
 33

Scheduling of Order-picking with Replenishment

in a Warehouse Environment

Jie GONG, Hirofumi TAMURA,

Toshimitsu HIGASHI,
+
 and Jun OTA

In this paper, given the orders and stock in a warehouse, we present a metaheuristic-based scheduler that aims to solve a

scheduling problem of order-picking with replenishment. Our objective is to minimize the maximum operation time of

order-picking carts. The problem is described with respect to the carts to replenish and pick up products separately within the

same period. Sub-problems in this research are (1) how to reduce delays among carts and (2) how to reduce the carts’ travel

distance. Several operators aiming to generate transitions in the schedule are implemented. After that, a local search procedure is

used to solve the routing problem and reduce the delays among carts. The experiment results show that the metaheuristic can

make significant improvements with respect to minimizing the operation time.

Key words: warehouse management, order-picking, replenishing, metaheuristics, scheduling

1. INTRODUCTION

1.1 Background

Improvements in warehouse management in recent years are

being attributed to gains in logistics. Logistics improvements lead

to increased efficiency in warehouse operations and to more

reliable customer service. The main operations for warehouse

include receiving, storing, order-picking, and shipping. One study

has shown that order-picking accounts for as much as 55% of the

total warehouse operating cost [1].

Pallets and products are picked from the storage locations by

pickers. With common low-level order-picking systems, pickers

are humans employing carts.

Nowadays, order-picking is the costliest activity in a warehouse.

It is divided into a reserve area and a picking area (forward area).

Because of the shortage products during intensive order-picking,

replenishment is very important [2]. The replenishment activity

becomes more frequent and crucial during a busy picking period.

More attention is currently being given to such problems as timing

and replenishment.

 1.2 Literature Survey

Warehouse design has traditionally been divided into tactical or

operational levels [3]. On a tactical level, replenishment is mainly

discussed in the field of inventory theory. Many studies have been

made in this field [4]-[6]. Such studies have dealt with a

multi-retailer problem, multi-item problems, and the

limited-capacity problem of warehouses. Several studies on layout

design have also been conducted [7]. Another issue is storage

assignment, which involves the number of products to be placed in

forward and reserve areas. The decisions concerning the problems

described are commonly called the forward-reserve problem [8].

In this problem, the regular replenishment quantity from the

reserve to the forward area is concerned.

On the operational level, the picking problem has been

addressed as a routing method problem, which aims to sequence

the picking items to ensure a good route [9][10]. Such a picking

problem can be represented in the form of the Traveling Salesman

Problem (TSP) and solved with adequate algorithms [11]. In these

studies, one important assumption is that the stock (product

quantity in the storage location) is unlimited and there is no need

to replenish the product supplies. The replenishment problem on

the operational level has been discussed in [12]. The warehouse

environment discussed in the paper is somewhat specific, whereas

the replenishment area and the picking area are completely

separate. Therefore, it is difficult to apply the method directly to a

general warehouse environment.

In previous studies, the replenishment problem was mainly

addressed on a tactical level, such as the forward-reserve problem.

On the operational level, only a few studies have been conducted

with regard to order-picking with replenishment. Thus, in this

 * Department of Precision Engineering, Graduate School of

Engineering, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

 # Murata Systems, Ltd.
 3 Minamiochiai-cho, Kisshoin, Minami-ku, Kyoto 601-8326, Japan.
 + Murata Machinery, Ltd.
 2 Nakajima, Hashizume, Inuyama-shi, Aichi 484-8502, Japan.

 (Received December 28, 2007)

1 2 3

n

…

…

1 2 3

n

…

…

Fig. 1 A model of order-picking in a warehouse

 34

research, our objective is to model and present a search-based

metahueristic to solve the problems related to order-picking with

replenishment on the operational level.

The problem of order-picking with replenishment differs from

typical order-picking problems. Both of the replenishment

operation and the picking operation are made in the common

working area. Both the replenishment and picking operations

occur in a common work area. A primary constraint is that the

picking cart operation cannot be completed until the products that

are in short supply are replenished.

