), v0(t)]
T (46)

G1 = diag(g11, g12, g13) (47)

ωi−1(t) = vector signals composed of elements

{ufn∗−1(t) ∼ ufn∗−i+2, ωi−2(t), ω̇i−2(t)}
(3 ≤ i ≤ n∗) (48)

For zi(t), we introduce zi+1(t) and determine the virtual

control αi(t) so as to stabilize zi(t).

zi+1(t) ≡ ufn∗−i(t)− αi(t) (49)

αi(t) = λufn∗−i+1(t) + βi−1(t)− ĉi(t)zi−1(t)

+γi−1(t)Φ̂(t)T ω1(t)

+b̂0(t)γi−1(t)ufn∗−1(t) + vi(t) + α̃i(t)

(50)

ĉi(t) =

{
b̂0(t) (i = 2)

1 (i ≥ 3)
(51)

where α̃i(t) is an auxiliary signal to be determined later,

and the input signal vi(t) is to be obtained by applying

nonlinear H∞ control strategy similar to Step 1. For this

purpose, we define Vi(t) by

Vi(t) =
1

2
zi(t)

2 (52)

The next inequalities hold for certain positive functions

θ21, θ22, and arbitrary positive constants ki1, ki2.

−
∫ t

0

γi−1(τ){L(z1(τ) + L(f(z1, τ))}zi(τ)dτ

≤ ki1

∫ t

0

γi−1(τ)2zi(τ)2dτ +
1

ki1

∫ t

0

{θ21(τ)z1(τ)2

+θ22(τ)2φ(z1(τ))z1(τ)2}dτ + N0 (53)

−
∫ t

0

γKi−1(τ)Pr{G1ṽ1(τ)z1(τ)}zi(τ)dτ

≤
∫ t

0

‖γKi−1(τ)‖‖G1‖‖ṽ1(τ)‖|z1(τ)||zi(τ)|dτ

≤ ki2

∫ t

0

‖γKi−1(τ)‖2‖ṽ1(τ)‖2zi(τ)2dτ

+
1

4ki2
‖G1‖2

∫ t

0

z1(τ)2dτ (54)

We take the time derivative of Vi(t) and integrate it again.

Then, similar to the previous steps, we get the following

inequality.
∫ t

0

cizi−1(τ)zi(τ)dτ

+

∫ t

0

{Φ̂(τ)− Φ∗}T G−1
14 { ˙̂

Φ(τ)− τφi−1(τ)}dτ

+

∫ t

0

{b̂0(τ)− b∗0}{ ˙̂b0(τ)− τbi−1(τ)}dτ/g15

+

∫ t

0

V̇i(τ)dτ

≤
∫ t

0

zi(τ)zi+1(τ)dτ + ki1

∫ t

0

γi−1(τ)2zi(τ)2dτ
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+
1

ki1

∫ t

0

{θ21(τ)z1(τ)2 + θ22(τ)φ(z1(τ))z1(τ)2}dτ

+ki2

∫ t

0

‖γKi−1(τ)‖2‖ṽ1(τ)‖2zi(τ)2dτ

+
1

4ki2
‖G1‖2

∫ t

0

z1(τ)2dτ +

∫ t

0

Θ̃2(τ)T ω̃i(τ)zi(τ)dτ

+

∫ t

0

{Φ̂(τ)− Φ∗}T G−1
14 { ˙̂

Φ(τ)− τφi(τ)}dτ

+

∫ t

0

{b̂0(τ)− b∗0}{ ˙̂b0(τ)− τbi(τ)}dτ/g15

−
∫ t

0

{γφi−1(τ)
˙̂
Φ(τ) + γbi−1(τ)

˙̂
b0(τ)}zi(τ)dτ

+

∫ t

0

zi(τ){vi(τ) + α̃i(τ)}dτ + N0 (55)

Θ̃2 = [b0 − b0, (Φ− Φ∗)T ]T (56)

ω̃2(t) = [z1(t)− γ1(t)ufn∗−1(t), −γ1(t)ω1(t)
T ]T (57)

ω̃i(t) = [−γi−1(t)ufn∗−1(t), −γi−1(t)ω1(t)
T ]T (i ≥ 3)

(58)

τφi(t) = τφi−1(t)−G14γi−1(t)ω1(t)zi(t) (59)

τb2(t) = τb1(t) + g15{z1(t)− γ1(t)ufn∗−1(t)}z2(t) (60)

