
Special issue on International Workshop on Networked Sensing System

Trans. of the Society of Instrument
and Control Engineers
Vol.E-S-1, No.1, 74/84 (2005)

PAVENET: A Hardware and Software Framework for Wireless

Sensor Networks

Shunsuke Saruwatari ∗, Takuya Kashima ∗∗, Masateru Minami ∗∗∗,

Hiroyuki Morikawa ∗ and Tomonori Aoyama ∗∗

Wireless sensor networks are attracting attention as a neural system in the coming ubiquitous computing en-

vironment. Building a realistic architecture requires a testbed that meets various demands. Therefore, we have

designed and implemented a wireless sensor network testbed called PAVENET. PAVENET consists of a hardware

module U3, U3 SDK, which is a development kit for U3 software, and basenode software, which supports the

development of wireless sensor network technology. PAVENET has four characteristic features: hardware level

modularization, dual-CPU architecture, hard real-time transaction support, and network layering APIs. These

features help us to develop not only application functions, but also wireless communication functions. This paper

describes implementation details and a number of implemented applications, such as ANtennary THings, a traffic

line detection system, and media access control (MAC) performance evaluation system.

Key Words: Wireless Sensor Networks, Embedded Systems, Ubiquitous Computing, Middleware

1. Introduction

Sensor networks can relay real-world information into

the virtual world that is constructed by computer net-

works. We can create various services using these sensor

networks. As a primitive application of sensor networks, a

simple data gathering service has attracted a great deal of

attention from researchers. In order to realize these prim-

itive applications, a number of wireless communication

technologies, such as routing protocols and MAC (media

access control) schemes, have been proposed 1)∼3).

The dawn of sensor network technology is coming to

an end, and new applications of sensor networks are de-

sired. Thus, a sensor network testbed is necessary in order

to develop innovative applications using sensor network

technology. The testbed would also have to equip func-

tions for the development of new wireless communication

protocols that support the applications.

There are several testbeds for wireless sensor networks,

including MICA Mote 4) and Smart-Its 5). However, us-

ing these testbeds for next-generation sensor network ser-

vices is difficult because these testbeds are designed as

single-CPU architecture in order to construct simple ser-

vices, such as data gathering. The services, which can be

∗ School of Frontier Sciences, The University of Tokyo
∗∗ School of Information Science and Technology, The Uni-

versity of Tokyo
∗∗∗ Department of Electronic Engineering, Shibaura Institute

of Technology

constructed by single-CPU architecture, are constrained

because software tasks for wireless communications con-

sume a great deal of computing resources. In order to

realize these innovative applications, the next-generation

sensor network testbed should not limit application de-

velopment.

Based on these considerations, we design and imple-

ment a hardware and software framework for wireless sen-

sor networks, called “PAVENET”, that supports the con-

struction of various applications. PAVENET includes U3,

which is a dual-CPU wireless sensor node, U3 SDK, which

is a software development kit for U3, and basenode soft-

ware, which supports application development and oper-

ates sensor networks.

PAVENET has the following characteristic features;

• hardware level modularization

• dual-CPU architecture

• hard real-time transaction support

• network layering APIs

PAVENET divided the functionality of the sensor node

into four physically separated modules: a power con-

trol module, a system software module, a communica-

tion module, and a device module. This hardware level

modularization enables us to independently replace each

function, such as power control, wireless communication

devices, CPU, and sensors. On the other hand, conven-

tional sensor network nodes, such as MICA Mote 4), only

allow replacement of the sensor board.

T. SICE Vol.E-S-1 No.1 January 2005 75

PAVENET has dual-CPU architecture, even though

most existing testbeds for sensor networks are built us-

ing single-CPU architecture. This dual-CPU architecture

provides a number of advantages, including the ability

to develop applications and communication protocols eas-

ily, the ability to evaluate communication protocols easily,

and assistance when considering future developments on

the hardware level.

Hard real-time transaction support for application soft-

ware is realized by dual-CPU architecture and a simple

priority based task scheduler. Most existing testbeds are

constructed based on single-CPU architecture. However,

MAC transactions in wireless communication may require

real-time transaction support, and the transaction tasks

occupy computing resources. Accordingly, application

software is highly constrained by the MAC transaction

task. PAVENET adopts dual-CPU architecture, expand-

ing the capabilities of applications that can be developed.

Network layering is needed in order to more easily de-

velop wireless communication functions. In order to real-

ize the network layering, we separated the network func-

tions into several parts and define simple interfaces be-

tween them. Therefore, PAVENET can enable us to de-

velop functions more easily and simply than existing soft-

ware frameworks, such as nesC 6) and MANTIS 7).

In order to evaluate PAVENET as a testbed, we de-

veloped ANTH (ANtennary THings), which is a real-

space programming framework 8), and a traffic line de-

tection system. Furthermore, we developed the 802.11-

like CSMA MAC protocol and a number of measurement

tools using PAVENET and conducted performance mea-

surement of the MAC protocol.

The remainder of this paper is organized as follows. Sec-

tion 2 describes the characteristics of the wireless sensor

network, and extracts requirements in order to develop a

testbed. Section 3 describes in detail the U3, U3 SDK,

and basenode software, which are implemented based on

extracted requirements in Section 2. Section 4 evaluates

the proposed framework through a number of applications

and an experiment. Section 5 describes a comparison be-

tween our testbed and the other testbeds as related work,

and Section 6 concludes the present paper.

2. Design

In this section, we clarify the characteristics of wire-

less sensor networks and extract the requirements for the

wireless sensor network testbed.

