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On a Null Controllability Region of Nonlinear Systems

Hisato KobayashiÉ and Etsujiro ShimemuraÉÉ

It is known that if the linearized models of nonlinear systems are controllable then the original nonlinear sys-
tems are also controllable near the origin. In this paper, we discuss the size of the null controllability region of
nonlinear systems by functional analysis methods under the condition that the linearized system is controllable
at the origin. Without adding any extra assumptions, we derive the quantitative estimation of this size. Thus our
result is applicable to large classes of nonlinear systems and always gives us an estimation of null controllability
region. In practical sense, to know the size of the controllability region is very useful to synthesize the systems
and moreover it is also important to know what parameters seriously inference to the size The result also contains
some suécient conditions of complete controllability, since complete controllability is equivalent to the case that
the estimated null controllability region coincides with the whole state space.
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1. Introduction

In terms of nonlinear system controllability, there are

various researches based on many mathematical tools such

as implicit function theorems 1)2), Liapunov methods 3),

diãerential geometry4) and so on. Lee and Markus derived

one of the most important results in this åeld.1)2) The re-

sult is that if a linearized system is controllable at an equi-

librium point then there exists a local controllable area

of the original nonlinear system around the equilibrium

point. Kalman also indicated in the discussion2) that this

fact was also true in case of the linearized system was time

varying. The result gives us a proper reason to use lin-

earized systems in stead of the original nonlinear systems.

But the result does not refer the region where we can use

the linearized systems properly in place of the original

nonlinear systems. In this paper, we try to estimate the

size of this area by using functional analysis methods. The

functional analysis methods including 'åxed point theo-

rem' were frequently used in the researches of nonlinear

controllability in the 1970s. The typical researches were

done by Davison5), Lukes6) and Yamamoto7). Davison

derived a suécient controllability condition for a system

described as _x = A(t; x)x + B(t; x)u. Lukes and Ya-

mamoto also derived suécient conditions of the system

as _x = A(t)x + B(t)u + f(x; u; t). They used 'åxed point

theorem' to derive their results, but in order to do so,

they assumed very strict conditions. Namely Davison as-

sumed jA(t; x)j < M , jB(t; x)j < N for any x. Lukes and
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Yamamoto assumed that jf(x; u; t)j < L is satisåed for

any x and u. We do not assume anything except the lin-

earized system is controllable. Based on this simple frame,

we derive a quantitative estimation of the null controlla-

bility region. Since our approach does not require special

assumptions, the result is applicable to wide range non-

linear systems. The result is also able to derive some

complete controllability conditions because the complete

controllability is equivalent to the case that the null con-

trollability region coincides with the whole state space,

Rn. This result includes a complete controllability condi-

tion derived by Yamamoto7). The result can also estimate

the size of null controllability region of linear systems with

input magnitude constraints.

2. Problem Description and Deånitions

Let us consider the following nonlinear system.

dx
dt

= f(x; u) (S)

Where, x is n-dimensional state vector and u is m-

dimensional control vector. f is a function of x and u,

and it is årst continuously diãerentiable with respect to

x and u. The function satisåes f(0; 0) = 0. Naturally,

we assume the existence and uniqueness of the solution of

this system's diãerential equation. (*)

The problem concerned here is to determine the area

from where the initial state can be driven to the origin; it

is so called as 'null controllability problem.'

(*) The system satisåes Local Lipsichtz condition, then the

existence and the uniqueness are locally guaranteed. In this
paper, we only treat the problem within a speciåed region

x 2 XÉ[0;T É] and the region u 2 äÉ[0;T É], where Lipsichtz
condition always holds. Thus we can assume the existence

and the uniqueness.
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Deånition (controllability). We call a set Ué =

fx j jxj î ég as controllable region when there exists

a control function u(t), [0 î t î T ] for a ånite T , that

can drive any state of starting from Ué to the origin as

x(T ) = 0 If this region is not null i:e:; Ué 6= û, then the

system is controllable, and the region coincides with the

whole space i:e:; Ué = Rn, then the system is completely

controllable.

The deånition used here is so called "Null Controllabil-

ity." The general concept of controllability is a little bit

diãerent from the deåned controllability, however we can

easily expand the result to the case of general controlla-

bility.

In the sequel, we evaluate the size of the region Ué.

Before discussing the detail, we prepare something to be

necessary. Let us consider the reverse-time system of the

system(1) and expand it at the origin. We will get the

following system

dx
dt

= Äf(x; u)

= Ax + Bu + g(x; u) (1)

A = Ä @f
@x

(0; 0); B = Ä @f
@u

(0; 0)

By considering the above system, we can treat the null

controllability as a problem of ånding a reachable region

from the origin. To ånd the reachable region is easier than

to ånd the null controllability region.