1.3 A Warehouse Model

A warehouse model is shown in Fig. 1. The storage locations

hold initial quantities of products (stock). Each location has its

own location number, as shown in the figure. The items to be

picked from given locations are obtained from the orders sent by

shops. The items in short supply are transported by carts from an

Automated Storage and Retrieval System (AS/RS) to replenish the

storage sites. The items selected from a corresponding order are

picked up and deposited at the shed for loading into trucks and

delivery to the customers. Order-picking schedules are made by

clustering tasks and by assigning them to carts assignments.

The rest of this paper is organized as follows: Section 2 offers

an overview of the problem of order-picking with replenishment;

Section 3 is a discussion of the methodology of the research;

Section 4 is a presentation of the experiment results; and Section 5

is the conclusion.

2. Problem Statement

An overview of the warehouse picking problem is given first.

The products are stored in stationary storage locations throughout

the warehouse (Fig. 1). Each location holds quantities of unique

types of products and has a unit quantity called a case. The shop

order and the stock for every product serve as inputs to the picking

problem, as shown in Tables 1 and 2, respectively. For one storage

location, there is a capacity that is represented by CAPs. If the

quantity of products exceeds the capacity, the unloading time of

the exceeding part is assumed to be Npu times more than normal.

The orders placed on the warehouse should be picked up by the

carts from the storage locations and transferred to the shed. A cart

will start from the shed and pick up the products at the various

locations. If the quantity reaches the capacity of the cart,

represented as CAPa, the cart will return to the shed and will

unload the products. This is referred to as a trip and assigned to

carts. Figure 2 shows an example of the trip. In this case, the trip

connects four picking locations.

As the products are picked up, the stock decreases, and it is

necessary to replenish them at the storage sites. As in the pickup

process, the products in shortfall are uploaded on the carts from

the AS/RS and replenished to the sites. When the cart is empty, it

returns to the AS/RS and uploads products for the next

replenishment round. This circuitous route is called a

replenishment trip. The carts undertake multiple pickup trips that

are started and completed at a shed.

We then determine the cart sequence for pickup and

replenishment, which is the output as shown in Fig. 3. Here, a

schedule composed of two carts (C1 and C2) is shown. The

numbers without parentheses correspond to storage locations,

while the numbers in parentheses are the numbers of items to be

picked or replenished at the corresponding locations. The start of

trip is denoted by “s” or “r.” Here, “s” represents the shed and “r”

represents AS/RS. Here, we define the action as the element of

one pickup/replenishment operation, which contains the cart

activity information. The information includes the cart ID, its

location ID, and the type of action: replenishment, pickup, or load

quantity.

Carts are scheduled to complete the order-picking and

replenishment operations as soon as possible. However, because

of the existence of picking and replenishment tasks in the same

period, several delays occur and increase the difficulty of solving

the problem. There are several types of delays experienced by

carts.

1) Loading Queue Delay (Dlq): This type of delay occurs

when carts must load and unload products at the same site and at

the same time. These interactions are not only variable but also

unpredictable and they can cause a cart to diverge from its base

time significantly. If the two carts have to do the same operations

(replenishment or picking) at the same location in the same period,

the carts operate in the order in which they arrive, that is, first in,

Table 1 An example of the order list by shops

Shop Produ

ct 1

Produ

ct 2

Produ

ct 3

… Produ

ct n

Shop A 10 2 0 … 0

Shop B 40 35 15 … 20

… … … … … …

Shop M 0 10 0 … 60

Table 2 An example of the stock sheet

Location Product Quantity

1 AA 40

2 AB 50

3 AC 80

  

n CY 20

: pickup locations

3

54

74 82

: pickup locations

3

54

74 82

Fig. 2 An example of a cart routing trip

s

r

82(20) 54(25) s74(10)3(5) 15(60) s 75(53)

54(25) 75(53) r74(10) 3(5)15(60) rr 82(20)

c1

c2

s

r

82(20) 54(25) s74(10)3(5) 15(60) s 75(53)

54(25) 75(53) r74(10) 3(5)15(60) rr 82(20)

c1

c2

Fig. 3 Cart schedule example

 35

first out. The waiting time is called the loading queue delay time.