τbi(t) = τbi−1(t)− g15γi−1(t)ufn∗−1(t)zi(t) (i ≥ 3) (61)

ci =

{
b0 (i = 2)

1 (i ≥ 3)
(62)

From that relation, we introduce the virtual process

żi = ki1γ
2
i−1zi + ki2‖γKi−1‖2‖ṽ1‖2zi + ω̃T

i Θ̃2 + vi

≡ fi(z1, · · · , zi) + gi1di + gi2vi (63)

fi(z1, · · · , zi) = ki1γ
2
i−1zi + ki2‖γKi−1‖2‖ṽ1‖2zi,

gi1 = ω̃T
i , di = Θ̃2, gi2 = 1 (64)

and stabilize it via vi by applying nonlinear H∞ control

strategy, where unknown parameters Θ̃2 are regarded as

exogenous disturbances to the process. For this purpose,

consider the following Hamilton-Jacobi-Isaacs equation

∂Ṽi

∂zi
fi +

1

4

(
‖gi1‖2
γ∗i

2
− g2

i2

ri

)(
∂Ṽi

∂zi

)2

+ hiz
2
i ≤ 0

(65)

where the solution Ṽi is given by the next equation

Ṽi(t) = Vi(t) =
1

2
zi(t)

2 (66)

hi and ri are positive functions to be determined from

the inequality (65) based on inverse optimality for the

given solution Ṽi (66) and the positive constant γ∗i . The

substitution of (66) into (65) yields

ki1γ
2
i−1z

2
i + ki2‖γKi−1‖2‖ṽ1‖2z2

i

+

{
‖ω̃i‖2
γ∗i

2
− 1

ri

}
z2

i

4
+ hiz

2
i ≤ 0 (67)

From that the control input vi(t) are obtained as solutions

for nonlinear H∞ control problems as follows:

v∗i = − 1

2ri
gi2

∂Ṽi

∂zi
= − 1

2ri
zi (68)

Then, we derive the following relation for the original pro-

cess (1), (2), V1(t) ∼ Vi(t) ((17), (52)) and the input

signals v1(t) ∼ vi(t) which are not necessarily equal to

v∗1(t) ∼ v∗i (t) ((35), (68)).

i∑
j=1

{Vj(t)− Vj(0)} ≤
∫ t

0

r1

{
b̂0(τ)z1(τ)

2r1
+ v1(τ)

}2

dτ

−
∫ t

0

{h1z1(τ)2 + r1v1(τ)2}dτ

−
∫ t

0

γ∗1
2

∥∥∥∥Θ̃1i(τ)− 1

2γ∗1
2
ω̃1(τ)z1(τ)

∥∥∥∥
2

dτ

+γ∗1
2

∫ t

0

‖Θ̃1i(τ)‖2dτ

+

∫ t

0

b̃0(τ)v1(τ)z1(τ)dτ

+

i∑
j=2

[∫ t

0

rj

{
zj(τ)

2rj
+ vj(τ)

}2

dτ

−
∫ t

0

{hjzj(τ)2 + rjvj(τ)2}dτ　

−
∫ t

0

γ∗j
2

∥∥∥∥Θ̃2(τ)− 1

2γ∗j
2
ω̃j(τ)zj(τ)

∥∥∥∥
2

dτ

+γ∗j
2

∫ t

0

‖Θ̃2(τ)‖2dτ

]

+

∫ t

0

zi(τ)zi+1(τ)dτ

+

∫ t

0

{Φ̂(τ)− Φ∗}T G−1
14 { ˙̂

Φ(τ)− τφi(τ)}dτ

+

∫ t

0

{b̂0(τ)− b0}{ ˙̂b0(τ)− τbi(τ)}dτ/g15

−
i∑

j=2

∫ t

0

γφj−1(τ)
˙̂
Φ(τ)zj(τ)dτ

−
i∑

j=2

∫ t

0

γbj−1(τ)
˙̂
b0(τ)zj(τ)dτ

+

i∑
j=2

∫ t

0

α̃j(τ)zj(τ)dτ + N0 (69)

Θ̃1i = [(Φ0i − Φ∗0)
T , b0 − b0]

T (70)

Φ0i =

[
θ11 +

i∑
j=2

(
θ21

kj1
+
‖G1‖2
4kj2

)
,

θ12 +

i∑
j=2

θ22

kj1
, ΦT

]T

(71)

