# 光ファイバセンサによるバグフィルタの寿命予知

島川 聡\*, 日向 滋\*, 鮑 力民\*, 渡辺 義見\*\*, 木嶋 敬昌\*\*\*, 清水 秀彦\*\*\*\*

# Evaluation of Life time of Bag-filter by Optical Fiber Sensor

Satoshi SHIMAKAWA<sup>\*</sup>, Shigeru HINATA<sup>\*</sup>, Limin BAO<sup>\*</sup>, Yoshimi WATANABE<sup>\*\*</sup>, Takamasa KISHIMA<sup>\*\*\*</sup> and Hidehiko SHIMIZU<sup>\*\*\*\*</sup>

An Experimental study to evaluate the life time of bag-filter by means of an optical fiber sensor is performed. The measurement is based on the principle of detecting the start of the optical attenuation due to the wear of optical fiber. The life time of optical fiber, the time it takes to wear the protective polyimide film of optical fiber by collision of particulate injected from the nozzle is measured. It is found that the rate of the amount of wear for fibrous plastic material is constant in any thickness of a fiber at a given conveying velocity. Both life times of optical fiber and bag-filter are obtained under the various conveying velocities of impinging particles. It is shown that the life time of bag-filter can be predicted by the experimental formula involving the measured value of the life time of optical fiber.

Key Words: bag-filter, optical fiber, wear, dust collector, incinerator

#### 1. 緒言

近年ゴミ焼却施設などの排ガス問題を抱える多くの施設で は、粉塵を含む有害ガス、ダイオキシンおよび重金属などを 高効率で除去できる優れた方法としてバグフィルタが広く用 いられている. Fig.1 にパルスジェット式バグフィルタ集塵機 の概略図を示す. パルスジェット式バグフィルタは機械振動 式や逆洗式のものと比べ濾過速度が大きく,連続運転が可能 であるといった利点があり、ゴミ焼却施設、石炭ボイラ排ガ ス処理など多方面から需要がある. ところが、この集塵機に 使用されるフィルタには粉塵による摩耗のため寿命があり, 交換時期を誤ると大気中に汚染物質を排出してしまうという 重大な事故が発生する. このような事故を防ぐことは社会的 要請である.しかし、現状では破損を未然に予知できないだ けでなく,経験的な周期でフィルタ交換をしていることもあ りコスト面でも不経済である.これまでにバグフィルタにつ いてはバグフィルタ集塵機内の流れ<sup>1)</sup>, 摩耗のメカニズム<sup>2),3)</sup>, バグフィルタダスト払落し機構<sup>4),5)</sup>, 強磁性体を用いたバグ

+ 第48回自動制御連合講演会で一部発表 (2005・11) \*信州大学繊維学部 \*\*\*名古屋工業大学機械工学科 \*\*\*\* 日本スピンドル製造(株) \*Faculty of Textile Science & Technology, Shinshu University. \*\*\* Department of Mechanical Engineering, Nagoya Institute of Technology. \*\*\*\* NIHON SPINDLE MFG. CO., LTD. \*\*\*\*\* TOTOKU Electric CO., LTD. (Received May 22, 2006) フィルタ摩耗量測定方法<sup>の</sup>など幾つかの報告はなされている. しかしながら,バグフィルタの摩耗は実際の機内構造に基づ く偏流,ダストの性状,ガスの性質や温度など多くの要因に 依存しておりその運転条件,履歴が明確に判らない限りフィ ルタ摩耗量,すなわち,バグフィルタ寿命予知は困難である.

そこで本研究ではバグフィルタ安全性能向上の一つの試み として,機内のバグフィルタと同じ環境下にさらされるよう 一緒に取付けた光ファイバセンサの摩耗寿命を知って,バグ フィルタの寿命を予知する計測法を提案する.



Fig. 1 Dust collector of bag filter

単繊維摩耗実験装置を使って光ファイバの摩耗による光の 伝送量の減衰特性を種々の流動条件下で調べ、ついでバグフ ィルタ試料片の基布繊維が摩耗により露出するまでの時間に ついても同じ流動条件にて調べる.これらの検討から光ファ イバが摩耗により破損するまでの寿命時間とバグフィルタが 摩耗により破損に至るまでの寿命時間の関係を明らかにし, 本計測法がバグフィルタ寿命予知に有用であることを示す.