2) Replenishment Wait Delay (Drw): This type of delay occurs

when a picking cart waits for the replenishment at the sites in

short until the replenishment cart finishes its task. The waiting

time is referred to as the replenishment delay.

3) Punishment Loading Delay (Dpl): This type of delay occurs

when the number of products after replenishment exceeds the

capacity at the storage location. The load or pick time for the

products that exceeds the capacity takes Npu (>1) times than the

standard load or pick time. This type of delay is referred to as a

punishment loading delay.

4) Collision Avoidance Delay (Dac): This type of delay occurs

when a cart requires extra time to avoid a collision with another

cart.

As the problem is stated in this paper, the density of carts is

relatively low and because mutual avoidance ability of cart drivers

is so high, the degree of delay is not so large even two carts go

through each other. Therefore, the fourth collision avoidance delay

remains small compared to the total operation time and other

delays. Thus, we ignore the collision avoidance delays and focus

on the other three types of delays.

The problem is presented as follows. Let:

1 2{ , , , }kC c c c  : a set of carts

1 2{ , , , }()
ii i i inA a a a i C  : a set of actions of the cart i

k : total number of carts

in : total number of actions assigned to cart i ()i C

i : operation time of cart i with delay time ()i C

max()i
i C




: total makespan

Objective function: min.M 

3. Research Methodology

3.1 Approach

Scheduling is defined as the allocation of carts to a collection of

tasks. The transition from one solution to another can improve the

efficiency of finding a better solution. In most scheduling

problems, tasks have been determined beforehand and never

change in the scheduling process. In the field of split delivery

vehicle routing problems (SDVRP), the concept of task splitting is

introduced for deriving solutions [11]. Similarly, in the paper, we

propose several operators introducing task splitting during the

search process.

In many warehouses, orders required for a specific day are just

fixed several minutes before the warehouse opens. Then the

planned/scheduled tasks must be finished in several minutes. Thus,

maximum computation time tmax is an important condition.

The metaheursitic based on Simulated Annealing (SA) is

described in this section. First, we introduce the Simulated

Annealing structure, and then, a general heuristic to generate an

initial schedule is introduced in paragraph 3.3. Operators to move

action from cart to cart are described in detail in paragraph 3.4.

Local Search as a procedure will be proposed in paragraph 3.5; it

aims to minimize the routing cost and reduce the delay caused by

interaction between carts.

3.2 SA Scheduler Structure

Simulated Annealing is a popular metaheuristic that has found

extensive use for solving complex combinatorial optimization

problems [13]. In SA, the search begins at an initial temperature

Tinit and proceeds until the stopping conditions are satisfied. We

used one stopping condition when the current computation time

reached the maximal computation time tmax. The flowchart of the

SA scheduler is shown in detail in Fig. 4.

The algorithms about initial schedule generation, operator

selection, and local search will be discussed in detail in paragraphs

3.3, 3.4, and 3.5, respectively.

3.3 Initial Schedule Generation

 The initial schedule is generated by a strategy that is widely

practiced due to its ease of implementation. The current scheduler

generates trips by clustering the orders as a modified S-shaped

pattern explained in Section 4.1. The products are picked up or

replenished based on an S-shaped routing [14], which involves a

round trip to all of the shelves, shed, and AS/RS, as shown in Fig.

Local search

Initial schedule (s0) generation

T Tinit

BEGIN

Operator selection

Route generation

Computational

time > tmax?

END

Y

N

0

0

(0,1) exp((() ()) /)IF rand f s f s T

THEN s s

 



Trip exchange

T aT

s generated state

Local search

Initial schedule (s0) generation

T Tinit

BEGIN

Operator selection

Route generation

Computational

time > tmax?

END

Y

N

0

0

(0,1) exp((() ()) /)IF rand f s f s T

THEN s s

 



Trip exchange

T aT

s generated state

Fig. 4 Flowchart of the proposed scheduler

Fig. 5 An example of S-shape route

 36

5. If the quantities to be picked up during the trip will exceed the

capacity of cart (CAPa) at the next picking location, the cart will

stop picking and will return to the shed or AS/RS. At the

beginning, all the carts start at the AS/RS to replenish products.