2. 1 Characteristics of wireless sensor networks

Wireless sensor networks have two characteristics:

miniaturization and low power consumption. In regard

to wireless sensor networks, a smaller sensor node means

broader application, because installation locations, such

as walls or ceilings, of wireless sensor nodes vary widely.

For example, the Smart Dust project assumes extremely

small sensor nodes to be floating in the air 9). More-

over, because some nodes, such as mobile sensor nodes,

are battery-powered, wireless sensor networks require a

low-power-consumption architecture that can run contin-

uously over several years. If we assume indoor use of

wireless sensor networks, then we can also assume the

existence of power-supplied nodes. However, we cannot

ignore power consumption considerations because a slight

increase in the power consumption of each node results

in a huge increase in the power consumption of the en-

tire wireless sensor network system. This is because wire-

less sensor networks have from several hundreds to several

thousands of nodes.

However, limiting the creativity of application develop-

ment by excessively prioritizing miniaturization and low

power consumption is undesirable. Currently, the most

important objective is to create novel sensor network ap-

plications. We should work toward the realization of

miniaturization and low power consumption only after ex-

tracting elemental functions for applications.

2. 2 Requirements

PAVENET is an attempt to construct a hard-

ware/software framework that can be used not only to

create attractive sensor network applications, but also to

extract basic functions that support it.

Toward this purpose, hardware/software level modular-

ization and consideration of which function will be real-

ized by hardware/software transaction in the future are

important. A trade-off exists between modularization and

miniaturization. If we would like to realize a sensor node

of very small size and low price, all functions should be

implemented on one LSI chip. However, implementing

all functions on one LSI chip reduces flexibility, and im-

proving individual functions or adding new functions is

difficult. Since sensor network technologies are not ma-

ture, PAVENET gives greater priority to modularization

than to miniaturization.

In order to realize modularization, we adopt not

only software-level modularization, but also physical-level

modularization. There is a wide range of potential appli-

cations and protocols for sensor networks. For environ-

mental monitoring applications, a generic sensor interface

would be useful for wireless nodes, so that the sensors

could be easily replaced. Solar panels and rechargeable

76 T. SICE Vol.E-S-1 No.1 2005

batteries would also be advantageous for practical appli-

cations. Moreover, the user may wish to select the appro-

priate CPU and wireless communication devices according

to power consumption or processing speed requirements,

or according to instructions that will be given to the sen-

sor. In order to meet these requirements, the hardware

components of the sensor node should be constructed as

an ensemble of independent modules that can be easily

replaced. However, conventional sensor network nodes,

such as MICA Mote 4), only allow replacement of the sen-

sor board. Other components, such as the CPU, the wire-

less communication module or the battery module, are not

replaceable.

To this end, we divided the functionality of the sensor

node into four physically separated modules: a power con-

trol module, a system software module, a communication

module, and a device module.

In addition, PAVENET adopts dual-CPU architecture

because sensor network functions can be classified into

two parts: wireless communication functions and func-

tions for applications. This dual-CPU architecture pro-

vides the following advantages.

First, this architecture enables applications and com-

munication protocols to be developed easily. Generally,

the application developer and the communication proto-

col developer are not the same. Therefore, being able to

disregard overhead between application tasks and commu-

nication tasks is important in order to facilitate software

development. In addition, this enables software to eas-

ily support hard real-time processing because the wireless

communication functions and application functions can

independently appropriate computing resources.

Next, this allows us to easily evaluate communication

protocols such as MAC protocols. Since communica-

tion transactions and application transactions are sepa-

rate on the hardware level, we can independently eval-

uate the characteristics of the communication protocol,

such as power consumption. The power consumption is

not proportional to the number of CPUs, but rather to

the number of tasks, because CPUs that are in the idle

state do not consume much electric power. Energy ef-

ficiency can be categorized into two types. The first is

that which is achieved through the improvement of algo-

rithms such as MAC or routing schemes. In order to real-

ize this kind of energy efficiency, several researchers have

proposed a number of energy efficient communication pro-

tocols 1)∼3). The second type of energy efficiency is that

which is achieved through the improvement of the device

structure or materials. Implementing the entire system in

LSI achieves miniaturization and low power consumption

simultaneously. However, it also has the disadvantages

of not being able to be modified and a lack of flexibil-

ity. Therefore, we focused on the first type of energy

efficiency, which is achieved by improvement of the rel-

evant algorithms, indicating the importance of the ease

with which communication protocols can be evaluated.

Finally, in the future, it will be helpful to consider the

classification of tasks into hardware transaction tasks and

software transaction tasks. In order to realize low power

consumption and miniaturization of wireless sensor nodes,

a number of the functions of the wireless sensor node must

be implemented on the hardware level. In particular, sim-

ple, steady, parallel, and high-speed software transactions

consume an enormous amount of electric power, but trans-

acting these functions in hardware is less power consuming

than in software. Therefore, we assume that simple ad-

hoc routing functions, MAC functions, and physical layer

functions, such as error correction, will be implemented

on the hardware layer.

In PAVENET, we realize not only physical level mod-

ularization, but also software level modularization. Since

wireless communication protocols are a very important

feature in wireless sensor networks, we define several APIs

that provide layered abstracted communication structure

(application, media access, and physical layer). As a con-

sequence of this software level modularization, users can

select several protocols according to application demands,

such as power consumption, and latency.

3. Implementation

According to the design mentioned reported in Section

2, we implemented a hardware and software framework

for wireless sensor networks called PAVENET, which pro-

vides support for the construction of various applications.