## 2. 実験装置および実験方法

Fig.2 に単繊維摩耗実験装置の概略図を示す. 寿命予知セン サ材として候補にあげられている光ファイバを支持板に張力 を付加しない状態で設置した.支持板は 30×100mmの鉄板 で作られており、噴流が繊維に衝突後板で直角半径方向に曲 げられる場合と、支持板にφ16の孔をあけ、そのまま衝突後 通過できる場合の二種類で行なった.

投光側に Photom 製 MODEL370H LED 安定光源(波 長:650nm), 受光側に ADVANTEST 製 Q82311 光パワーセン サを装着した.ゴミ焼却炉において発生するダストの粒子径 は $1 \mu m \sim 120 \mu m$  であることを考慮して、粒径 $1 \mu m \sim 106 \mu$ mの昭和電工製, 粒度 F220 ホワイトモランダム(白色アルミ ナ)を使用した.マイクロフィーダから一定供給量で粒子をコ ンプレッサより送られた空気流に入れ混相流とし、ノズル内 径 5.35mm のエアガンより噴出した.



Fig. 2 Experimental apparatus

ノズル出口から光ファイバまでの距離を 20mm, 衝突角 θ を90°に設定し、摩耗実験を行なった.あらかじめノズルか ら 20mm の位置で噴流の速度分布を調べ, 光ファイバ繊維径 内では一様な速度で衝突していることを確認した. 代表速度 としてはこの噴流中央部での空気速度(粒子噴出速度) Vm/s を使用することとした. V は厳密には粒子衝突速度とは異な るが、十分粒子が小さい場合には一致する. 受光した光の伝 送量は ADVANTEST 製 Q8230 光パワーメータを介してサン プリング周期 1s でパーソナルコンピュータに取込まれる.

#### 実験結果および考察

### 3.1 単繊維光ファイバ

有力なセンサ材として考えられている光ファイバはコア径 50 µm, クラッド径 125 µm の材質が石英ガラスで, その外 側にポリイミドを平均被覆厚さ12.5µmで被覆したものであ る.この被覆材のポリイミドはセンサとしてフィルタに装着 した場合を想定しても耐熱性の面で優れており、バグフィル タのフィルタ繊維素材としても多用されている. このほかに 市販の光ファイバとしてアクリル樹脂製光ファイバがある. バグフィルタのフェルト繊維素が主に樹脂素材であることを 考えてコア径486µm, クラッド径500µm, コア材としてポ リメチルメタクリレート樹脂、クラッド材としてフッ素樹脂 の光ファイバを被覆材の摩耗機構考察のために採用した.

#### 3.2 光ファイバ寿命時間

(1) ポリイミド被覆した石英ガラス光ファイバ寿命時間 ポリイミド被覆した石英ガラス光ファイバの摩耗がどのよ うな摩耗機構によって進行し、その結果寿命に至るかを、単 繊維摩耗実験装置を使用して調査した.

Fig.3 に光ファイバが摩耗するにつれて変化する光の伝送 量と摩耗時間の関係、およびそのときの光ファイバの断面写 真を示す.写真で薄い白色円環部分がポリイミド被覆部であ る. 粒子噴出速度 V は 21.6m/s, 平均粒子供給量は 2.02g/min



Fig. 3 Relationship between transmitted optical power and wearing times

の場合である.ポリイミド被覆の摩耗に要する時間は約 3000s とその後の石英ガラスファイバの摩耗に要する時間 800sに比べて被覆厚さ12.5µmと薄いにも拘らず長いことが わかる.これはポリイミドが耐摩耗性材料であるためと考え ている.また、ポリイミドと石英ガラスの主要摩耗機構が異 なり、摩耗量が変わることも原因である. 石英ガラスファイ バの摩耗の断面形状は後に示す樹脂ファイバのそれと比べて 粒子衝突流の淀み点近くが脆性き裂により削られ平坦になっ ている.ポリイミド被覆が摩耗により削り取られるまでは光 の伝送量に変化は見られないが、摩耗が進行し傷がクラッド 表面に達すると急速にその伝送量は減少していき,やがて石 英ガラスコア部が破損して光の伝送量はなくなるという変化 特性を示す.ここで,光伝送量が急激に減少し始めるまでの 時間を光ファイバ寿命時間 T<sub>f</sub>とする. 光ファイバ寿命時間は 被覆材が摩耗により破損するまでの時間であり、被覆材の厚 さを変化させることでその時間を制御できると考えられる.