The next generated trip will be assigned to the cart that returns

first. This is repeated until there are no more unassigned

replenishments in the warehouse. At that time, the carts tasked

with replenishment will be reassigned to pick-up trips from the

last site of replenishment. If there are no more picking trips to be

assigned, no further activity is required.

3.4 Operator Selection

The operators in a scheduling problem relocate actions from

one cart to another. The three types of operators are defined

below: Action Transfer (total transfer), Action Exchange (total

action swap), and Action Split (partial transfer).

1) Action Transfer: Action Transfer is a move wherein Aik of Ci is

transferred from Ci to another cart Cj. The transfer is done such

that a new trip is constructed for Aik at the end of the action

sequence of Cj. Here, i, j, and k are randomly selected.

2) Action Exchange: An Action Exchange is a move in which the

Aik from Ci is relocated to another Cj. Similarly, the Ajl of Cj is

relocated to Ci. After this operation, both Ci and Cj will add one

new trip containing Ajl and Aik at the end of the respective action

sequences. Here, i, j, k, and l are randomly selected.

3) Action Split: If actions are split, a better balance can be

achieved among the carts. The Action Split operator is an

extension of the Action Transfer that allows partial relocation of

an action from one cart to another, as shown in Fig. 6.

We can estimate the amount to items *i of Aik to be moved

from Ci to another cart Cj in order to achieve a better makespan

balance between two carts.

*

2

i j p

load

T
i

T

  
 (1)

In (1),
i and j are the makespans of Ci and Cj before the

action split operation. Tp is the increased travel cost of the new

trip of a new split action, which is moved to Cj. Tload is the

Loading time per one case. Equation (1) is constructed to create a

balance between
i and j .

We propose the Split_I methodology to implement the above

three operations. The algorithm will be explained as follows.

Step 1: Randomly select i, j, k, and l. Calculate *i , if

*0 iki num  (the number of items in Aik), and then go to

Step 2. Otherwise, go to Step 3.

Step 2: Create a new action Aik for
*i and set the new action to Ci,

and go to Step 4.

Step 3: If *

iki num , go to Step 4. Otherwise, go to Step 5.

Step 4: Do Action Transfer to Cj. End.

Step 5: Generate Ajl in Cj, Do Action Exchange. End.

In the Split_I and Non-split_I, we make a decision to select the

action exchange or the action transfer by utilizing
*i at Step 3.

On the other hand, in Split_R and Non-split_R, we select the

action exchange and the action transfer randomly. We can

consider other classes to include the split operation or not. Split_I

and Split_R include the split operation, and Non-split_I and

Non-split_R do not, and we proceed from Step 1 to Step 3,

skipping Step 2. The relationship of the four methods is shown in

Table 3.

3.5 Local Search

The proposed operators just described are easy to implement.

However, these operators will cause the following two problems.

a) The travel distance for the related carts will be affected and

result in longer makespans.

b) Some delays may occur in the unchecked new schedule.

The next two parts deals with “a)” and “b)” respectively.

The first problem is to determine how to change the sequence of

the actions and how to cluster the actions into some trips to

minimize the traveling cost.

After the routing problem has been solved, the next step is to

minimize the delays caused by the interactions between carts.

Trip Exchange is a simple process that aims to minimize the

delays by exchanging the trip sequence inside the corresponding

cart. The Trip Exchange is different according to the type of delay.

1) Determine which trip causes loading queue delays and

exchange this trip with the last trip.

2) Determine which replenishment trip to remedy a

product shortfall produces a delay (causing

replenishing waiting delay) and exchange that trip with

the first trip.