PAVENET includes U3, which is a dual-CPU wireless sen-

sor node, U3 SDK, which is a software development kit

for U3, and basenode software, which supports the de-

velopment of applications and the operation of wireless

sensor networks from PCs or PDAs.

3. 1 U3

U3 realizes hardware level modularization and dual-

CPU architecture.

PAVENET divides the functionality of the sensor node

into four physically separate modules: a power control

module, a system software module, a communication

module, and a device module. This hardware level modu-

larization enables us to independently replace each func-

tion, including power control, wireless communication de-

T. SICE Vol.E-S-1 No.1 January 2005 77

Communication

board
Device board

Power supply

board

U2-USBU3

System board

Shared bus connector

Fig. 1 Hardware organization

vices, CPU, and sensors. In contrast, conventional sensor

network nodes, such as MICA Mote 4), only allow replace-

ment of the sensor board.

In addition, PAVENET has dual-CPU architecture, al-

though most existing testbeds for sensor networks are

built using single-CPU architecture. One CPU is for ap-

plication tasks, and the other is for communication tasks.

This dual-CPU architecture provides the following advan-

tages: easy development of applications and communica-

tion protocols, easy evaluation of communication proto-

cols, and consideration of future hardware developments.

Figure 1 shows each of the four boards, along with U3

and U2 − USB, which are constructed using these four

boards.

U3 is a 50 mm × 50 mm × 50 mm wireless sensor box

that contains four function boards: a power board, a sys-

tem board, a communication board, and a device board.

The boards are connected to each other through a 2.54

mm pitch shared bus connector.

U2-USB, which consists of a communication board and

an I2C-USB conversion board, is a communication inter-

face to control wireless sensor nodes from PCs or PDAs.

Each board is described below in detail.

The power supply board has three AAA 700 mAh nickel

metal-hydride batteries and an external DC input for

recharging the batteries. Furthermore, the power supply

board supplies 3.0 V to the other boards, provides infor-

mation regarding battery life, and outputs current to the

shared bus connector. The system board can learn the

remaining battery life as well as the energy consumption

through the shared bus connector.

The communication board consists of an RF Mono-

lithics 315 Mhz transceiver TR3001, a Microchip 8 bit

MCU PIC18F452 that runs at 20 MHz, and a helical an-

tenna. The PIC18F452 has 8 bit registers, a 1.5 Kbyte

data memory, a 16 Kbyte program memory, and a 256

byte EEPROM. The PIC18F452 controls the TR3001,

and processes the communication software of the U3

SDK. The communication board provides I2C interface

to the shared bus connector.

The system board consists of IrDA and the same Mi-

crochip PIC18F452 as the communication board. The

PIC18F452 runs at 10 MHz and processes the system soft-

ware of the U3 SDK.

The device board can equip various sensors or actua-

tors, which are controlled by the system board. The de-

vice board provides interfaces to the shared bus connector.

The interfaces include voltage, which relates information

such as temperature, a port that relates 1 bit data, a port

that controls the device, and an I2C interface.

We have implemented several device boards, including

a sensor board that has a motion sensor, a temperature

sensor, and an illuminance sensor, a light board that has

eight full-color LEDs, and a traffic line detection board.

3. 2 U3 SDK

U3 SDK realizes hard real-time transaction support

and network layering.

Hard real-time transaction support for application soft-

ware is realized by dual-CPU architecture and a sim-

ple priority-based task scheduler. Most existing testbeds

are constructed using single-CPU architecture. However,

MAC transactions in wireless communication may require

real-time transaction support, and these transaction tasks

require computing resources. Accordingly, application

software is highly constrained by the MAC transaction

task. In contrast, PAVENET adopts dual-CPU architec-

ture, thus expanding the capabilities of applications that

Communication software System software

Rf module I2C I2C
I/O devices
sensors, etc.

Task scheduler

Shared library

Low-layer communication

library
High-layer

communication

library

I/O device
library

Utility daemon

Application

I2C bus communication

Communication board System board

Utility daemon

Fig. 2 U3 SDK

78 T. SICE Vol.E-S-1 No.1 2005

may be developed.

Network layering is needed in order to easily develop

wireless communication functions. In order to realize net-

work layering, we separate network functions into several

parts and define simple interfaces between these parts.

Therefore, PAVENET can enable wireless communication

functions to be developed more simply than existing soft-

ware frameworks, such as nesC 6) and MANTIS 7).

U3 SDK is a software development kit that supports

system software and communication software, which are

processed by a system board and a communication board,

respectively. We use a HI-TECH Software PICC18 com-

piler for the development of U3 SDK. U3 SDK is designed

with network layering and support in mind in order to re-

alize various user demands.

Figure 2 shows the structure of U3 SDK. Both the sys-

tem software and the communication software have the

same task scheduler and a shared library. The task sched-

uler has lightweight multithreading architecture, and sup-

ports hard real-time transaction. The hard real-time

transaction can be simply implemented using two-level

priority interruption of the PIC18 architecture. High-

priority tasks that are bound to highest priority inter-

ruption can preempt low-priority tasks. The shared li-

brary consists of various APIs for task operations, such

as add task, trigger task, and resume task, and for de-

bugging operations, such as exit u3.

System software

The system software consists of a high-layer communi-

cation library, an I/O device library, and a utility daemon.

Since the components are triggered by interruption and

the transactions are designed to complete immediately, a

large percentage of the CPUs can be maintained in the

idle state, thus saving a great deal of electric power.