(2) 被覆厚さの異なる単繊維光ファイバ摩耗実験

Fig.4 にポリイミドの被覆厚さが異なる光ファイバを摩耗 したときの摩耗時間と光の伝送量の関係を示す.被覆厚さが 6µm,9µm,12.5µmの光ファイバを使用した.粒子噴出速 度Vは21.6m/s,平均粒子供給量は2.07g/minの場合である. 被覆が厚くなるほど光ファイバから光が漏れ出すまでの時 間,すなわち,光ファイバ寿命時間が延びていることがわか る.被覆厚さを変化させることで光ファイバ寿命時間の制御 が可能となる.光ファイバ寿命時間を制御しバグフィルタの 破損時期と一致させることで,光の減衰量からバグフィルタ 交換時期を検知できる.

(3) 異なる粒子噴出速度での単繊維光ファイバ摩耗実験

**Fig.5** にポリイミド被覆の光ファイバを異なる粒子噴出速 度で摩耗実験したときの,摩耗時間と光の伝送量の関係を示 す. 光ファイバはポリイミド被覆厚さ 12.5 µ m のものを使用 した. 粒子噴出速度 V は 30.4m/s, 23.7m/s, 18.1m/s および 14.8m/s の場合である. 平均粒子供給量は 2.02g/min である.



power and wearing times for the various values of coating thickness of the optical fiber

粒子噴出速度が遅くなると被覆材が摩耗されにくくなり,光 ファイバ寿命時間は急激に長くなる.

**Fig.6** にポリイミド被覆厚さ 12.5μm の光ファイバについ て,異なる粒子噴出速度で摩耗実験したときの粒子噴出速度 と光ファイバ寿命時間の関係を示す.粒子噴出速度 V が 40.6m/s の場合で,光ファイバ寿命時間 T<sub>f</sub>の計測における不 確かさについて調べた<sup>7)</sup>. その結果,

$$T_f = 380 \ s \pm 30 \ s$$
 (1)

となった. ここで,380 s は平均値で,記号±に続く数は拡張 不確かさUの数値であり,Uは平均値の標準不確かさ $u(x_i)=15$ s とv=9の自由度に対する t 分布に基づく包含係数 k=2.26 から決定されたもので 95%の信頼の水準をもつと推定され る区間を定める.この不確かさの主たる原因は被覆材の偏芯 による厚さに偏りがあるためである.厚さは直接寿命時間に 関わるので実際のセンサとして使用するに当たっては製造方 法に工夫が必要である.最小二乗回帰分析により求めた実験 式を示すと



fiber and conveying velocities

$$T_f = 6.70 \times 10^7 V^{-3.26}$$

(2)

となる. 近似の良さを示す尺度の相関係数 r は-0.993 である. 実験式に対する測定値 T<sub>f</sub>の残差の相対標準偏差は15.4%となった.

被覆材の摩耗量を寿命時間で除した単位時間当たりの摩耗 量は粒子噴出速度の3.26 乗に比例する.粉体がプラスチック 材料に衝突するときの摩耗量は,粒子衝突速度の2~4.2 乗に 比例するという報告があり<sup>8),9</sup>,本実験の水平円柱状のポリ イミド被覆材の場合もそのべき数範囲に入る結果である.

### 3.3 バグフィルタの粒子捕集と摩耗機構について

(1) バグフィルタ濾布

濾過集塵装置は濾材に含塵ガスを通すことでダストを分離捕集する装置である.濾過材として要求される特性としては、濾過効率に優れていること、耐熱性、耐薬品性、払い落とし性に優れていること、機械的強度が挙げられる<sup>10)</sup>.機械的強度の中には引張り強度、破裂強度、耐摩耗性、耐折れ性がある.濾布には織布と不織布があり、本研究で扱うのは廃棄物焼却施設で広く使用されている不織濾布である.本摩耗試験では、濾布に泉(株)製テファイヤを使用した. Table 1 に濾布の特性値を示す. PTFE (テフロン)繊維 75%、ガラス繊維 25%を混合した短い繊維を PTFE 繊維の基布上に植えつけて製造したフェルトである. Fig.7 にフィルタ表面写真を示す.捕集効率向上のため表面に繊維素の毛羽立ちが見られる.

