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In this paper, given the orders and stock in a warehouse, we present a metaheuristic-based scheduler that aims to solve a 

scheduling problem of order-picking with replenishment. Our objective is to minimize the maximum operation time of 

order-picking carts. The problem is described with respect to the carts to replenish and pick up products separately within the 

same period. Sub-problems in this research are (1) how to reduce delays among carts and (2) how to reduce the carts’ travel 

distance. Several operators aiming to generate transitions in the schedule are implemented. After that, a local search procedure is 

used to solve the routing problem and reduce the delays among carts. The experiment results show that the metaheuristic can 

make significant improvements with respect to minimizing the operation time. 
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1. INTRODUCTION 

1.1  Background 

Improvements in warehouse management in recent years are 

being attributed to gains in logistics. Logistics improvements lead 

to increased efficiency in warehouse operations and to more 

reliable customer service. The main operations for warehouse 

include receiving, storing, order-picking, and shipping. One study 

has shown that order-picking accounts for as much as 55% of the 

total warehouse operating cost [1]. 

Pallets and products are picked from the storage locations by 

pickers. With common low-level order-picking systems, pickers 

are humans employing carts. 

Nowadays, order-picking is the costliest activity in a warehouse. 

It is divided into a reserve area and a picking area (forward area). 

Because of the shortage products during intensive order-picking, 

replenishment is very important [2]. The replenishment activity 

becomes more frequent and crucial during a busy picking period. 

More attention is currently being given to such problems as timing 

and replenishment.  

  1.2  Literature Survey 

Warehouse design has traditionally been divided into tactical or 

operational levels [3]. On a tactical level, replenishment is mainly 

discussed in the field of inventory theory. Many studies have been 

made in this field [4]-[6]. Such studies have dealt with a 

multi-retailer problem, multi-item problems, and the 

limited-capacity problem of warehouses. Several studies on layout 

design have also been conducted [7]. Another issue is storage 

assignment, which involves the number of products to be placed in 

forward and reserve areas. The decisions concerning the problems 

described are commonly called the forward-reserve problem [8]. 

In this problem, the regular replenishment quantity from the 

reserve to the forward area is concerned.  

On the operational level, the picking problem has been 

addressed as a routing method problem, which aims to sequence 

the picking items to ensure a good route [9][10]. Such a picking 

problem can be represented in the form of the Traveling Salesman 

Problem (TSP) and solved with adequate algorithms [11]. In these 

studies, one important assumption is that the stock (product 

quantity in the storage location) is unlimited and there is no need 

to replenish the product supplies. The replenishment problem on 

the operational level has been discussed in [12]. The warehouse 

environment discussed in the paper is somewhat specific, whereas 

the replenishment area and the picking area are completely 

separate. Therefore, it is difficult to apply the method directly to a 

general warehouse environment. 

In previous studies, the replenishment problem was mainly 

addressed on a tactical level, such as the forward-reserve problem. 

On the operational level, only a few studies have been conducted 

with regard to order-picking with replenishment. Thus, in this 

 * Department of Precision Engineering, Graduate School of 

Engineering, The University of Tokyo 
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan 

 # Murata Systems, Ltd. 
  3 Minamiochiai-cho, Kisshoin, Minami-ku, Kyoto 601-8326, Japan. 
   +  Murata Machinery, Ltd. 
  2 Nakajima, Hashizume, Inuyama-shi, Aichi 484-8502, Japan. 
 

      (Received December 28, 2007) 

1 2 3

n

…

…

1 2 3

n

…

…

 
Fig. 1 A model of order-picking in a warehouse 

 



 

                                                                                                                                                    

 34 
 

research, our objective is to model and present a search-based 

metahueristic to solve the problems related to order-picking with 

replenishment on the operational level. 

The problem of order-picking with replenishment differs from 

typical order-picking problems. Both of the replenishment 

operation and the picking operation are made in the common 

working area. Both the replenishment and picking operations 

occur in a common work area. A primary constraint is that the 

picking cart operation cannot be completed until the products that 

are in short supply are replenished. 