In the last Step n∗), the actual control input is ob-

tained as
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u(t) = αn∗(t) (72)

Step n∗ + 1) The tuning laws of Φ̂(t), b̂0(t) and the

auxiliary signals α̃i(t) are determined such that

˙̂
Φ(t) = Pr{τφn∗(t)} (73)

˙̂
b0(t) = Pr{τbn∗(t)} (74)

α̃i(t) = −ki3‖γφi−1(t)‖2‖ω1(t)‖2zi(t)

−(n∗ − 1)ki4‖γφi−1(t)‖2‖ω1(t)‖2zi(t)

−
n∗∑
j=2

‖G14‖2
4kj4

γi−1(t)
2zi(t)− ki5γbi−1(t)

2v1(t)
2zi(t)

−ki6γbi−1(t)
2z2(t)

2zi(t)

−(n∗ − 1)ki7γbi−1(t)
2ufn∗−1(t)

2zi(t)

−
n∗∑
j=2

g2
15

4kj7
γi−1(t)

2zi(t) (2 ≤ i ≤ n∗) (75)

where the constraints are defined by

gφ(Φ̂) = ‖Φ̂‖2 −M2, gb(b̂0) = ‖b̂0‖2 −M2 (76)

M(> 0) is determined similarly to (16). Then, the fol-

lowing inequality is derived by utilizing the property of

projection type adaptive laws.

{Φ̂(t)− Φ∗}T G−1
14 { ˙̂

Φ(t)− τφn∗(t)}
+{b̂0(t)− b∗0}{ ˙̂b0(t)− τbn∗(t)}dτ/g15

= {Φ̂(t)− Φ∗}T G−1
14 {Pr(τφn∗(t))− τφn∗(t)}

+{b̂0(t)− b∗0}{Pr(τbn∗(t))− τbn∗(t)}dτ/g15 ≤ 0

(77)

Also, from the evaluation of Pr(·) (12), it follows that

‖Pr(Γφε)‖ ≤ ‖Γφε‖ (78)

and the next relation is obtained.

−
n∗∑
j=2

γφj−1(t)
˙̂
Φ(t)zj(t)−

n∗∑
j=3

γbj−1(t)
˙̂
b0(t)zj(t)

+

n∗∑
j=2

α̃j(t)zj(t)

≤
n∗∑
j=2

‖G14‖2
4kj3

z1(t)
2 +

n∗∑
j=2

g2
15

4kj5
z1(t)

2

+

n∗∑
j=2

g2
15

4kj6
z1(t)

2 (79)

Finally, we derive the following evaluation of Vi(t) ((17),

(52)) by utilizing (77), (78), (79), where vi(t) are not nec-

essarily equal to v∗i (t)((35), (68)).

n∗∑
i=1

{Vi(t)− Vi(0)} ≤
∫ t

0

r1

{
b̂0(τ)z1(τ)

2r1
+ v1(τ)

}2

dτ

−
∫ t

0

{h1z1(τ)2 + r1v1(τ)2}dτ

−
∫ t

0

γ∗1
2

∥∥∥∥Θ̃1n∗(τ)− 1

2γ∗1
2
ω̃1(τ)z1(τ)

∥∥∥∥
2

dτ

+γ∗1
2

∫ t

0

‖Θ̃1n∗(τ)‖2dτ +

∫ t

0

b̃0(τ)v1(τ)z1(τ)dτ

+

n∗∑
i=2

[∫ t

0

ri

{
zi(τ)

2ri
+ vi(τ)

}2

dτ

−
∫ t

0

{hizi(τ)2 + rivi(τ)2}dτ

−
∫ t

0

γ∗i
2

∥∥∥∥Θ̃2(τ)− 1

2γ∗i
2
ω̃i(τ)zi(τ)

∥∥∥∥
2

dτ

+γ∗i
2

∫ t

0

‖Θ̃2(τ)‖2dτ

]
+ N0 (80)

Θ̃1n∗ = [(Φ0n∗ − Φ∗0)
T , b0 − b0]

T (81)

Φ0n∗ =
[
θ1, θ2, ΦT

]T
(82)

θ1 = θ11 +

n∗∑
j=2

(
θ21

kj1
+
‖G1‖2
4kj2

+
‖G14‖2
4kj3

+
g2
15

4kj5
+

g2
15

4kj6

)
(83)

θ2 = θ12 +

n∗∑
j=2

θ22

kj1
(84)

θ∗1 , θ∗2 in (17), are nominal values (time-invariant) of θ1, θ2

in (83), (84).