Application Layer

Network Layer

I2C Bus Layer

on_recv

on_net_recv on_net_send

set_net_opt get_net_opt send

up2net

up2app

dw2iic

Event Handler

API

C
o
n
tr
o
l
in
te
rf
a
ce
 l
a
y
e
r

Fig. 3 High-layer communication library

Figure 3 shows the network layering and the APIs in

the high-layer communication library. The library trans-

acts operations such as data aggregation and adhoc rout-

ing. Packets should be routed data centrally and applica-

tion specifically in wireless sensor networks 10). The ap-

plication layer provides an interface between the network

layer and peripheral devices such as sensors and IrDA.

The network layer provides a framework for developing

routing protocols. Users can expand functions, such as

routing, by describing transaction in event handlers such

as on net recv. The library also provides APIs, which en-

able us to gain independence from various protocols, such

as set net opt or get net opt, that are used when setting

the destination addresses or obtaining source addresses.

Hence, we can experiment with replacing network proto-

cols through trial and error. The control interface layer

provides an interface between network functions and the

utility daemon.

The I/O device library provides a structure that ab-

stracts interfaces such as I2C, UART, ADC, and IrDA,

by open/read/write functions. Using the abstracted APIs

of the I/O device library, we can create various portable

software modules.

Figure 4 shows how utility daemons in the communica-

tion software and the system software work. The utility

daemons support management and development of a wire-

less sensor node cooperating with a utility daemon of the

communication software. The daemons are implemented

using the I/O device library and the shared library. It

receives various commands, such as setting a node ad-

dress or modifying a new program via IrDA on the sys-

tem board, and accesses network functions via the control

interface layer.

Communication Software

System software

Utility daemon

I2C

Utility daemon
(Control interface layer)

Low-layer communication library

High-layer communication library

Parameter settings

Extract logs

dw2cmd

I2C

on_cmd_recv

Fig. 4 Utility daemon

T. SICE Vol.E-S-1 No.1 January 2005 79

Communication software

The communication software consists of a low-layer

communication library and a utility daemon.

Figure 5 shows the network layering and APIs in the

low-layer communication library. The low-layer commu-

nication library consists of communication functions that

will be implemented by hardware transaction in the fu-

ture. In PAVENET, these functions are implemented by

software considering prospective implementation in hard-

ware, due to software flexibility.

A characteristic feature of the low-layer communication

library is support for certain adhoc routing functions, such

as source routing, and flooding, in the simple network

layer. These simple adhoc routing functions can be real-

ized in small memory by simple operations. Hence, these

functions can be implemented by hardware transaction in

the future. Transacting an adhoc routing function as a

part of the communication software reduces the load of

the system software and will accomplish prospective low

power consumption in the future.

The utility daemon supports the management and de-

velopment of a wireless sensor node, in cooperation with

a utility daemon of the system software. The utility dae-

mon provides functions, such as the setting of protocol

parameters, the recording of communication logs, using

the control interface layer.

3. 3 Basenode software

The basenode software runs on PCs or PDAs to uti-

lize wireless sensor networks and consists of a command

line utility, a protocol translation gateway, and a basen-

ode library. The command line utility can be used from

the terminal of a PC via system board IrDA or U2-USB.

The utility includes pvnload, which loads a program to

Simple network layeron_net_recv on_net_send

up2net

MAC layer

Physical layer

up2mac

dw2net

on_mac_send

dw2mac

on_mac_recv

on_phy_send

dw2phy

on_phy_recv

Event handler

API

set_mac_opt get_mac_opt

I2Cup2iic

set_phy_opt get_phy_opt

C
o
n
tr
o
l
in
te
rf
a
ce
 l
a
y
e
r

Fig. 5 Low-layer communication library

U3, pvnget/pvnset, which can get/set parameters of U3,

and pvnping, which is used for confirming the existence

of sensor nodes or for the measurement of packet deliv-

ery time. The protocol translation gateway works on PCs

that equip a U2-USB and allows users to access sensor

networks through the Internet. The basenode library pro-

vides APIs that are arranged from functions of the com-

mand line utility and is used when the user develops an

application for wireless sensor networks without command

line utility.

4. Evaluation

In this section, we describe a number of evaluations of

PAVENET: a sample code, implementation of two appli-

cations using PAVENET, and the simple network per-

formance evaluation of U3. We verify the availability of

PAVENET as a development environment and the exper-

imental environment through these evaluations.

4. 1 Sample code

In order to ensure the simplicity of PAVENET, we com-

pare sample codes that are written using nesC 6) and U3

SDK. nesC has been used to implement TinyOS 11). nesC

aims to realize a programming language for networked em-

bedded systems that represent a new design space for ap-

plication developers. The sample code makes LED blink

every 1 second, which is a very simple operation.

In nesC, the user has to implement two different source

codes, a configuration file and a module file 12). An ex-

ample of a configuration file is as follows:

configuration Blink{

}

implementation {

components Main, BlinkM, SingleTimer, LedsC;

Main.StdControl -> Blink.StdControl;

Main.StdControl -> SingleTimer.Timer;

BlinkM.Timer -> SingleTimer.Timer;

BlinkM.Leds -> LedsC;

}

The following is an example of a module file:

module BlinkM {

provides {

interface StdControl;

}

uses {

interface Timer;

interface Leds;

}

80 T. SICE Vol.E-S-1 No.1 2005

}

implementation {

command result_t StdControl.init() {

call Leds.init();

return SUCCESS;

}

command result_t StdControl.start() {

return call Timer.start(TIMER_REPEAT, 1000);

}

command result_t StdControl.stop() {

return call Timer.stop();

}

event result_t Timer.fired() {

call Leds.redToggle();

return SUCCESS;

}

}

In nesC, we have to not only learn a new language, but

also to describe these redundant programs.