1.3 A Warehouse Model 

A warehouse model is shown in Fig. 1. The storage locations 

hold initial quantities of products (stock). Each location has its 

own location number, as shown in the figure. The items to be 

picked from given locations are obtained from the orders sent by 

shops. The items in short supply are transported by carts from an 

Automated Storage and Retrieval System (AS/RS) to replenish the 

storage sites. The items selected from a corresponding order are 

picked up and deposited at the shed for loading into trucks and 

delivery to the customers. Order-picking schedules are made by 

clustering tasks and by assigning them to carts assignments. 

The rest of this paper is organized as follows: Section 2 offers 

an overview of the problem of order-picking with replenishment; 

Section 3 is a discussion of the methodology of the research; 

Section 4 is a presentation of the experiment results; and Section 5 

is the conclusion. 

2. Problem Statement 

An overview of the warehouse picking problem is given first. 

The products are stored in stationary storage locations throughout 

the warehouse (Fig. 1). Each location holds quantities of unique 

types of products and has a unit quantity called a case. The shop 

order and the stock for every product serve as inputs to the picking 

problem, as shown in Tables 1 and 2, respectively. For one storage 

location, there is a capacity that is represented by CAPs. If the 

quantity of products exceeds the capacity, the unloading time of 

the exceeding part is assumed to be Npu times more than normal. 

The orders placed on the warehouse should be picked up by the 

carts from the storage locations and transferred to the shed. A cart 

will start from the shed and pick up the products at the various 

locations. If the quantity reaches the capacity of the cart, 

represented as CAPa, the cart will return to the shed and will 

unload the products. This is referred to as a trip and assigned to 

carts. Figure 2 shows an example of the trip. In this case, the trip 

connects four picking locations. 

As the products are picked up, the stock decreases, and it is 

necessary to replenish them at the storage sites. As in the pickup 

process, the products in shortfall are uploaded on the carts from 

the AS/RS and replenished to the sites. When the cart is empty, it 

returns to the AS/RS and uploads products for the next 

replenishment round. This circuitous route is called a 

replenishment trip. The carts undertake multiple pickup trips that 

are started and completed at a shed.  

We then determine the cart sequence for pickup and 

replenishment, which is the output as shown in Fig. 3. Here, a 

schedule composed of two carts (C1 and C2) is shown. The 

numbers without parentheses correspond to storage locations, 

while the numbers in parentheses are the numbers of items to be 

picked or replenished at the corresponding locations. The start of 

trip is denoted by “s” or “r.” Here, “s” represents the shed and “r” 

represents AS/RS. Here, we define the action as the element of 

one pickup/replenishment operation, which contains the cart 

activity information. The information includes the cart ID, its 

location ID, and the type of action: replenishment, pickup, or load 

quantity. 

Carts are scheduled to complete the order-picking and 

replenishment operations as soon as possible. However, because 

of the existence of picking and replenishment tasks in the same 

period, several delays occur and increase the difficulty of solving 

the problem. There are several types of delays experienced by 

carts.  

1)  Loading Queue Delay (Dlq): This type of delay occurs 

when carts must load and unload products at the same site and at 

the same time. These interactions are not only variable but also 

unpredictable and they can cause a cart to diverge from its base 

time significantly. If the two carts have to do the same operations 

(replenishment or picking) at the same location in the same period, 

the carts operate in the order in which they arrive, that is, first in, 

Table 1 An example of the order list by shops 

Shop Produ

ct 1 

Produ

ct 2 

Produ

ct 3 

… Produ

ct n 

Shop A 10 2 0 … 0 

Shop B 40 35 15 … 20 

… … … … … … 

Shop M 0 10 0 … 60 

 
Table 2 An example of the stock sheet 

Location Product Quantity 

1 AA 40 

2 AB 50 

3 AC 80 

      

n CY 20 

 

: pickup locations

3

54

74 82

: pickup locations

3

54

74 82

 
Fig. 2 An example of a cart routing trip 

s

r

82(20) 54(25) s74(10)3(5) 15(60) s 75(53)

54(25) 75(53) r74(10) 3(5)15(60) rr 82(20)

c1

c2

s

r

82(20) 54(25) s74(10)3(5) 15(60) s 75(53)

54(25) 75(53) r74(10) 3(5)15(60) rr 82(20)

c1

c2  

Fig. 3 Cart schedule example 
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first out. The waiting time is called the loading queue delay time. 