Then, we have the following main theorems.

Theorem 1. The adaptive control system described

above (where v∗1(t) ∼ v∗n∗(t) ((35), (68)) are included)

is uniformly bounded for arbitrary bounded variation of

system parameters b0, p, Φ, θ11, θ12, θ21, θ22.

Proof. By introducing state variables w(t) of the sta-

ble systems (state-space representation (F, G)), the un-

structured elements L(z1(t)) and L(f(z1, t)) are written

in the following:

ẇ(t) = Fw(t) + G

[
z1(t)

φ(z1(t))z1(t)

]
(85)

‖L(z1(t))‖2 + ‖L(f(y, t))‖2

≤ M1‖w(t)‖2 + M2z1(t)
2 + M3φ(z1(t))z1(t)

2(86)

PF + F T P = −I (P = P T > 0) (87)

Adding w(t), V̄ (t) is defined by

V̄ (t) =
1

2

n∗∑
i=1

zi(t)
2 + lw(t)T Pw(t) (l > 0) (88)

We take the time derivative of Ṽ (t), then we have the

following evaluation for properly selected l, δ0, δ1, D∗.
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˙̄V (t) ≤ −
n∗∑
i=1

{hizi(t)
2 + rivi(t)

2} − b̂0(t)b̃0(t)

2r1
z1(t)

2

+max
i
{γ∗i 2} ·D∗ − δ1‖w(t)‖2

≤ −δ0V̄ (t) + max
i
{γ∗i 2} ·D∗ (89)

where 0 < δ0, D∗ < ∞. Hence, we show that the adap-

tive system remains bounded for any bounded variations

of system parameters.

Theorem 1 holds for arbitrary bounded tuning pa-

rameters which are not necessarily determined by the

adaptive laws (13), (14), (15), (73), (74) stated in the

manuscript. On the contrary, hereafter, we are to utilize

the projection-type adaptive laws (13), (14), (15), (73),

(74).

Theorem 2. For that adaptive control systems (in-

cluding v1 ∼ vn∗), we assume that b0 is time-invariant.

Then, v∗1 ∼ v∗n∗ ((35), (68)) are sub-optimal control in-

puts which minimize the upper bound on the following

cost functional.

J(t) ≡ sup
Θ̃1n∗ ,Θ̃2∈L2

[
n∗∑
i=1

∫ t

0

{hizi(τ)2 + rivi(τ)2}dτ

+

n∗∑
i=1

Vi(t)− γ∗1
2

∫ t

0

‖Θ̃1n∗(τ)‖2dτ

−
n∗∑
i=2

γ∗i
2

∫ t

0

‖Θ̃2(τ)‖2dτ

]
(90)

Also we have the next inequality for those sub-optimal

v∗1 ∼ v∗n∗ .

n∗∑
i=1

∫ t

0

{hizi(τ)2 + rivi(τ)2}dτ +

n∗∑
i=1

Vi(t)

≤
n∗∑
i=1

Vi(0) + γ∗1
2

∫ t

0

‖Θ̃1n∗(τ)‖2dτ

+

n∗∑
i=2

γ∗i
2

∫ t

0

‖Θ̃2(τ)‖2dτ + N0 (91)

Especially, if Θ̃1n∗ , Θ̃2 ∈ L2, then it holds that z1(t) ∼
zn∗(t) → 0.

Theorem 3. For that adaptive system (including

v∗1 ∼ v∗n∗ ((35), (68))), we assume that b0 is not time-

invariant. Then, the following inequality is derived.

n∗∑
i=1

∫ t

0

{hizi(τ)2 + rivi(τ)2}dτ +

n∗∑
i=1

Vi(t)

+

∫ t

0

b̃0(τ)b̂0(τ)

2r1
z1(τ)2dτ　

≤
n∗∑
i=1

Vi(0) + γ∗1
2

∫ t

0

‖Θ̃1n∗(τ)‖2dτ

+

n∗∑
i=2

γ∗i
2

∫ t

0

‖Θ̃2(τ)‖2dτ + N0 (92)

where b̃0(t)b̂0(t)
2r1

z1(t)
2 ≥ 0. Especially, if Θ̃1n∗ , Θ̃2 ∈ L2,

then, it holds that z1(t) ∼ zn∗(t) → 0, and the adap-

tive system converges to the sub-optimal control system

described in Theorem 2.