Table 1 Properties of bag filter

|     |           |           |       | _ |
|-----|-----------|-----------|-------|---|
| Ī   | Neight    | (g/m²)    | 650   |   |
| ]   | Thicknes  | s (mm)    | 1.4   |   |
| I   | Fiber dia | ι. ( μ m) | 7.9   |   |
| 4   |           | / 4-3     | 1 1 P |   |
|     |           |           |       | 4 |
|     |           | 边座。       |       |   |
|     |           | a free in |       |   |
| 1   |           |           |       |   |
| No. |           | A CAL     | 1mm   |   |

Fig. 7 Photograph of bag filter

(2) バグフィルタ繊維素による粒子の捕集と摩耗機構

Fig.8 に不織布バグフィルタの断面模式図を示す.不織布フ ィルタではまず慣性,拡散,さえぎりなどにより捕集される. つぎに濾布上にダストが堆積してくると濾布内部に粒子が侵 入していき,そこでふるい効果により捕集される.濾布に捕 集されたダストは堆積して,バグフィルタの圧力損失が増加 する.このため,堆積したダストを適当な間隔で払い落とし する.払い落とし後,一次付着層が残された状態から再び捕 集がはじまる.これらの捕集機構については多くの研究があり,高橋によって詳しく纏められている<sup>11), 12), 13)</sup>.

捕集機構と違って不織布のダストによる摩耗に関する研究 は少なくまだ不明な点が多い<sup>14)</sup>. バグフィルタ摩耗の機構に は大きく分かれて二つ考えられている.一つは,払い落とし 作業時に発生するバグフィルタとそれを支持している籠状の 金属フレーム(リテイナ)との接触摩耗である.これについ ては従来の繊維および繊維構造物摩耗の研究があり,摩耗試 験機による評価もなされている<sup>15)</sup>.もう一つは粒子がバグフ ィルタ繊維素に慣性衝突することで生じる切削あるいは脆性 破壊によるエロージョン摩耗である.このうちの後者のエロ ージョン摩耗がバグフィルタ摩耗では主体的であるという実 機での測定報告がある<sup>2)</sup>.

本研究で着目しているバグフィルタ摩耗はエロージョン摩 耗の場合である. 粒子がバグフィルタ表面に貼り付けられた 光ファイバ素線およびバグフィルタ繊維素に慣性衝突して同 時に摩耗損傷していくことを考えている.

(3) アクリル樹脂製光ファイバによる摩耗観察実験

模式図に示すように、表面の付着粒子層によるダストのふ るい効果捕集が行なわれている場合、目詰まりを起こし気流 が後方に抜けにくい状態で、表層に露出している繊維素にダ ストが慣性衝突している部分と、目詰まりが無く気流が繊維 素の周りを通過し、ダストは繊維素に衝突している部分とが 考えられる.そこで繊維の後方に気流が通過できる場合と、 そうでない場合を模擬し、単繊維の後方に支持板がない場合 と、ある場合での単繊維摩耗実験を行なった.

Foundation cloth



Fig. 8 Schematic diagram of a cross section of bag filter

ポリイミド被覆材の摩耗形状は被覆厚さが薄く観察するこ とが難しいので、ポリイミドではないが同じ樹脂製でコア部 まで作られている **3.1** で述べた太いアクリル樹脂製光ファイ バを単繊維摩耗量の観察のために使った.

アクリル樹脂製光ファイバ繊維に粒子が衝突することで繊維が削り取られ摩耗していく過程の断面形状について光学顕微鏡を使って調べた. 粒子噴出速度 V は 40.6m/s,平均粒子供給量は 1.70 g/min である.

Fig.9 に単繊維の後方に気流が通過できない場合と,自由に

通過できる場合について、繊維の最大摩耗箇所の断面写真を 示す.それぞれ摩耗時間は1200s,2400s,3600sおよび4800s である.写真左側より水平に粒子が繊維に衝突している.粒 子の流れ方向と、繊維表面の接線とのなす角をθとおくとθ =90°の淀み点のところ、すなわち、繊維断面写真では山型 の頂点部であり、この部分が衝突面の中でもっとも削れにく く、繊維を残していることがわかる.どちらの場合において も同様の結果であった.