2) Replenishment Wait Delay (Drw): This type of delay occurs 

when a picking cart waits for the replenishment at the sites in 

short until the replenishment cart finishes its task. The waiting 

time is referred to as the replenishment delay.  

3) Punishment Loading Delay (Dpl): This type of delay occurs 

when the number of products after replenishment exceeds the 

capacity at the storage location. The load or pick time for the 

products that exceeds the capacity takes Npu (>1) times than the 

standard load or pick time. This type of delay is referred to as a 

punishment loading delay. 

4) Collision Avoidance Delay (Dac): This type of delay occurs 

when a cart requires extra time to avoid a collision with another 

cart.  

As the problem is stated in this paper, the density of carts is 

relatively low and because mutual avoidance ability of cart drivers 

is so high, the degree of delay is not so large even two carts go 

through each other. Therefore, the fourth collision avoidance delay 

remains small compared to the total operation time and other 

delays. Thus, we ignore the collision avoidance delays and focus 

on the other three types of delays. 

The problem is presented as follows. Let: 

1 2{ , , , }kC c c c  : a set of carts 

1 2{ , , , }( )
ii i i inA a a a i C  : a set of actions of the cart i 

k : total number of carts 

in : total number of actions assigned to cart i ( )i C  

i : operation time of cart i with delay time ( )i C  

max( )i
i C




: total makespan 

Objective function: min.M   

3. Research Methodology 

3.1  Approach 

Scheduling is defined as the allocation of carts to a collection of 

tasks. The transition from one solution to another can improve the 

efficiency of finding a better solution. In most scheduling 

problems, tasks have been determined beforehand and never 

change in the scheduling process. In the field of split delivery 

vehicle routing problems (SDVRP), the concept of task splitting is 

introduced for deriving solutions [11]. Similarly, in the paper, we 

propose several operators introducing task splitting during the 

search process. 

In many warehouses, orders required for a specific day are just 

fixed several minutes before the warehouse opens. Then the 

planned/scheduled tasks must be finished in several minutes. Thus, 

maximum computation time tmax is an important condition. 

The metaheursitic based on Simulated Annealing (SA) is 

described in this section. First, we introduce the Simulated 

Annealing structure, and then, a general heuristic to generate an 

initial schedule is introduced in paragraph 3.3. Operators to move 

action from cart to cart are described in detail in paragraph 3.4. 

Local Search as a procedure will be proposed in paragraph 3.5; it 

aims to minimize the routing cost and reduce the delay caused by 

interaction between carts. 

3.2 SA Scheduler Structure 

Simulated Annealing is a popular metaheuristic that has found 

extensive use for solving complex combinatorial optimization 

problems [13]. In SA, the search begins at an initial temperature 

Tinit and proceeds until the stopping conditions are satisfied. We 

used one stopping condition when the current computation time 

reached the maximal computation time tmax. The flowchart of the 

SA scheduler is shown in detail in Fig. 4. 

The algorithms about initial schedule generation, operator 

selection, and local search will be discussed in detail in paragraphs 

3.3, 3.4, and 3.5, respectively. 

3.3  Initial Schedule Generation 

  The initial schedule is generated by a strategy that is widely 

practiced due to its ease of implementation. The current scheduler 

generates trips by clustering the orders as a modified S-shaped 

pattern explained in Section 4.1. The products are picked up or 

replenished based on an S-shaped routing [14], which involves a 

round trip to all of the shelves, shed, and AS/RS, as shown in Fig. 