Proof. From the evaluation of
∑n∗

i=1
Vi(t) (80), The-

orem 2 and 3 are easily derived.

Theorem 4. Assume that (Φ0n∗−Φ∗0), (b0−b∗0), (p−
p∗) ∈ L2 and b0 → b∗0, p → p∗ for certain constant

Φ∗0, b∗0, p∗（b∗0p
∗ = 1). Then, we have z1(t) ∼ zn∗(t) → 0

(as t →∞).

Proof. The positive function V1(t) is newly re-

defined by

V1(t) =
1

2
z1(t)

2 +
1

2

2∑
i=1

{θ̂i(t)− θ∗i }2/g1i

+
b∗0
2
{p̂(t)− p∗}2/g13

+
1

2
{Φ̂(t)− Φ∗}T G−1

14 {Φ̂(t)− Φ∗}

+
1

2
{b̂0(t)− b∗0}2/g15 (93)

Then, we have the similar evaluation of
∑n∗

i=1
Vi(t), where

Θ̃1n∗(t) and b̃0(t) are differently defined by

Θ̃1n∗(t) ≡ [(Φ0n∗ − Φ∗0)
T , b∗0 − b0]

T (94)

b̃0(t) ≡ b0 − b∗0 (95)

Contrary to the previous b̃0(t) (27), for this new b̃0(t), it

does not hold that b̃0(t) ≥ 0. However, since b̃0(t) con-

verges to zero asymptotically, it holds that

h1z1(t)
2 +

b̃0(t)b̂0(t)

2r1
z1(t)

2 ≥ δ0z1(t)
2 (96)

(∀t ≥ T ), (δ0 > 0)

for sufficiently large T > 0. Then, rewriting the inequal-

ity (92) with the initial time T , we show that z1(t) ∼
zn∗(t) → 0, where the boundedness of the adaptive sys-

tem is also considered.

Up to now, the general forms of the control schemes

were provided by (34), (67), (35), (68), Theorem 1 ∼ The-

orem 4. Next, hi and ri are solved, and the explicit de-

scriptions of the control schemes are given by assuming

specified forms to hi and ri.　

Solution I. From (34), (67), r1, ri (i ≥ 2) can be

chosen such that

r1 =
r10

ki8 + ki9‖ω̃1‖2 + k110{θ̂1 + θ̂2φ(z1)}
ri =

ri0

ki8 + ki9‖ω̃i‖2 + ki10{ki1γ2
i−1 + ki2‖γKi−1‖2‖ṽ1‖2}
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(k18, k19, k110, r10, ki8, ki9, ki10, ri0 > 0) (97)

where k18, k19, k110, r01, ki8, ki9, ki10, r0i(> 0) are de-

sign parameters. Then, we obtain the corresponding

h1, hi (≥ 2)

h1 ≤
{
b̂2
0k18γ

∗
1
2

+ (b̂2
0k19γ

∗
1
2 − r10)‖ω̃1‖2

+(b̂2
0k110γ

∗
1
2 − 4r10γ

∗
1
2
)(θ̂1 + θ̂2φ(z1))

}
/(4r10γ

∗
1
2
)

hi ≤
[
ki8γ

∗
i
2

+ (ki9γ
∗
i
2 − ri0)‖ω̃i‖2

+(ki10γ
∗
i
2 − 4ri0γ

∗
i
2
){ki1γ

2
i−1 + ki2‖γKi−1‖2‖ṽ1‖2}

]

/(4ri0γ
∗
i
2
) (i ≥ 2) (98)

In order that h1, hi (≥ 2) are positive definite, ki9 and

ki10 should be chosen such that

k19 ≥ r10

b̂2
0γ
∗
1
2

⇒ k19 ≥ r10

δ2γ∗1
2

k110 ≥ 4r10

b̂2
0

⇒ k110 ≥ 4r10

δ2
, (0 < δ ≤ b0, b̂0)

ki9 ≥ ri0

γ∗i
2
, ki10 ≥ 4ri0 (i ≥ 2) (99)

And, we get the explicit descriptions of the control inputs

v1 = − b̂0

2r1
z1

= − b̂0

[
k18 + k19‖ω̃1‖2 + k110{θ̂1 + θ̂2φ(z1)}

]