Next, sample code performs the same operation using

the proposed framework.

void user_init(void)

{

add_task(sample1, TASK_NO_PRIORITY);

trigger_task(sample1);

}

void sample1(void)

{

set_led0(~(get_led0()));

wait_timer(1000);

}

PAVENET enables us to describe arbitrary operations

more simply than nesC. Moreover, PAVANET adopts

the C language, which is one of the most widely used

languages in the world, hence many people can utilize

PAVENET more easily than nesC.

4. 2 ANtennary THings

We are developing a real-space programming framework

called ANtennary Things (ANTH) using PAVENET.

Through this implementation, we verified the effective-

ness of the hardware level modularization of PAVENET

by implementing a number of devices using the proposed

framework.

In a ubiquitous computing environment, communica-

tion and computation functions are embedded in all of

the object that surround us, which enables us to synthe-

size various services by combining these objects.

Many service coordination frameworks, such as UPnP
13), Jini 14) 15), and Bluetooth 16), have been proposed.

These frameworks are useful for constructing conventional

or static services because they are designed for configur-

ing devices automatically or replacing cable networks with

wireless networks. These technologies eliminate annoy-

ing entwining cables and complex device configurations.

However, they do not provide a creative environment that

enables new services to be constructed because they are

designed while specifying existing services.

In view of this, we are developing a real-space program-

ming framework called ANtennary THings (ANTH) for

the ubiquitous computing environment. ANTH attempts

to construct a programmable real-space that enables us

to create desired services by ourselves. ANTH provides a

chip that has three characteristic functions: a user inter-

face function that controls the connection of one device

to another, a communication function that constructs a

network infrastructure for device cooperation, and a com-

putation function, which drives devices and processes ap-

plications. The chip is referred to as an ANTH chip, and

an object equipped with an ANTH chip is referred to as

an ANTH object. We assume, in the future, that ANTH

chips are embedded in all everyday objects, such as alarm

clocks, lights, and walls. We can create various services

by combining these objects. For example, a motion sen-

sor event bound to an alarm clock bell realizes an instant

security system, which notifies the user of an intruder by

ringing the bell.

Figure 6 shows four implemented ANTH objects: a

light, an alarm clock, a button, and a U3, which is a wire-

Light

Alarm Button

U3

Fig. 6 Prototype implementation

T. SICE Vol.E-S-1 No.1 January 2005 81

PC

IrDA

Sink Node

Sensor Nodes

RF

Traffic Line

S
e
n
s
o
r
A

S
e
n
s
o
r D

Sensor C

Sensor B

A

B

C

D

A

B

C

D

a) overall figure b) detection mechanism

c) sensor node d) traffic line viewer

Fig. 7 Traffic line detection system

less sensor node. These objects are implemented using

PAVENET, and we have tested some of the operations of

ANTH using these objects 8). The light has a full color

LED board as a device board, and a domestic electric

board as a power board. The alarm clock has an alarm

clock board that controls an alarm bell as a device board,

and a battery board as a power board. The light and

the alarm clock have different device boards and power

boards but have the same system board and communica-

tion board.

4. 3 Traffic line detection system

We have implemented a traffic line detection system us-

ing PAVENET. Through this development, we verified the

effectiveness of the dual-CPU architecture of PAVENET

because calculating direction from acquired sensor data is

a very large task.

Traffic line information is used for various applications,

such as the placement of items in a supermarket, analy-

sis of congestion conditions in an exhibition hall, and the

placement of appliances in an office.

Figure 7-a shows an outline of the traffic line detection

system. This system consists of multiple sensor nodes that

have a direction detection sensor and a sink node that ex-

tracts direction information from the sensor nodes.

Figure 7-b shows the mechanism of the direction detec-

tion sensor. The direction detection sensor consists of four

spot type motion sensors (Matsushita AMN13111). The

motion sensor has an oval detection area and can detect

infrared radiation generated by human body. The detec-

tion areas of the motion sensors partially overlap. The

direction detection is realized by calculating the differen-

tial of reactions of them.

Figure 7-c shows a prototype system that is imple-

mented using PAVENET. Sensor nodes and a sink node

are implemented using U3. We examined the quality of

the direction detection sensor. We placed a sensor node

on the ceiling of our laboratory. We then measured the

successful detection ratio for detecting a person passing

in a single direction under the sensor node. The detection

successful ratio was 95%.

In the system board, there exists the very large task

of calculating direction from acquired motion data. First,

the task acquires binary data from four motion sensors ev-

ery 10 msec. Next, the task removes noises from the series

of binary data in time axis. Finally, the task extracts a di-

rection based on the timing of the rising edges and falling

edges of the four motion sensors and sends the direction

data to a sink node. Although the above task could not be

implemented using MICA and TinyOS 4), 6), 11), the task

could be implemented using the proposed framework be-

cause of the dual-CPU architecture.

Figure 7-d shows an example of the behavior of a traf-

fic line viewer that was developed using Microsoft Visual

Basic 6.0. The traffic line viewer receives direction in-

formation from the sink node via a protocol translation

gateway of PAVENET and plots a traffic line.

4. 4 MAC performance evaluation

In this measurement, we evaluate effectiveness of

PAVENET as an experimental environment for wireless

communication protocols.