Local search
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T Tinit

BEGIN

Operator selection

Route generation

Computational 

time > tmax?

END

Y

N
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0
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 


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Fig. 4 Flowchart of the proposed scheduler 

 
Fig. 5 An example of S-shape route 
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5. If the quantities to be picked up during the trip will exceed the 

capacity of cart (CAPa) at the next picking location, the cart will 

stop picking and will return to the shed or AS/RS. At the 

beginning, all the carts start at the AS/RS to replenish products. 

The next generated trip will be assigned to the cart that returns 

first. This is repeated until there are no more unassigned 

replenishments in the warehouse. At that time, the carts tasked 

with replenishment will be reassigned to pick-up trips from the 

last site of replenishment. If there are no more picking trips to be 

assigned, no further activity is required. 

3.4 Operator Selection 

The operators in a scheduling problem relocate actions from 

one cart to another. The three types of operators are defined 

below: Action Transfer (total transfer), Action Exchange (total 

action swap), and Action Split (partial transfer). 

1) Action Transfer: Action Transfer is a move wherein Aik of Ci is 

transferred from Ci to another cart Cj. The transfer is done such 

that a new trip is constructed for Aik at the end of the action 

sequence of Cj. Here, i, j, and k are randomly selected. 

2) Action Exchange: An Action Exchange is a move in which the 

Aik from Ci is relocated to another Cj. Similarly, the Ajl of Cj is 

relocated to Ci. After this operation, both Ci and Cj will add one 

new trip containing Ajl and Aik at the end of the respective action 

sequences. Here, i, j, k, and l are randomly selected. 

3) Action Split: If actions are split, a better balance can be 

achieved among the carts. The Action Split operator is an 

extension of the Action Transfer that allows partial relocation of 

an action from one cart to another, as shown in Fig. 6. 

We can estimate the amount to items *i  of Aik to be moved 

from Ci to another cart Cj in order to achieve a better makespan 

balance between two carts. 

*

2

i j p

load

T
i

T

  
                 (1) 

In (1), 
i and j  are the makespans of Ci and Cj before the 

action split operation. Tp is the increased travel cost of the new 

trip of a new split action, which is moved to Cj. Tload is the 

Loading time per one case. Equation (1) is constructed to create a 

balance between 
i  and j . 

We propose the Split_I methodology to implement the above 

three operations. The algorithm will be explained as follows.  

Step 1: Randomly select i, j, k, and l. Calculate *i , if 

*0 iki num   (the number of items in Aik), and then go to 

Step 2. Otherwise, go to Step 3. 

Step 2: Create a new action Aik for 
*i and set the new action to Ci, 

and go to Step 4. 

Step 3: If *

iki num , go to Step 4. Otherwise, go to Step 5. 

Step 4: Do Action Transfer to Cj. End. 

Step 5: Generate Ajl in Cj, Do Action Exchange. End. 

 

In the Split_I and Non-split_I, we make a decision to select the 

action exchange or the action transfer by utilizing 
*i  at Step 3. 

On the other hand, in Split_R and Non-split_R, we select the 

action exchange and the action transfer randomly. We can 

consider other classes to include the split operation or not. Split_I 

and Split_R include the split operation, and Non-split_I and 

Non-split_R do not, and we proceed from Step 1 to Step 3, 

skipping Step 2. The relationship of the four methods is shown in 

Table 3. 

3.5 Local Search 

The proposed operators just described are easy to implement. 

However, these operators will cause the following two problems. 

a) The travel distance for the related carts will be affected and 

result in longer makespans. 

b) Some delays may occur in the unchecked new schedule. 

The next two parts deals with “a)” and “b)” respectively. 

The first problem is to determine how to change the sequence of 

the actions and how to cluster the actions into some trips to 

minimize the traveling cost. 

After the routing problem has been solved, the next step is to 

minimize the delays caused by the interactions between carts. 