2r10
z1

(100)

vi = − 1

2ri
zi

= −ki8 + ki9‖ω̃i‖2 + ki10{ki1γ
2
i−1 + ki2‖γKi−1‖2‖ṽ1‖2}

2ri0
zi

(i ≥ 2) (101)

Solution II. Next, we obtain ri and hi by setting

h1 = a1r11 +
b̂2
0

4r10
(102)

hi = airi1 +
1

4ri0
(i ≥ 2) (103)

1

ri
=

1

ri0
+

1

ri1
(104)

where ai, ri0 (0 < ai, ri0 < ∞) are positive constants,

which prescribe the ratios between ri and hi. Then, for

equality condition of (34), (67), we obtain ri as the posi-

tive solution of

a1r
2
11 + G1r11 − b̂2

0

4
= 0 (105)

G1 = θ̂1 + θ̂2φ(z1) +
‖ω̃1‖2
4γ∗1

2
(106)

air
2
i1 + Giri1 − 1

4
= 0 (i ≥ 2) (107)

Gi = ki1γ
2
i−1 + ki2‖γKi−1‖2‖ṽ1‖2 +

‖ω̃i‖2
4γ∗i

2
(i ≥ 2)

(108)

Hence, ri1 and hi are

r11 =
−G1 +

√
G2

1 + a1b̂2

2a1
=

b̂2
0

2
{√

G2
1 + a1b̂2

0 + G1

}

ri1 =
−Gi +

√
G2

i + ai

2ai
=

1

2
{√

G2
i + ai + Gi

}

(i ≥ 2) (109)

h1 =
−G1 +

√
G2

1 + a1b̂2
0

2
+

b̂2
0

4r10

hi =
−Gi +

√
G2

i + ai

2
+

1

4ri0
(i ≥ 2) (110)

and the explicit description of the control input is given

by

v1 = − b̂0

2r1
z1 = −

{
1

b̂0

(√
G2

1 + a1b̂0 + G1

)
+

b̂0

2r10

}
z1

(111)

vi = − 1

2ri
zi = −

{(√
G2

i + ai + Gi

)
+

1

2ri0

}
zi

(i ≥ 2) (112)

For those two explicit solutions of vi, we have the fol-

lowing theorem.

Theorem 5. For those two solutions of vi (Solution

I and Solution II), the residual regions of zi can be made

arbitrarily small by proper choices of the design param-

eters ki8, ki9, ki10, ri0, ai, γ∗i (sufficiently large ki8, ki9,

ki10, ai and sufficiently small ri0,, γ∗i ).

Proof. By the proper choices of the design pa-

rameters ki8, ki9, ki10, ri0, ai, γ∗i , the positive functions

hi (98), (110) can be made arbitrarily large, and

γ∗1
2‖Θ̃1n∗‖2, γ∗i

2‖Θ̃2‖2 sufficiently small, while other

terms remain unchanged in (92). Since it holds that

1

T

∫ T

0

n∗∑
i=1

hizi(t)
2dt ≤

∑n∗
i=1
{Vi(0)− Vi(T )}+ N0

T

+
γ∗1

2
∫ T

0
‖Θ̃1n∗‖2dt +

∑n∗
i=2

γ∗i
2
∫ T

0
‖Θ̃2‖2dt

T
(113)

and hi can be made arbitrarily large, then 1
T

∫ T

0
zi(t)

2dt

can be made arbitrarily small.

4. Remarks

1. The nominal values Φ∗, θ∗1 , θ∗2 correspond to av-

erage values of time-varying Φ, θ1, θ2, respectively, and

especially it holds that Φ∗ = Φ, θ∗1 = θ1, θ∗2 = θ2 for time-

invariant Φ, θ1, θ2. Furthermore, b̄0, b0 and p̄, p deter-

mine the bounds in which time-varying b0, p are included.

Thus, b0 = b0 = b̄0, p = p = p̄ for time-invariant b0, p.

Hence, when all system parameters are time-invariant, it

follows that ‖Θ̃1n∗‖ = ‖Θ̃2‖ = 0, and that the exoge-

nous disturbance terms in the H∞ problem, are 0. On
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the contrary, when several parameters are time-varying,

‖Θ̃1n∗‖ 6= 0 and/or ‖‖Θ̃2‖ 6= 0, and nonzero disturbance

terms do exist.