at various wearing times

山型の形状となるのは軟らかい繊維であるので,硬い摩耗 子の粒子が繊維表面を滑るように削り取っていくエロージョ ン摩耗の特徴である.流れの方向と繊維の摩耗面のなす角を αとおくと,どの摩耗断面でも約α=40°であった.これよ り断面形状については気流の通過条件による大きな差異は見 られなかった.これは繊維断面の前半部に当たる噴流が強く 摩耗に寄与していて,後半部での流れは摩耗に強い影響を与 えないことを示している. **Fig.10** に摩耗時間 t と繊維断面積 S の変化を示す. 両者と も断面積の減少量に違いは見られず,繊維の後ろを気流が通 過できない場合とそうでない場合では摩耗量の差はなく直線 的に減少することがわかった. 実験式は

$$S = -3.65 \times 10^{-5} t + 0.194 \tag{3}$$

となり、相関係数rは-0.997となった.

耐摩耗性である薄いポリイミド被覆材の場合についても同 じ樹脂製であるので,摩耗量が摩耗時間に比例する関係は同 傾向を示す.

バグフィルタの繊維素の径は平均 7.9µm と細い.小さな 粒子径のダストが繊維素に衝突する場合は上述のエロージョ ン摩耗機構によるとみてよい.しかし,繊維素より数倍も大 きいダストの衝突では,繊維素を支えている張力の影響が考 えられる.また,払い落とし行程後の堆積したダスト層表面 からの繊維素の露出度,繊維素の軸方向も考慮する必要があ る.



# 3.4 バグフィルタ摩耗実験と摩耗寿命予知

(1) バグフィルタ摩耗実験

流動条件はすべて単繊維摩耗の場合と同じで、摩耗実験機 にバグフィルタ片を設置し摩耗実験を行なった. Fig.11 に摩 耗実験後のバグフィルタ写真を示す. 摩耗時間は 3600 s, 4800 s, 5400 s および 10800 s の場合で、粒子噴出速度 V は 30.4m/s 平均粒子供給量は 2.02g/min である.

バグフィルタの摩耗量の定量的な評価方法に関する報告<sup>の</sup> はあるが、本研究に適用できる良い方法はない.そこで、こ こでは噴流による最大摩耗深さに着目した.ボアスコープに よる目視観察によって基布の色(白色)とフェルト繊維素(黒 茶色)の色の違いを利用した判定方法である.ここで、バグ フィルタの寿命時間 T<sub>b</sub>をフィルタ内部の基布がわずかでも 露出するまでの時間とする.すなわち、フェルトが粉体によ ってクレータ状に削り取られ、破損がフィルタ厚さの約 1/2 に達するまでの時間である.フィルタ表面にある繊維の毛羽 立ちが次第に消滅していき、摩耗時間が 3600 s, 4800 s では 両者とも細かい毛羽立ちはもはや確認できなかった. 摩耗時間が 5400s のとき基布の露出を確認した. この条件下でのバ グフィルタ寿命時間は 5400s であると判断した. 摩耗時間が 10800 s では基布は完全に露出しており基布繊維も摩耗によ る破損が見られた.



5400s 10800s

Fig. 11 Surfaces of bag filter at several wearing times



Fig. 12 Comparison of life times of optical fiber and bag filter for the various conveying velocities

粒子噴出速度Vを変えて同様の摩耗実験を行なってバグフ ィルタ寿命時間を求めた.それぞれの粒子噴出速度に対して 得られたバグフィルタ寿命時間を Fig.12 に示す.図には Fig.6 に示した光ファイバ寿命時間も加えてある.バグフィルタの 寿命時間は粒子噴出速度の-3.29 乗に比例している.PTFE 繊 維 75%,ガラスファイバ 25%からなっているバグフィルタ繊 維素材であるにも拘らず,このべき数はポリイミド被覆の光 ファイバ寿命時間の場合のべき数に近い値を示した.実験式 を示すと

$$T_{b} = 4.07 \times 10^{8} V^{-3.29}$$
 (4)

となる. 近似の良さを示す尺度の相関係数 r は-0.993 である. 実験式に対する測定値 T<sub>b</sub> の残差の相対標準偏差は 10.3%と なった.

バグフィルタの寿命時間 T<sub>b</sub> とポリイミド被覆の光ファイ バ寿命時間 T<sub>f</sub> との間には

$$T_b = 6.07 \, V^{-0.03} \, T_f \tag{5}$$

なる関係式が得られた.

すなわち,粒子噴出速度 30.3m/s の場合,バグフィルタの 方が 5.48 倍長い寿命時間となっている.