4. SIMULATION AND RESULTS

4.1 The Reference Scheduler Here, for a comparison, we

introduce the reference scheduler that is currently employed by

the industrial partner in this research [15]. The strategy is selected

ci s
Rep:26

Location:10 s
Pick:50

Location:18

Pick:8

Location:6

cj s
Rep:50

Location:4
s

Pick:8

Location:25
s

Pick:30

Location:18

s
Rep:50

Location:4
scj

ss
Rep:26

Location:10

Pick:20

Location:18
ci

Pick:8

Location:6

Pick:8

Location:25

i*

ci s
Rep:26

Location:10 s
Pick:50

Location:18

Pick:8

Location:6

cj s
Rep:50

Location:4
s

Pick:8

Location:25
s

Pick:30

Location:18

s
Rep:50

Location:4
scj

ss
Rep:26

Location:10

Pick:20

Location:18
ci

Pick:8

Location:6

Pick:8

Location:25

i*

Fig.6 Action split operation that can produce a better

makespan

Table 3 Four methods

Non-split_RSplit_RRandomly Decided

Non-split_ISplit_IDecided by i*

Non-splitSplit

Split

Condition

Swap (Step1)

Condition

(Step3)

Non-split_RSplit_RRandomly Decided

Non-split_ISplit_IDecided by i*

Non-splitSplit

Split

Condition

Swap (Step1)

Condition

(Step3)

 37

due to the following two reasons: (a) there have been no former

algorithms in the literature that deal with the same problem

statement in this paper, and (b) the problem is still solved in real

warehouses with a specific rule-based algorithm. Therefore the

proposed algorithm is modeled as the reference scheduler in order

to evaluate the proposed algorithm quantitatively. The reference

scheduler is similar to the heuristic of the Initial Schedule

mentioned in Section 3. The carts based on the S-shaped routing

will add products to the trip until the capacity of the trip is

reached. The remaining products will be picked up on the next trip.

When order-picking starts, all carts will start from the AS/RS to

unload replenishments. The picking tasks will not start until all

replenishing tasks are finished. The advantage of this scheduler is

that the Replenishment Waiting Delay will not occur because

stock products are sufficient after replenishing.

4.2 Simulation Results

First, we evaluate the performance of the metaheuristic-based

SA scheduler with different operators in computer experiments.

The maximal computation time tmax is set to be 3 minutes under

the environment of a Pentium4 1.2GHz with 1GB RAM. Table 4

shows the simulation environment. The input orders are assigned

with respect to shops that represent the regions to which products

are delivered. A comprehensive set of data instances is used to

evaluate the schedulers. The basic data instances are 3 data as

follows:

 Instance 1: 720 cases/shop distributed in 75 locations

 Instance 2: 720 cases/shop distributed in 45 locations

 Instance 3: 720 cases/shop distributed in 30 locations

These data are created based on the orders of real warehouses.

The number of shops is set at 2 to 6. Restriction in generating trips

is as follows:

For the picking tasks, trips must consist of products from the

same shop.

For the replenishment tasks, no restriction exists as to the

products in the same trip.

Figure 7 shows the average values of makespan (in seconds)

with input of Instance 1 to 3. All four sets of operators showed

better performances than the reference scheduler. If we compare

Split-I with the reference scheduler, a significant improvement

(21.9% - 45.3%) is achieved. Both Split_R and Split_I show better

performance than Non-Split_R and Non-Split_I. Comparing with

Non-Split, Split can achieve, on average, a 2.4% improvement.

Thus, the Action Split operator is proved to be efficient to balance

the cart’s makespans. Both Non-Split_I and Split_I show better

results than Non-Split_R and Split_R. Especially, Split_I achieved

the best result, i.e., a 1.9 % improvement, compared with

nonSplit_R. It is a feasible to determine the operator by

calculating the *i .

