3波長干渉計測のためのクロストーク補正

北川克一

Crosstalk Compensation for Three-Wavelength Interferometry

Katsuichi KITAGAWA*

A crosstalk compensation technique is proposed for three-wavelength single-shot interferometry. This technique is essential when a commercially available RGB LED illuminator and a color camera are used for the imaging system. Based on a linear model, the crosstalk compensation algorithm is derived. The crosstalk coefficients are obtained from the linear regression analysis of the R,G,B signals in three images captured with a different LED illumination. The effectiveness of the proposed technique has been confirmed by several methods. Finally, it has been applied to the single-shot interferometric measurement of 1 µm step height. The algorithms used and experimental results are presented.

Key words: crosstalk compensation, three-wavelength, interferometry, surface profiler, single-shot

1. はじめに

近年,半導体や液晶など様々な産業分野において,ナノメートルオーダの表面凹凸形状を精度良く測定したいという要求が 高まってきている.光干渉を用いた表面形状測定法は,速度や 測定精度,保守性の観点から最も有望な計測手法である.

代表的な光干渉計測法である位相シフト法¹⁾では,干渉計の 測定面と参照面の相対距離を変えながら複数枚の干渉画像を撮 像し,その情報から表面形状を推定する.この方法では,複数 の画像を撮像する必要があるため,振動などの外乱のある環境 下では精度が大きく低下するという問題がある.この解決策と して,一枚の画像から表面形状を求めるワンショット計測法が 提案されている.その代表的なものは,参照面を傾斜させてキ ャリア縞を生成させる方法であり,空間キャリア縞法²⁾⁻⁸⁾と呼 ばれている(Fig.1).この方法によって得られる1枚の干渉縞 画像(Fig. 2)からフーリエ変換法³⁾,空間位相同期法⁴⁾⁻⁶⁾, 局所モデル適合法(Local Model Fitting 法;LMF法)⁷⁾⁸⁾などによ り表面形状が求められる.

しかし,1 枚の縞画像から縞次数を決定することはできない ので,隣接画素間に光源波長の1/4 以上の段差が存在する場合 には,正しい位相アンラッピングができないという問題がある. この問題解決のために,筆者らは,青色と赤色の2個のLED照 明装置とカラーカメラを用いて,2 波長同時撮像系を実現し, 350nmの段差の2波長ワンショット測定に成功した⁹¹⁰⁰.この 方法では,2 波長の信号のクロストークを避けるために,カラ ーカメラの B,R 信号のみを利用した.

しかし, さらなる測定レンジ拡大を目的に, G 信号を活用した3 波長ワンショット計測法を実現するためには, クロストーク補正が必須である.ここで言うクロストークとは, カラーカメラの R,G,B 成分のスペクトル感度分布がオーバーラップしているために, カメラの R,G,B 成分が3 色の照明光と完全には対

Fig. 1 Optics of spatial carrier method.

Fig. 2 Interferogram with carrier fringes.

応していなく,たとえば,カメラのG成分には,B照明による 信号も混入することを言う.

ところで,本報告のような多波長同時照明光源とカラーカメ ラを使用した干渉計測手法としては,Pfortner ら¹¹⁾の提案があ る.そこでは,光源に3台のレーザを使用し,3板式カラーカ メラにより3波長位相シフト法を実現しているが,光学系の詳 細は報告されていなく,クロストーク補正は不要として実施さ れていない.

一方,カラー投影方式の三次元計測分野では,クロストーク 補正に関して,いくつかの報告がある¹²⁻¹⁶.たとえば,佐藤ら ¹⁴⁾は,カラーパターン投影法に基づくレンジファインダの研究 において,液晶プロジェクタとカラーカメラの RGB チャネル 間のクロストーク補正をおこなっている.

筆者らは,上記カラー投影方式における補正の考え方をワン ショット干渉計測に適用し,良い結果を得た.また,干渉計測 の光源が近似単色光であることを利用して,クロストーク補正 の効果の確認方法を検討した.本報では,クロストーク補正の

^{*} 東レエンジニアリング(株)エレクトロニクス事業本部 開発センター 滋賀県大津市大江 1-1-45

^{*} R&D Center, Electronics Division, Toray Engineering Co., Ltd.

⁽Received June 17, 2009)

アルゴリズム ,クロストーク補正係数の求め方 効果確認方法, 実験結果などを報告する.