バグフィルタの基布が見えるまでのフェルト厚さは計測の 結果, 500µm である. また, このバグフィルタの空隙率, 繊維素径がそれぞれ 0.80, 7.9µm, 粒子噴出速度が 30.3m/s であるとして, 簡単な計算から約 32.1 本のフェルトの繊維素 が厚み方向に並んでいることになる.一方,光ファイバ被覆 材が厚さ 12.5µm まで摩耗するときに対応する摩耗面積 A0 は幾何学的に求めて 1.4×10<sup>3</sup> mm<sup>2</sup> である. したがって, 面 積5.48×1.4×10-3 mm<sup>2</sup>の被覆材が摩耗する時間はバグフィル タの摩耗の寿命時間となる.この値をフェルトの繊維素径断 面積 49×10<sup>-6</sup> mm<sup>2</sup> で割った値 157 は繊維素が常に衝突摩耗し ているとしたときの繊維素の摩耗本数である. ところが,実 際は空隙率を考慮した露出確率で繊維素に衝突摩耗している ので、31.4本になる.これは厚み方向に並んでいる繊維素数 に近い値である.このことはフェルト繊維集合体の摩耗機構 は比較的大きい径の光ファイバ繊維の被覆に対する摩耗機構 と違っていないことを示している.しかし、この計算では 1) 繊維素は全部削られる前に破断すること 2) 繊維素の衝突角度は実際には90°ではないこと 3) バグフィルタの正確な空隙率は不明であること

などを考慮していない. バグフィルタの摩耗についてはさら に詳細な検討が必要である.

(2) バグフィルタ摩耗寿命予知

バグフィルタの最も重要な摩耗因子である運転速度情報, すなわち,粒子噴出速度について調べた結果,(5)式の関係式 を得ることができた.これによりポリイミド被覆の光ファイ バ寿命時間  $T_f$ の計測と V の-0.03 乗の補正をすることによっ てバグフィルタの寿命時間を予知することが可能になった. たとえば,粒子噴出速度 30.3m/s の場合,安全性を考慮し,  $T_b$ の80%に達したときにフィルタ寿命を予知するセンサを考 える.ポリイミド被覆材の摩耗量は寿命時間に比例するとし て,センサの被覆材摩耗面積が(5.48×0.8)A<sub>0</sub>となるような被 覆厚さを幾何学的に求めると 31.6  $\mu$  m となる.基本的には光 ファイバの被覆材をバグフィルタの材質と同一にすることが 理想であるが,市販の光ファイバを使用するという制約条件 がある現状では仕方がない.実際の集塵機内の環境を考慮す ると摩耗因子には,この他ダストの性状,温度などがあり  $T_b$  とT<sub>f</sub>の関係を順次調べる必要がある.

また,このシステムの利点として,光ファイバの破損の位 置を知る技術を使うことにより,バグフィルタの局所的な破 損位置を知ることも可能となることが挙げられる.

# 4. 結言

光の減衰量からバグフィルタの寿命を予知する計測システムの開発を目的として実験を行なった.単繊維摩耗実験装置 を使って光ファイバの摩耗による光の伝送量の減衰特性と寿 命時間およびバグフィルタ試料片の基布繊維が摩耗により露 出するまでの時間を種々の流動条件下で調べ,バグフィルタ 寿命予知センサとしての有用性を検討した結果,以下の結論 を得た.

- 光ファイバ被覆厚さを変化させることで光ファイバ寿命 時間を制御でき、バグフィルタ寿命予知センサとして有 用であることを確認した.
- ポリイミド被覆材の摩耗による光ファイバ寿命時間は粒 子噴出速度の-3.26 乗に比例し、バグフィルタは-3.29 乗 に比例することを明らかにした。
- 3. 被覆厚さ  $12.5 \,\mu$  m のポリイミド被覆光ファイバの寿命時間とバグフィルタの寿命時間には  $T_b = 6.07 V^{-0.03} T_f$ の関係がある.
- 樹脂単繊維摩耗実験において、後方に気流が通過できない場合と、そうでない場合では繊維の断面形状、摩耗量に違いは見られない、単位時間当たり摩耗量は一定である。

終わりに本研究の一部は平成16年度科学研究費補助金,基 盤研究(B)(2),14350105の援助によったことを記しここに感 謝の意を表す.実験に対して多大な援助を頂いた勝浦聡,福 森梓,細井祐助,張歓嘉,向井俊哉の諸君に深く感謝いたし ます.