Markus et.al. 2)proved that original nonlinear systems

are controllable if their linearized systems are controllable,

namely the pairs of (A; B) are controllable pairs. Thus,

in the sequel, we assume the pair (A; B) in the system

(1) is controllable pair and consider about the system(1)

instead of the system(S)

Let Xr[0; T ] be is a Banach space Cn[0; T ], which con-

sists of continuous functions x : [0; T ] ! Rn with a con-

straint that their norms are less than r. Similarly, we de-

åne äñ[0; T ] in a Banach space Cm[0; T ], which consists

of continuous functions u : [0; T ] ! Rm with a constraint

that their norms are less than ñ. The deånition of the

norm used hears is as follows. Let deåne the norm of

conventional number space by the following manner.

jxj =

nX
i=1

jxij; juj =

mX
i=1

juij

The norm of the element x in the Banach space Cn[0; T ]

and the norm of the element u in the Banach space

Cm[0; T ] are deåned as follows.

jjxjj[0;T ] = max
t2[0;T ]

jx(t)j

jjujj[0;T ] = max
t2[0;T ]

ju(t)j

Though we do not distinguish notations of number

space from notations of Banach space, readers can eas-

ily distinguish them. We deåne the norm of the matrix

A 2 RnÇ n; B 2 RnÇ m as the induced norm from the

above deåned vector norm. We use the same notation for

the matrix norm as the vector norm. Let jAj = a and

jBj = b. Since the pair (A; B) is a controllable pair, there

exists an inverse of the following matrix. Let w(T ) be the

norm of this inverse matrix. w(T ) = jW Ä 1
T j

WT =

Z T

0

eA(T Ä ú)BB0eA0(T Ä ú)dú (2)

A0 and B0 are the transposes of the matrices A and B. ë

is a scalar function deåned on R2:

ë(r; ñ) = max
jxjî r
jujî ñ

jg(x; u)j (3)

Let us consider a state xu(t); 0 î t î T , that started

from the origin and driven by a control u 2 äñ[0;T ]. The

norm of the state jjxujj[0;T ] depends on T and ñ, and it

also has an upper bound. Let ò(ñ; T ) be this upper bound.

We can show the following lemma.

Lemma 1 . If there exists positive solution r of the

following equation (4), then ò(ñ; T ) = r

r = arT + bñT + ñ(r; ñ)T (4)

Proof. It is enough to prove that the positive solution

r of (4) satisåes jjxujj[0;T ] î r We assume jjxujj[0;T ] > r

and derive the contradiction. If jjxujj[0;T ] > r then there

exists some T̂ < T which satisåes jxu(T̂ )j = r and

jjxujj[0;T̂ ] = r

On the other hand, xu(T̂ ) can be written by (5) and its

norm is evaluated by (6).

xu(T̂ ) =

Z T̂

0

Axu(ú)dú+

Z T̂

0

Bu(ú)dú

+

Z T̂

0

g(xu; u)dú (5)

j xu(T̂ ) j î aÅk xu k[0;T̂ ] Å̂T + b ÅñÅT̂

+ë(k xu k[0;T̂ ]; ñ) ÅT̂ (6)

By substituting r =j xu(T̂ ) j and r =k xu k[0;T̂ ] in the

equation(6), we get (7).

r î arT̂ + bñT̂ + ë(r; ñ)T̂ (7)

Since T̂ < T and 0 < ar + bñ+ ë(r; ñ), then we get (8).

(ar + bñ+ ë(r; ñ))T̂ < (ar + bñ+ ë(r; ñ))T (8)

From(7) and (8), we conclude r < arT + bñT + ë(r; ñ)T:

Namely r 6= arT + bñT + ë(r; ñ)T; and this conclusion

contradicts with our assumption. Thus, we have proved
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that the positive solution r of (4) is an upper bound that

satisåes k xu k[0;T ]î r:

(Q.E.D.)

Next, we consider the case that the equation (4) has a

positive solution. Let D be a set of parameters ñ and T ,

which let the equation (4) have a positive solution r. In

this case, T deåned as T = r=(ar + bñ+ ë(r; ñ)) is always

an element of D for any given r and ñ, thus the parameter

set is not empty, D 6= û.

3. Main Result and Its Proof

Let us consider a mapping Fxf : (ür[0;T ] Ç äñ[0;T ]) !
(ür̂[0;T ] Ç äñ̂[0;T ]):

8x 2 ür[0;T ];
8 u 2 äñ[0;T ]

Fxf (x; u) = (xû; û) (9)

û(t) = B0eA0(tÄ ú)W Ä 1
T

í
xf Ä

Z T

0

eA(T Ä ú)g(x; u)dú

ì
If this mapping Fxf has a åxed point (xÉ; uÉ), then this

åxed point (xÉ; uÉ) satisåes the following equation (10)

and (11).

xÉ(t) =

Z t

0

eA(tÄ ú)BuÉ(ú)dú

+

Z t

0

eA(tÄ ú)g(xÉ; uÉ)dú (10)

uÉ(t) = B0eA0(T Ä ú)W Ä 1
T Åí

xf Ä
Z T

0

eA(T Ä ú)g(xÉ; uÉ)dú

ì
(11)

From (10) and (11), we can conclude xÉ(0) = 0; xÉ(T ) =

xf : Namely, xf is a reachable point from the origin, in

other words, xf is in the null controllability region of sys-

tem (S). Therefore, the problem to ånd Ué is equivalent

to a problem to ånd a set of xf where the mapping Fxf

has a åxed point. By considering this new problem, we

can derive the following main theorem.