2. 撮像系

撮像系は, Fig. 3 に示す市販の 3 色 LED 照明装置(メーカ: CCS,型式:HLV-3M-RGB-3W)とカラーカメラ(メーカ:Bastler, 型式:sca640-70gc)により構成される.照明装置の仕様を Table 1 に示す LED のピーク波長(カタログ値)^{注1)}は A70nm, 530nm, 627nm である.また,帯域幅(FWHM)は 20~35nm である.こ れは,コヒーレント長が約 10~20µm であることを意味し,参 照面と試料面の相対的傾斜角度を過大にしない限り,撮像面の 全面に干渉縞が得られる.

Fig. 4 は,使用したカラーカメラの分光感度特性と,3 個の LED のピーク波長を示す.この3 個の LED を同時点灯して, カラーカメラで撮像すると,3 波長干渉画像が得られる.しか し,カメラの R,G,B 分光感度曲線は互いにオーバーラップして いるので,各信号間にはクロストークが発生する.特に,B 波 長成分からG信号へのクロストークは数十%と推測され,クロ ストーク補正が必要である.

Color	Peak Wavelength	FWHM	
Color	(nm)	(nm)	
R	627	20	
G	530	35	
В	470	25	

 Table 1
 Specifications of LEDs (typ.)

3. クロストーク補正法

第1章で述べたように,クロストークの補正には,カラー投 影法におけるクロストーク補正の考え方¹²⁻¹⁶が適用できる.す なわち,クロストークが以下のような線形のモデルで表される ことを仮定する.

$$\begin{cases} B' = B + aG + bR\\ G' = cB + G + dR\\ R' = eB + fG + R \end{cases}$$
(1)

ここで,B',G',R'は観測輝度,B,G,R は真の輝度,a,b,c,d,e,f は クロストークの強度を表す係数である.係数は c を除き,数% と小さいので,係数の積の項を無視すると,真の輝度を以下の 式により求めることができる.

$$\begin{cases}
B = B' - aG' - bR' \\
G = -cB' + G' - dR' \\
R = -eB' - fG' + R'
\end{cases}$$
(2)

係数の求め方は,4.2節に述べる.

4. 実験結果と考察

4.1 実験方法

Fig. 3 RGB-LED illuminator.

Fig. 4 Spectral sensitivity of the color CCD camera, with the peak wavelengths of three LEDs.

実験装置を Fig.5 に示す.3波長ワンショット測定用に製作 されたもので,光源は3色(RGB)LED 照明装置であり,干渉画 像はカラーカメラで撮像される.1µm 標準段差試料を撮像し た干渉画像を Fig.6 に示す.中央下部に凹形状の段差がある. この画像を各色成分に分解すると,Fig.7 が得られた.波長に 依存して,編周期の変化していることが観察される.

4.2 クロストーク係数の推定

先ず,本撮像系におけるクロストーク補正係数を求めた.各 LED 照明を単独点灯して得られた3枚のカラー画像をFig.8の 第1列に示す.それらの画像を色分解すると,Fig.8の第2~4 列のようになり,概略のクロストークの大きさがわかる.カラ ー画像の各画素における R,B,G 輝度値から,たとえば,Fig.9 に示すような相関図を得る.本図は,B-LED 点灯時のB 輝度 とG 輝度,R 輝度の相関である.回帰係数から,クロストーク 係数として,c=0.28,e=0.01 が得られた.同様の方法で,以下に 示す係数行列が得られた.Fig.4の分光特性から予想される数 値と近似している.

(1	а	b	(1	0.05	0.00
c	1	d =	0.28	1	0.04
e	f	1)	0.01	0.04	1)

4.3 クロストーク補正と効果確認法

これらの係数を使用して,(2)式によりクロストークを補正し, 補正の効果を以下の複数の方法で確認した.

(1) 輝度の相関

補正後の B 輝度と G 輝度 R 輝度との相関を Fig. 10 に示す. 補正前の相関図 (Fig. 9)と比較すると, クロストークが完全に 除去されていることがわかる.

⁽注1)カタログにはドミナント波長が記載されていて, ピーク 波長は不明である.しかし,両者の差は数nm 程度と推定される ので,本論文ではピーク波長と表記する.

5. ワンショット計測への適用

本提案のクロストーク補正法を3波長ワンショット計測に適用した.使用した3波長ワンショット計測法のフローチャートをFig.13に示す.1枚のカラー画像をクロストーク補正し,位相計算,アンラッピングを経て,各画素の高さを求めた.測定結果をFig.14に示す.この結果は、白色干渉法による測定結果と良く一致し,本提案手法の妥当性と有効性が確認できた.