To this end, we implemented an 802.11-like CSMA pro-

tocol as MAC, and a flooding routing protocol to U3 using

U3 SDK. The flooding routing protocol broadcasts all re-

ceived packets when the packet is received for the first

time. In addition, we implemented a performance eval-

uation tool using the basenode software that works on a

PC.

Figure 8 shows the measurement results for successful

packet receive ratio according to the number of nodes and

the contention window size. The measurement used one

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

of child nodes

re
c
e
iv

e
d
 r

e
p
ly

 r
a
ti
o
 o

f
s
in

k

CW_MIN=7 CW_MIN=15

CW_MIN=31 CW_MIN=63

Fig. 8 Protocol experiments

82 T. SICE Vol.E-S-1 No.1 2005

sink and a number of sensor nodes, and all of the nodes

can communicate with each other. First, the sink broad-

casts a query to the sensor nodes. Next, the sensor nodes

that received the query send a reply to the sink. The

communication load of the sink is very high because all

of the sensor nodes that received the query send a reply

together and the routing protocol is flooding.

Figure 8 shows the measurement results. The ratio is

nearly 100% when communication is peer-to-peer, but the

ratio decreases notably when the contention window size

decreases and the number of nodes increases.

Users can perform these measurements easily, because

PAVENET provides a command line utility that enables

us to change network parameters such as the contention

window size of CSMA.

5. Related studies

Several testbeds for wireless sensor networks already

exist.

There are a number of technologies that assume a

single-CPU architecture.

The Particle Computer, which is part of the Smart-

Its project 5), is developed at TecO, University of Karl-

sruhe 17). The Particle Computer is a platform for rapid

prototyping of ubiquitous computing environments for

adhoc (sensor) networks, wearable computers, home au-

tomation, and ambient intelligence environments. There-

fore, the Particle Computer attaches importance to minia-

turization and the development of applications that are

available for immediate use. The Particle Team 18) of

the Smart-Its project is a very creative group, and they

have developed many applications for the Particle Com-

puter 19)∼26). In order to realize these applications, sev-

eral versions of the single-CPU Particle Computer have

been developed, giving priority to miniaturization over

flexibility. Hence, the Particle Computer design concept

differs from that of PAVENET. In addition, although the

Particle Computer is designed for an optimized original

MAC protocol and a routing protocol, it is not designed

for easy development of other communication protocols.

MICA Mote 4) and TinyOS 11), which originated as part

of the Smart Dust project 9) at the University of Califor-

nia, Berkley, are widely used by researchers as a wireless

sensor network testbeds 2), 27)∼29). MICA Mote consists

of off-the-shelf commercial parts and was developed as

a demonstrative experiment of wireless sensor networks

using several sensor nodes. Therefore, MICA Mote at-

taches importance to the lowest cost development and has

single-CPU architecture. TinyOS is tiny operating system

by which to realize functions for wireless sensor networks

in very limited resources 11). TinyOS is developed using

nesC 6). nesC has the ability to realize a minimum of

wireless sensor network technologies in limited comput-

ing resources, but sacrifices some functions, such as hard

real-time transaction support, that are necessary in order

to develop various sensor network technologies. In addi-

tion, although nesC is an extension of the C language,

it has a peculiar syntax and so users must learn a new

language.

MANTIS, which is a multi-threaded operating system

for wireless sensor networking devices, is being developed

at the University of Colorado 7). The operating system

has various functions: a simple cross-platform API, a re-

mote shell for debugging and logging, an RF-based fine

grain dynamic reprogramming system, and an original file

system for wireless sensor networks 30). However, MAN-

TIS does not provide a network layering architecture.

Functions to support the development of new wireless

communication schemes are very important for immature

sensor network technologies.

PAVENET and related systems, such as Particle Com-

puter, MICA Mote, TinyOS, and MANTIS, differ with

respect to dual-CPU architecture or single- CPU architec-

ture. The single-CPU architecture is unsuitable for use in

situations in which various elemental functions must be

verified.

BTnode has also been developed as a part of the Smart-

Its project in ETH Zurich 31). BTnode is an autonomous

wireless communication and computing platform that is

based on Bluetooth radio and a microcontroller. BTnode

serves as a demonstration platform for research in mo-

bile and adhoc connected networks (MANETs) and dis-

tributed sensor networks.

WinsNG sensor nodes were developed by Sensoria Cor-

poration, under the DARPA SenseIT program 32). Win-

sNG uses an SH4 CPU, Linux (as an operating system),

GPS, seismic and acoustic sensors, and 802.11 radio.

BTnode and WinsNG use commercial radio such as

Bluetooth and 802.11. This usage of existing radio ap-

proaches releases developers from considering wireless

communication details, but the applications that can be

developed using the testbeds are limited by the charac-

teristics of the wireless radio. For example, Bluetooth re-

quires a long time to establish connections between nodes.

These restrictions are problematic because nobody can

predict the assumptions used in future applications of

wireless sensor networks.

T. SICE Vol.E-S-1 No.1 January 2005 83

6. Conclusion

In the present paper, we described the design and im-

plementation of a wireless sensor network testbed called

PAVENET. PAVENET has U3, U3 SDK, and basenode

software. In order to support the development of wireless

sensor network technologies, PAVENET has four char-

acteristic features: hardware level modularization, dual-

CPU architecture, hard real-time transaction support,

and network layering APIs. We have verified the applica-

bility of PAVENET by constructing a number of applica-

tions, including ANtennary THings, a traffic line detec-

tion system, and a MAC protocol performance measure-

ment system.