Then, we evaluate the improvement of 3 instances by increasing

the number of shops. The trend is for the makespans of the

reference scheduler to increase in a linear manner as the number

of items increases. Split-I can achieve more improvement by

increasing the number of shops. It is possible that, as the picking

intensity increases, the items tend to concentrate on several

specific locations and loading que delay will increase. Under this

condition, the proposed metaheurstic is more efficient to reduce

the delays and results of minimizing the makespans. The

improvement of 3 instances does not show much difference when

the number of shops is low (e.g., 2 or 3). However, when the

number of shops increases (e.g., when the number of shops is 5 or

Table 4 Simulation environment

Item Quantity

Cart speed 1 meter/second

Loading time per one case (Tlead) 1 second/case

Npu 2

Average stock 30 cases/location

Cart number 4

Location size 1 1 m2

Number of locations 84

Location capacity (CAPs) 60 cases

Cart capacity (CAPa) 60 cases

Loading time at shed or AS/RS 60 seconds

Tinit 1000

A 0.9

Reference

Non-Split_R

Non-Split_I

Split-R

Split-I

(a) For Instance 1

Reference

Non-Split_R

Non-Split_I

Split-R

Split-I

(b) For Instance 2

Reference

Non-Split_R

Non-Split_I

Split-R

Split-I

(c) For Instance 3

Fig. 7 Makespans of 5 schedulers with respect to the number of

shops

 38

6), the low-density instance (Instance 1) shows better

improvement than the high-density instance (Instance 3).

In a multi-shop picking environment, orders from different

shops with a few items each will be combined into one picking

instance to improve the picking efficiency. When the number of

shops is not large, combining their orders into one picking event

will not have a significant effect. On the other hand, as the number

of shops increases, combination of the order can produce a high

efficiency.

The obtained results of Split-I method has varied even with the

same condition because it is a kind of a random-search method. In

order to see the influence of the variance, simulations are made for

Split-I with 30 times when the number of shops is 2 and in the

case of Instance 1, in which the difference between the result of

Split-I and that of the reference sheduler is smallest. As a result,

the standard score of the value for the reference scheduler has the

standard score of -13.6, which means that the result of Split-I and

that of the reference schduler is significantly different.

The reason can be concluded from the comparison of three

delays, total Dlq, total Dpl, and total Drw in the reference scheduler

and Split-I. This is the result when the number of shops is 2 and in

the case of Instance 1 (Figure 8). In the reference scheduler,

although there are no Drw in the reference scheduler because of

first replenishment next picking policy, many Dlq and Dpl make the

makespan longer. The reasoning behind this improvement can be

applied to the following items.

- The proposed algorithm can produce a good schedule with

shorter makespans.

- Local Search has succeeded in restraining Dlq and Dpl

through Trip Exchange.

 For other instances and for other number of shops, almost the

same tendency can be obtained with the above-mentioned

discussions.

5. CONCLUSION

In this paper, the problem of ordering-picking with

replenishment has been addressed.

This research aims to generate the agents’ scheduling and make

the agents finish the tasks as soon as possible, that is, minimizing

makespans. An efficient search-based metaheuristic is proposed

because it is known to give optimal or near-optimal results.

In the metaheuristic, the transition from one solution to a new

solution is a serious problem, especially in a complex system.

Thus, we presented operators that aim to implement the transition

from one schedule to another by way of relocating (moving) the

actions between agents. Three operators, Action Transfer, Action

Exchange, and Action Split, are identified. All operators are

involved in the transfer of action between agents. The split and

swap conditions are two determinations with which we are

concerned. According to the two conditions, we conclude that

there are four sets of operators for the transition of a schedule.

Instances are arranged according to varying the number of

shops. Many experiments have been conducted in different

instances and in a class-based storage assignment condition.

Experiment results proved that a kind of SA scheduler, Split-I had

a little improvement than three other scheduler (Split-R,

Non-Split-I, Non-Split-R). By comparison with the reference

scheduler, the Split-I SA scheduler was efficient enough to balance

the makespans between agents. Experimental results revealed that

the Split-I SA scheduler can achieve a significant improvement

(averaged about 31%) in comparison to the reference scheduler.

The trend is for the average improvement increase as the number

of shops increases. When the pickup intensity increases, so does

the volume of stock in one location, and, as a result, the greater

the possibility of a long delay. Under this condition, the proposed

metaheuristic is more efficient to reduce the delays and result of

minimizing the makespans.

References

[1] Tompkins, J.A., et al.: Facilities Planning, John Wiley &

Sons,(1996).