Trip Exchange is a simple process that aims to minimize the 

delays by exchanging the trip sequence inside the corresponding 

cart. The Trip Exchange is different according to the type of delay.  

1) Determine which trip causes loading queue delays and 

exchange this trip with the last trip.  

2) Determine which replenishment trip to remedy a 

product shortfall produces a delay (causing 

replenishing waiting delay) and exchange that trip with 

the first trip. 

4. SIMULATION AND RESULTS 

4.1 The Reference Scheduler Here, for a comparison, we 

introduce the reference scheduler that is currently employed by 

the industrial partner in this research [15]. The strategy is selected 
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Fig.6 Action split operation that can produce a better 

makespan 

Table 3 Four methods 
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due to the following two reasons: (a) there have been no former 

algorithms in the literature that deal with the same problem 

statement in this paper, and (b) the problem is still solved in real 

warehouses with a specific rule-based algorithm. Therefore the 

proposed algorithm is modeled as the reference scheduler in order 

to evaluate the proposed algorithm quantitatively. The reference 

scheduler is similar to the heuristic of the Initial Schedule 

mentioned in Section 3. The carts based on the S-shaped routing 

will add products to the trip until the capacity of the trip is 

reached. The remaining products will be picked up on the next trip. 

When order-picking starts, all carts will start from the AS/RS to 

unload replenishments. The picking tasks will not start until all 

replenishing tasks are finished. The advantage of this scheduler is 

that the Replenishment Waiting Delay will not occur because 

stock products are sufficient after replenishing. 

4.2 Simulation Results 

First, we evaluate the performance of the metaheuristic-based 

SA scheduler with different operators in computer experiments. 

The maximal computation time tmax is set to be 3 minutes under 

the environment of a Pentium4 1.2GHz with 1GB RAM. Table 4 

shows the simulation environment. The input orders are assigned 

with respect to shops that represent the regions to which products 

are delivered. A comprehensive set of data instances is used to 

evaluate the schedulers. The basic data instances are 3 data as 

follows: 

 Instance 1: 720 cases/shop distributed in 75 locations 

 Instance 2: 720 cases/shop distributed in 45 locations 

 Instance 3: 720 cases/shop distributed in 30 locations 

These data are created based on the orders of real warehouses. 

The number of shops is set at 2 to 6. Restriction in generating trips 

is as follows: 

For the picking tasks, trips must consist of products from the 

same shop.  

For the replenishment tasks, no restriction exists as to the 

products in the same trip. 

Figure 7 shows the average values of makespan (in seconds) 

with input of Instance 1 to 3. All four sets of operators showed 

better performances than the reference scheduler. If we compare 

Split-I with the reference scheduler, a significant improvement 

(21.9% - 45.3%) is achieved. Both Split_R and Split_I show better 

performance than Non-Split_R and Non-Split_I. Comparing with 

Non-Split, Split can achieve, on average, a 2.4% improvement. 

Thus, the Action Split operator is proved to be efficient to balance 

the cart’s makespans. Both Non-Split_I and Split_I show better 

results than Non-Split_R and Split_R. Especially, Split_I achieved 

the best result, i.e., a 1.9 % improvement, compared with 

nonSplit_R. It is a feasible to determine the operator by 

calculating the *i . 

Then, we evaluate the improvement of 3 instances by increasing 

the number of shops. The trend is for the makespans of the 

reference scheduler to increase in a linear manner as the number 

of items increases. Split-I can achieve more improvement by 

increasing the number of shops. It is possible that, as the picking 

intensity increases, the items tend to concentrate on several 

specific locations and loading que delay will increase. Under this 

condition, the proposed metaheurstic is more efficient to reduce 

the delays and results of minimizing the makespans. The 

improvement of 3 instances does not show much difference when 

the number of shops is low (e.g., 2 or 3). However, when the 

number of shops increases (e.g., when the number of shops is 5 or 

Table 4 Simulation environment 

Item Quantity 

Cart speed 1 meter/second 

Loading time per one case (Tlead) 1 second/case 

Npu 2 

Average stock 30 cases/location 

Cart number 4 

Location size 1 1  m2 

Number of locations 84 

Location capacity (CAPs) 60 cases 

Cart capacity (CAPa) 60 cases 

Loading time at shed or AS/RS 60 seconds 

Tinit 1000 

A 0.9 

 