References

1) W. Heinzelman, A. Chandrakasan and H. Balakrishnan:

“Energy-Efficient Communication Protocol for Wireless

Microsensor Networks”, Proceedings of the 33rd An-

nual Hawaii International Conference on System Sciences

(HICSS’00), Maui, Hawaii, USA (2000).

2) W. Ye, J. Heidemann and D. Estrin: “An energy-efficient

MAC protocol for wireless sensor networks”, Proceed-

ings of the 21st Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM’02),

New York, New York, pp. 1567–1576 (2002).

3) T. van Dam and K. Langendoen: “An Adaptive Energy-

Efficient MAC Protocol for Wireless Sensor Networks”,

Proceedings of the 1st ACM Conference on Embedded Net-

worked Sensor Systems (SenSys’03), Los Angeles, Califor-

nia (2003).

4) J. Hill and D. Culler: “MICA: A Wireless Platform For

Deeply Embedded Networks”, IEEE Micro, Vol. 22, pp.

12–24 (2002).

5) L. E. Homquist, H.-W. Gellersen, G. Kortuem, S. An-

tifakos, F. Michahelles, B. Schiele, M. Beigl and R. Maze:

“Building Intelligent Environments with Smart-Its”, IEEE

Computer Graphics and Applications, Vol. 24, pp. 56–64

(2004).

6) D. Gay, P. Levis and R. von Behren: “The nesC Language:

A Holistic Approach to Networked Embedded Systems”,

Proceedings of Conference on Programming Language De-

sign and Implementation (PLDI’03), San Diego, Califor-

nia, ACM, pp. 1–11 (2003).

7) H. A. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose,

A. Sheth, B. Shucker, J. Deng and R. Han: “MANTIS OS:

An Embedded Multithreaded Operating System for Wire-

less Micro Sensor Platforms”, Proceedings of the 2nd ACM

International Workshop on Wireless Sensor Networks and

Applications (WSNA’03), San Diego, California, pp. 50–59

(2003).

8) T. Kashima, S. Saruwatari, H. Morikawa and T. Aoyama:

“A Bind Control Model For Real-space Programming in

Ubiquitous Computing Environment”, Adjunct Proceed-

ings of the 6th International Conference on Ubiquitous

Computing (UbiComp’04, poster), Nottingham, England

(2004).

9) J. M. Kahn, R. H. Katz and K. Pister: “Next Cen-

tury Challenges: Mobile Networking for Smart Dust”,

Proceedings of the 5th Annual ACM/IEEE Internation

Conference on Mobile Computing and Networking (Mobi-

Com’99), Seattle, Washington, ACM, pp. 483–492 (1999).

10) D. Estrin, R. Govindan, J. Heidemann and S. Kumar:

“Next Century Challenges: Scalable Coordination in Sen-

sor Networks”, Proceedings of the 5th Annual Interna-

tional Conference on Mobile Computing and Networks

(MobiCom’99), Seattle, Washington, ACM, pp. 263–270

(1999).

11) J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler and

K. Pister: “System Architecture Directions for Networked

Sensors”, Proceedings of the 9th International Conference

on Architectural Support for Programming Languages and

Operating Systems (ASPLOS’00), Boston, Massachusetts,

ACM, pp. 93–104 (2000).

12) “TinyOS Tutorial”.

http://webs.cs.berkeley.edu/tos/tinyos-1.x/doc/tutorial/.

13) UPnP Forum: “UPnP Device Architecture 1.0” (2003).

14) Sun Microsystems, Inc.: “Jini Architecture Specification”

(2001).

15) J. Waldo: “The Jini Architecture for Network-Centric

Computing”, Communications of the ACM, Vol. 42, pp.

76–82 (1999).

16) J. C. Haartsen: “The Bluetooth Radio System”, Personal

Communications, Vol. 7IEEE, pp. 28–36 (2000).

17) M. Beigl, A. Krohn, T. Zimmer, C. Decker and P. Robin-

son: “AwareCon: Situation Aware Context Communica-

tion”, Proceedings of the 5th International Conference on

Ubiquitous Computing (UbiComp’03), Vol. 2864, Seattle,

Washington, pp. 132–139 (2003).

18) Particle Team: “PARTiCLE WEB SITE”.

http://particle.teco.edu/.

19) T. Zimmer: “Towards a Better Understanding of Context

Attributes”, Proceedings of the 2nd IEEE International

Conference on Pervasive Computing and Commnications

(PerCom’04), Orland, Florida, IEEE, pp. 23–28 (2004).

20) C. Decker, M. Beigl, A. Krohn, U. Kubach and P. Robin-

son: “eSeal: A System for Enhanced Electronic Assertion

of Authenticity and Integrity of Sealed Items”, Proceedings

of the 2nd International Conference on Pervasive Comput-

ing, Linz, Vienna (2004).

21) C. Decker and M. Beigl: “DigiClip: Activating Physical

Documents”, Proceedings of the 24th International Con-

ference on Distributed Computing Systems (ICDCS’04),

Tokyo, Japan, pp. 388–393 (2004). IWSAWC’04.

22) M. Beigl, A. Krohn, C. Decker, P. R. T. Zimmer,

H. Gellersen and A. Schmidt: “Context Nuggets: A

Smart-Its Game”, Adjunct Proceedings of the 5th In-

ternational Conference on Ubiquitous Computing (Ubi-

Comp’03, demo), Seattle, Washington (2003).

23) C. Decker, U. Kubach and M. Beigl: “Revealing the Retail

Black Box by Interaction Sensing”, Proceedings of the 23th

International Conference on Distributed Computing Sys-

tems (ICDCS’03), Providence, Rhode Island (2003). IW-

SAWC’03.