# 〔参考文献〕

- 山下,池森:バグフィルタ内の流れとダスト分離の様相,日本 機械学会論文集(B編),52-475,1040/1049 (1986)
- 2) 辻井,木嶋,中沢,鮑:粉体工学会研究発表会講演論文集,55/56 (2003)
- 島川,日向,姫野,鮑,渡辺,市村:日本混相流学会年会講演会 2004 講演論文集,315/316 (2004)
- 金岡,古内,村井:パルスジェット式バグフィルターのダスト 払い落し機構,粉体工学会誌,31-6,424/429 (1994)
- 5) 能祖茂幸: バグフィルタのトラブルとその防止対策, 粉体と工業, 29-1, 55/70 (1997)
- Yu Hirai, Yoshimi Watanabe and Shigeru Hinata: *Trans. Mater. Res.* Soc. Jpn., 29-5, 2073 / 2076 (2004)
- 飯塚幸三: 計測における不確かさの表現のガイド, 63/67, 財団 法人日本規格協会 (1996)
- 8) 高橋健次: 粉流体の耐摩耗設計, 13/18, 粉体と工業社 (1987)

- 9) 北条,津田: 高分子材料のエロージョン性, 潤滑, 30-4, 233/238 (1985)
- 10) 辻井澄生: バグフィルターの焼却炉排ガス処理への応用, 繊維 機械学会誌, 52-9, 381/386 (1999)
- Hitoshi Emi, Kikuo Okuyama and Naoya Yoshioka: J.Chemical Engineering of Japan, 6-4, 349/354 (1973)
- 12) 高橋幹二:応用エアロゾル学,200/204,養賢堂(1984)
- 日本粉体工業協会: バグフィルターハンドブック,55/58, 産業 技術センター (1977)
- Yasuyuki Sato, Limin Bao and Kiyoshi Kenmochi: Proc. China-Japan Conf. on Mechatronics (Ueda), 55/56 (2005)
- 15) 川村,池田:布の摩耗に関する研究,繊維機械学会論文集,21-3, 8/15 (1968)



## 島川 聡 (学生会員)



2005年信州大学大学院工学系研究科機能機械学専 攻修了.現在同大学院総合工学系研究科システム開 発工学専攻博士課程在学中.バグフィルタ集塵機の フィルタ摩耗に関する研究に従事.公害防止管理者 大気第一種,日本機械学会の会員.

## 日向 滋(正会員)



1967年東北大学大学院工学研究科原子核工学専攻 修士課程修了,同年山形大学工学部助手,信州大学 繊維学部助手,講師,助教授を経て,現在,信州大 学繊維学部教授.専門は熱流体工学,混相流,主に 気液二相流の流動と伝熱に関する研究に従事.日本 混相流学会,日本機械学会,日本伝熱学会などの会 員.(工学博士)

## 鮑 力民



1982年中国天津紡織工学院卒業.1994年信州大学 大学院工学研究科博士課程修了.同年信州大学繊維 学部助手.講師を経て,現在信州大学繊維学部助教 授.繊維とその構造材料の衝撃特性,エロージョン の研究に従事.日本機械学会,繊維学会などの会員. (工学博士)

## 渡辺 義見



1985年名古屋工業大学金属工学科卒業,90年東京 工業大学大学院総合理工学研究科材料科学専攻博士 課程修了,同年鹿児島大学工学部助手,北海道大学 工学部助手,信州大学繊維学部助教授を経て,現在, 名古屋工業大学大学院工学研究科おもひ領域教授. 専門は材料組織学.材料工学の研究手法を応用し, 繊維工学の研究にも従事.日本機械学会,日本金属 学会などの会員.(工学博士)

# 木嶋 敬昌



1998 年金沢大学大学院自然科学研究科地球環境科 学専攻修了.博士(工).同年同研究科助手を経て, 2001 年日本スピンドル製造(株)入社.マイクロ波 飛灰無害化装置,高温集塵装置などの開発に従事. 主にプロセス設計を担当.

# 清水 秀彦



1993 年東京理科大学理工学部工業化学科卒業,同 年東京特殊電線(株)入社.光ファイバーおよび応 用製品の開発,製造技術に従事.