(2) 輝度プロファイルの比較

(3) 周波数スペクトルの比較

補正後の波形ではそれが消えている.

補正前後の G 輝度プロファイルを Fig. 11 に示す.補正前の

波形では2つの周波数の混在によるビート信号が観測されるが,

補正前後の信号の周波数スペクトルを Fig. 12 に示す . 470nm

付近の波長成分が補正により除去されていることを確認できた.

Height

Fig. 13 Flowchart of three-wavelength single-shot interferometry.

Fig. 14 Measurement result of 1µm step height.

6. まとめ

本報告では,3 波長ワンショット干渉計測のためのクロスト ーク補正法を提案した.カラーカメラの R,G,B 輝度信号が3 波 長光源による輝度信号の和であるとして,クロストークの線形 モデルを仮定する.クロストーク係数は,光源を単独点灯し, 輝度間の相関から求める.光源が近似単色光であることを利用 した評価法により,補正効果を確認した.さらに,本手法を利 用した3 波長ワンショット計測法により,1µm 段差試料の測定 に成功した.高速,かつ,振動の影響を受けないワンショット 干渉計測は,オンマシン計測やオンライン計測に適しており, 今後,産業界での広い応用が期待される.

参考文献

- J. H. Brunning et al.: Digital wavefront measuring interferometer for testing optical surfaces and lenses, Appl. Opt., 13, 2693/2703 (1974).
- 2) 加藤純一:実時間干渉じま解析とその応用,精密工学会誌, 64-9, 1289/1293 (1998).
- M. Takeda, H. Ina, and S. Kobayashi: Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry, J. Opt. Soc. Am., 72, 156/160 (1982).
- S. Toyooka and M. Tominaga: Spatial fringe scanning for optical phase measurement, Opt. Commun., 51, 68/70 (1984).
- K. H. Womack: Interferometric phase measurement using spatial synchronous detection, Opt. Eng., 23, 391/395 (1984).
- J. Kato, I. Yamaguchi, T. Nakamura, and S. Kuwashima: Video-rate fringe analyzer based on phase-shifting electronic moire patterns, Appl. Opt., 36, 8403/8412 (1997).

- M. Sugiyama, H. Ogawa, K. Kitagawa and K. Suzuki: Single-shot surface profiling by local model fitting, Appl. Opt., 45, 7999/8005 (2006).
- 8) 杉山将,松坂拓哉,小川英光,北川克一,鈴木一嘉:急峻な段差を 持つ表面のワンショット形状計測法,精密工学会 2007 年度春季大 会学術講演会講演論文集,585/586 (2007).
- K. Kitagawa, M. Sugiyama, T. Matsuzaka, H. Ogawa, and K. Suzuki, Two-wavelength single-shot interferometry, Proc. of SICE Annual Conference 2007 in Takamatsu (計測自動制御学会学術講演会予稿集), 724/728 (2007).
- 北川克一, 杉山将, 松坂拓哉,小川英光, 鈴木一嘉: 2 波長ワンショット 下渉計測,精密工学会誌, 75-2, 273/277 (2009).
- A. Pfortner and J. Schwider: Red-green-blue interferometer for the metrology of discontinuous structures, Appl. Opt., 42, 667/673 (2003).
- D. Caspi, N. Kiryati and J. Shamir: Range imaging with adaptive color structured light, IEEE Trans. on Patt. Anal. Machine Intell., 20, 470/480 (1998).
- 13) P. S. Huang, Q. Y. Hu, F. Jin, and F. P. Chiang: Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring, Opt. Eng., 38, 1065/1071 (1999).
- 14) 佐藤辰雄,築根秀男:カラー符号化を用いたレンジファインダ,電気学会システム・制御研究会,SC-00-5,23/28 (2000).
- 15) Z. Zhang, C. E. Towers, and D.P. Towers: Time efficient color fringe projection system for 3D shape and color using optimum 3-frequency selection, Opt. Express, 14, 6444/6455 (2006).
- 16) Z. H. Zhang, C. E. Towers and D. P. Towers: Phase and colour calculation in colour fringe projection, J. Opt. A: Pure Appl. Opt., 9, 81/86 (2007).

[著者紹介]

北川 克一 (正会員)

1964 年東京大学計数工学科卒 .同年,東レ(株) 入社.1989 年より画像処理を応用した半導体 検査機器の研究開発に従事.2000 年より東レ エンジニアリング(株)技監.2001 年度計測 自動制御学会技術賞,ViEW2003 小田原賞,手 島記念財団発明賞を受賞.計測制御エンジニ ア