24) P. Robinson and M. Beigl: “Trust Context Spaces: An In-

frastructure for Pervasive Security in Context-Aware En-

vironments”, Proceedings of the 1st International Confer-

ence on Security in Pervasive Computing (SPC’03), Bop-

pard, Germany (2003).

25) M. Beigl, P. Robinson, T. Zimmer and C. Decker: “Teach-

ing a practical Ubicomp Course with Smart-Its”, Adjuct

Proceedings of the 4th International Conference on Ubiq-

uitous Computing (UbiComp’02), Goteborg, Sweden, pp.

43–44 (2002).

26) L. E. Holmquist, F. Mattern, B. Schiele, P. Alahuhta,

84 T. SICE Vol.E-S-1 No.1 2005

M. Beigl and H.-W. Gellersen: “Smart-Its Friends: A

Technique for Users to Easily Establish Connections be-

tween Smart Artefacts”, Proceedings of the 3rd In-

ternational Conference on Ubiquitous Computing (Ubi-

Comp’01), Atlanta, Georgia, pp. 116–122 (2001).

27) Y. Kawahara, T. Hayashi, H. Tamura, H. Morikawa and

T. Aoyama: “A Context-Aware Content Delivery Service

Using Off-the-shelf Sensors”, Proceedings of the 2nd Inter-

national Confernce on Mobile Systems, Applications, and

Services (Mobisys’04, Poster Presentation), Boston, Mas-

sachusetts (2004).

28) R. Suzuki, K. Makimura, H. Saito and Y. Tobe: “Proto-

type of a Sensor Network with Moving Nodes”, Proceed-

ings of the 1st International Workshop on Networked Sens-

ing Systems (INSS’04), Tokyo, Japan (2004).

29) A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler and

J. Anderson: “Wireless Sensor Networks for Habitat

Monitoring”, Proceedings of the 1st ACM International

Workshop on Wireless Sensor Networks and Applications

(WSNA’02), Atlanta, Georgia (2002).

30) H. Dai, M. Neufeld and R. Han: “ELF: An Efficient Log-

Structured Flash File System for Wireless Micro Sensor

Nodes”, Proceedings of the 2nd ACM Conference on Em-

bedded Networked Sensor Systems (SenSys’04), Baltimore,

Maryland (2004).

31) J. Beutel, O. Kasten, F. Mattern, K. Römer, F. Siegemund

and L. Thiele: “Prototyping Wireless Sensor Network Ap-

plications with BTnodes”, Proceedings of the 1st Euro-

pean Workshop on Wireless Sensor Networks (EWSN’04),

Berlin, Germany, pp. 323–338 (2004).

32) G. J. Pottie and W. J. Kaiser: “Wireless Integrated Net-

work Sensors”, Communications of the ACM, Vol. 43, pp.

51–58 (2000).

Shunsuke SARUWATARI

He received the B.S. degrees in Com-

puter Science from the University of Electro-

Communications, and M.S. degree in Frontier

Informatics from the University of Tokyo. He

is currently a Ph.D. student of the Depart-

ment of Frontier Informatics at the University

of Tokyo. His research interests are in the area

of computer networks, distributed computing,

wireless networks, embedded computer, and

wireless sensor networks. He is a member of

IEICE, and IPSJ.

Takuya KASHIMA

He received the B.E. and M.E. degrees in

Information and Communication Engineering

from the University of Tokyo. He is currently

working at KDDI Corporation.

Masateru MINAMI

He received B.E. and M.E. from Shibaura In-

stitute of Technology, and Dr. Eng. from the

University of Tokyo in 1996, 1998 and 2001 re-

spectively. He is currently an assistant profes-

sor at Shibaura Institute of Technology. His

research interests include location systems and

sensor networks for ubiquitous computing.

Hiroyuki MORIKAWA

He received the B.E., M.E., and Dr. Eng.

degrees in Electrical Engineering from the Uni-

versity of Tokyo, Tokyo, Japan, in 1987, 1989,

and 1992, respectively. He is currently an As-

sociate Professor of the Department of Frontier

Informatics at the University of Tokyo. From

1997 to 1998, he stayed in Columbia Univer-

sity as a visiting research associate. His re-

search interests are in the area of computer net-

works, distributed computing, mobile comput-

ing, wireless networks, and network services.

He served as Editor of Transactions of Insti-

tute of Electronics, Information and Commu-

nication Engineers (IEICE) and on the techni-

cal program committees of IEEE/ACM confer-

ences and workshops. He is a member of IEEE,

ACM, ISOC, IPSJ, and ITE.

Tomonori AOYAMA

He received the B.E., M.E. and Dr. Eng.

from the Univ. of Tokyo in 1967, 1969, and

1991 respectively. Since he joined NTT in

1969, he was engaged in R & D on various com-

munication networks and systems in the NTT

Labs. He stayed in MIT as a visiting scientist

in 1973-1974. In 1994 he was appointed to Di-

rector of NTT Opto-Electronics Laboratories,

and then in 1995 he became Director of NTT

Optical Network Systems Labs. In 1997 he left

NTT, and joined the University of Tokyo, and

he is now Professor in the Department of Infor-

mation and Communication Engineering there.

He is IEEE Fellow. He is past President of IE-

ICE Communication Society. He is co-author

or co-editor of several books for digital signal

processing, ATM broadband networks and op-

tical fiber transmission systems.

Reprinted from Trans. of the SICE

Vol. E-S-1 No. 1 74/84 2005