2. Theorem 1 assures that H∞ control schemes v∗1 ∼
v∗n∗ stabilize the overall control systems for arbitrary and

bounded tuning parameters θ̂1, θ̂2, p̂, Φ̂, b̂0, which are

not necessarily determined by the proposed adaptive con-

trol schemes (13), (14), (15), (73), (74) in the manuscript

(For example, the control systems are bounded even for

fixed tuning parameters). For such case, D∗ (the dis-

turbance term) in (89) does not equal to 0, and the

control errors do not converge to 0. On the contrary,

when the proposed adaptive laws are utilized, the exoge-

nous disturbance terms correspond to Θ̃1n∗ , Θ̃2 which

are time-varying elements included in system parameters

(or ‖Θ̃1n∗‖ = ‖Θ̃2‖ = 0 for time-invariant system pa-

rameters). Hence, the proposed adaptive control schemes

make the exogenous disturbance terms smaller than the

non-adaptive (or the different adaptive) case. Addition-

ally, it should be noted that Theorem 1 holds for arbitrary

adaptation schemes, but Theorem 2 ∼ 5 hold for the pro-

posed adaptation strategy in the manuscript. Asymptotic

zero control errors for time-invariant case are attained by

the proposed adaptive laws (13), (14), (15), (73), (74).

5. Numerical Example

In order to show the effectiveness of our proposed

methods, the numerical simulation studies are performed.

We consider adaptive tracking control problems for the

simple process and control variable defined by

ẋ(t) = φxf1(t) + uf1(t)

ẋf1(t) = −λxf1(t) + x(t)

u̇f1(t) = −λuf1(t) + u(t)

(x(0) = xf1(0) = uf1(0) = 0)

e(t) = x(t)− r(t)

r(t) = sin t

where the relative degree n∗ = 2, and φ can be time-

invariant or time-varying. In the numerical simulations,

bounded parameters φ (unknown) are chosen in the fol-

lowing:

φ =

{
10 (time− invariant)

5 + 5 sin 0.5t (time− varying)

The design parameters are determined such that

g = 100 (adaptive gains)

M = 100 (projection parameters), λ = 1
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Fig. 1 Simulation result (time-invariant, conventional method)
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Fig. 2 Simulation result (time-invariant, proposed method I)
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Fig. 3 Simulation result (time-invariant, proposed method II)

kij = 1, r10 = r20 = 1, a1 = a2 = 1, γ∗1 = γ∗2 = 1

Fig.1, Fig.2 and Fig.3 show the time-invariant cases, while

Fig.4, Fig.5 and Fig.6 show the time-varying case. For

comparison, Fig.1 and Fig.4 show the results where con-

ventional backstepping strategy (where the same kij are

chosen) is adopted. It is seen that the better transient

properties are given with less control efforts in the pro-

posed control scheme.

6. Concluding Remarks

In the present paper, we proposed design methods of

a new class of adaptive nonlinear H∞ control systems for

processes with bounded variations of parameters, by con-

sidering particular nonlinear H∞ control problems, where

unknown system parameters are regarded as exogenous

disturbances to the processes. It is shown that the pro-

posed control strategy can be applied to any time-varying
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Fig. 4 Simulation result (time-varying, conventional method)
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Fig. 5 Simulation result (time-varying, proposed method I)

0 5 10 15 20 25
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

e

r

Fig. 6 Simulation result (time-varying, proposed method II)

(or time-invariant) systems, and the resulting control sys-

tems are bounded for arbitrarily large but bounded varia-

tions of time-varying parameters (Theorem 1). Also, the

control schemes are shown to be sub-optimal to some H∞
cost functionals (or certain differential games), when the

high-frequency gains are time-invariant (Theorem 2), and

even if that condition does not hold, the L2 gains from sys-

tem parameters to generalized outputs are prescribed ex-

plicitly (Theorem 3). In the ideal case where time-varying

parameters converge to time-invariant with the rate of L2

order, then the control variable converges to zero, that is,

the zero residual control error is attained (Theorem 4).

Finally, the explicit descriptions of the control schemes

are given by assuming specified forms to the weighting

functions hi and ri. The properties of those controllers

are discussd (Theorem 5).

The merits of the proposed control strategy come form

the interplay of H∞ control and adaptive control, that

is, the H∞ control strategy stabilizes time-varying sys-

tems for arbitrary tuning parameters, and the adaptation

scheme makes the exogenous disturbance terms smaller

than the non-adaptive case.
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