Reference

Non-Split_R

Non-Split_I

Split-R

Split-I

 
(a) For Instance 1 

Reference

Non-Split_R

Non-Split_I

Split-R

Split-I

 

(b) For Instance 2 

Reference

Non-Split_R

Non-Split_I

Split-R

Split-I

 

(c) For Instance 3 

Fig. 7 Makespans of 5 schedulers with respect to the number of 

shops 
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6), the low-density instance (Instance 1) shows better 

improvement than the high-density instance (Instance 3).  

In a multi-shop picking environment, orders from different 

shops with a few items each will be combined into one picking 

instance to improve the picking efficiency. When the number of 

shops is not large, combining their orders into one picking event 

will not have a significant effect. On the other hand, as the number 

of shops increases, combination of the order can produce a high 

efficiency. 

The obtained results of Split-I method has varied even with the 

same condition because it is a kind of a random-search method. In 

order to see the influence of the variance, simulations are made for 

Split-I with 30 times when the number of shops is 2 and in the 

case of Instance 1, in which the difference between the result of 

Split-I and that of the reference sheduler is smallest. As a result, 

the standard score of the value for the reference scheduler has the 

standard score of -13.6, which means that the result of Split-I and 

that of the reference schduler is significantly different. 

The reason can be concluded from the comparison of three 

delays, total Dlq, total Dpl, and total Drw in the reference scheduler 

and Split-I. This is the result when the number of shops is 2 and in 

the case of Instance 1 (Figure 8). In the reference scheduler, 

although there are no Drw in the reference scheduler because of 

first replenishment next picking policy, many Dlq and Dpl make the 

makespan longer. The reasoning behind this improvement can be 

applied to the following items. 

- The proposed algorithm can produce a good schedule with 

shorter makespans. 

- Local Search has succeeded in restraining Dlq and Dpl 

through Trip Exchange. 

  For other instances and for other number of shops, almost the 

same tendency can be obtained with the above-mentioned 

discussions. 

5.  CONCLUSION 

In this paper, the problem of ordering-picking with 

replenishment has been addressed.  

This research aims to generate the agents’ scheduling and make 

the agents finish the tasks as soon as possible, that is, minimizing 

makespans. An efficient search-based metaheuristic is proposed 

because it is known to give optimal or near-optimal results. 

In the metaheuristic, the transition from one solution to a new 

solution is a serious problem, especially in a complex system. 

Thus, we presented operators that aim to implement the transition 

from one schedule to another by way of relocating (moving) the 

actions between agents. Three operators, Action Transfer, Action 

Exchange, and Action Split, are identified. All operators are 

involved in the transfer of action between agents. The split and 

swap conditions are two determinations with which we are 

concerned. According to the two conditions, we conclude that 

there are four sets of operators for the transition of a schedule. 

Instances are arranged according to varying the number of 

shops. Many experiments have been conducted in different 

instances and in a class-based storage assignment condition. 

Experiment results proved that a kind of SA scheduler, Split-I had 

a little improvement than three other scheduler (Split-R, 

Non-Split-I, Non-Split-R). By comparison with the reference 

scheduler, the Split-I SA scheduler was efficient enough to balance 

the makespans between agents. Experimental results revealed that 

the Split-I SA scheduler can achieve a significant improvement 

(averaged about 31%) in comparison to the reference scheduler. 

The trend is for the average improvement increase as the number 

of shops increases. When the pickup intensity increases, so does 

the volume of stock in one location, and, as a result, the greater 

the possibility of a long delay. Under this condition, the proposed 

metaheuristic is more efficient to reduce the delays and result of 

minimizing the makespans.  
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