[2] De Koster, R., Le-Duc, T., and Roodbergen, K.J.: Design and

Control of Warehouse Order-picking: A Literature Review, European

Journal of Operational Research, 182, 481/501 (2007).

[3] Rouwenhorst, B., Reuter, B., Stockrahm, V., Van Houtum, G.J.,

Mantel, R.J., and Zijm, W.H.M.: Warehouse Design and Control:

Framework and Literature Review, European Journal of Operational

Research, 122, 515/533 (2000).

[4] Levi, R., and Sviridenko, M.: Improved Approximation Algorithm

for the One-Warehouse Multi-Retailer Problem, APPROX and

RANDOM 2006, Diaz, J. et al. (Eds.), Lecture Note on Computer

Science, 4110, 188/199 (2006).

[5] Minner, S., and Silver, E.A.: Replenishment Policies for Multiple

Products with Compound-Poisson Demand that Share a Common

Warehouse, International Journal of Production Economics, 108,

388/398 (2007).

[6] Choi, J., Cao, J.J., Romeijn, E.R., Geunes, J., and Bai, S.X.: A

Stochastic Multi-Item Inventory Model with Unequal Replenishment

Intervals and Limited Warehouse Capacity, IIE Transactions, 37,

1129/1141 (2005).

[7] Caron, F., Marchet, G., and Perego, A.: Optimal Layout in

Low-Level Picker-to-Part Systems, International Journal of

Production Research, 38-1, 101/107 (2000).

[8] Van den Berg, J.P., Sharp, G.P., Gademann, A.J.R.N., and Pochet, Y.:

Forward-Reserve Allocation in a Warehouse with Unit-Load

Replenishments, European Journal of Operational Research, 111,

98/113 (1998).

[9] Roodbergen, K.J., and De Koster, R.: Routing Order Pickers in a

Warehouse with a Middle Aisle, European Journal of Operational

Research, 133, 32/43 (2001).

[10] Makris, P.A., and Giakoumakis, I.G.; k-Interchange Heuristic as an

Optimization Procedure for Material Handling Applications, Applied

Mathematical Modeling, 27, 345/358 (2003).

[11] Rubrico, J.I.U., Ota, J., Tamura, H., Akiyoshi, M., and Higashi, T.:

Route Generation for Warehouse Management using Fast Heuristics,

Fig. 8 Comparison of the Split-I scheduler and the reference

scheduler for the case of Instance 1; the number of shops is 2.

 39

Proceedings of the 2004 IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2093/2098 (2004).

[12] Kim, B., Heragu, S.S., Graves, R.J., and St. Onge, A.: Realization of

a Short Cycle Time in Warehouse Replenishment and Order Picking,

International Journal of Production Research, 41- 2, 349/364 (2003).

[13] Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P.: Optimization by

Simulated Annealing, Science, 220, 671/680 (1983).

[14] Roodbergen, K.J., and De Koster, R.: Routing Methods for

Warehouses with Multiple Cross Aisles,” International Journal of

Production Research, 39-9, 1865/1883 (2001).

[15] Gong, J., Ota, J., Tamura, H., and Higashi, T.: A Model and Efficient

Heuristics of Order-Picking with Replenishment in a Warehouse,

Preprints of the 16th Intelligent Systems Symposium, 161/166

(2006).

Jie Gong

Mr. Jie Gong graduated from master

course of Graduate school of Engineering,

the University of Tokyo in 2007. His

research interest was warehouse

management system and logistics during

his stay in the university.

Hirofumi Tamura

Mr. Hirofumi Tamura works for Murata

Systems, Ltd. He is engaged in

research and development on logistic

information systems.

Toshimitsu Higashi (Member)

Dr. Toshimitsu Higashi works for

Murata Machinery Ltd. He is engaged

in research and develoment on the

control system of logistic systems,

sway control systems and distributed

autonomous robotic systems.

Jun Ota (Member)

Professor Jun Ota is an associate

professor at Dept. of Precision

Engineering, Graduate School of

Engineering, the University of

Tokyo. His research interest is

multi-agent robotics and logistic

systems.