Theorem 1 (main). If the linearized system of (S)

is controllable at the origin, then the null controllability

region Us includes the following region Ûs.

Ûs ë

8<:x

ååååååj x j < sup
0<ñ<1
0<T <1

î
ñ

be2aT !(T )

Ä TeaT ë(ò(ñ; T ); ñ)
i9>=>;

(proof) Let ñÉ and T É be values that gives supremum

of the above condition and rÉ be as ò(ñÉ; T É) = rÉ Now

we prove the mapping Fxf has a åxed point in the region

ürÉ[0;T É] ÇäñÉ[0;T É] for any xf 2 Ûs At årst, we show Fxf

has the following three properties:

(P1) Fxf (ürÉ[0;T É] Ç äñÉ[0;T É]) ö (ürÉ[0;T É] Ç äñÉ[0;T É])

(P2) Fxf is continuous.

(P3) Fxf (ürÉ[0;T É] Ç äñÉ[0;T É]) is relatively compact.

Evidence of (P1):

For some x and u included in the sets as x 2 ürÉ[0;T É],

u 2 äñÉ[0;T É], let xû and û be their mapped values as

Fxf (x; u) = (xû; û). Then û can be described as follows.

û = B0eA0(T ÉÄ t)W Ä 1
T É

í
xf Ä

Z T É

0

eA(T ÉÄ ú)g(x; u)dú

ì
(12)

The norm of û is evaluated by the following inequality.

k û k[0;T É] î beaT É
!(T É)

n
j xf j +

T ÉeaT É
ë(rÉ; ñÉ)

o
(13)

By considering xf 2 Ûs, we can derive (14) from (13)

k û k[0;T É] î ñÉ (14)

Since ò(ñÉ; T É) = rÉ, k x k[0;T ]î rÉ Then, we can

conclude xû 2 ürÉ[0;T É] Namely, we know the mapping

Fxf has the property (P1).

Evidence of (P2):

The region we are considering is ürÉ[0;T É] Ç äñÉ[0;T É].

Since Fxf (ürÉ[0;T É] Ç äñÉ[0;T É]) ö ürÉ[0;T É] Ç äñÉ[0;T É] it

is enough to consider the continuity inside the region:

ürÉ[0;T É] Ç äñÉ[0;T É].

(1) The continuity of û in respect of x and u is clearly

known from the continuity of g(x; u) in respect of x and

u.

(2) Since (x; u) 2 ürÉ[0;T É] Ç äñÉ[0;T É], then the existence

of xû is guaranteed. The assumption that the function f

is partially 1-time continuously diãerentiable in respect

of x and û can show its continuity in respect of the

parameter û. Moreover, since û is continuous in respect

of x and u, xû is continuous in respect of x and u inside

the region ürÉ[0;T É] Ç äñÉ[0;T É]. Thus, we can conclude

(P2).

Evidence of (P3):

The property (P3) can be shown by using the theorem of

Arzera8). Arzera's theorem indicates that if

Fxf (ürÉ[0;T É] Ç äñÉ[0;T É]) is equicontinuous and

uniformly bounded then it is relative compact. It is clear

that Fxf (ürÉ[0;T É] Ç äñÉ[0;T É]) is uniformly bounded.
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The equicontinuity is shown by the following way. For

any (x; u) 2 Fxf (ürÉ[0;T É] Ç äñÉ[0;T É]); the following

inequalities hold.çççç d
dt u

çççç
[0;T ]

î añÉçççç d
dt u

çççç
[0;T ]

î arÉ + bñÉ + g(rÉ; uÉ)

9>>=>>; (15)

Since the time derivatives are uniformly bounded, then

we can conclude the equicontinuity. Namely, (P3) holds.

ürÉ[0;T É] Ç äñÉ[0;T É] is a closed convex set in Banach

space Cn+m
[0;T É]. Thus with the properties (P1),(P2)

and (P3) and Schauder's åxed point theorem can show

that the map Fxf has a åxed point inside

ürÉ[0;T É] Ç äñÉ[0;T É]. Therefore we can prove the main

theorem.

(Q.E.D.)

The calculation of the term ë(ò(ñ; T ); ñ) included in the

main theorem may be diécult in a sense, however if we

can get a solution r of (4) for some (ñ; T ) 2 D, we can

use this r in place of ò(ñ; T ): Let r(ñ; T ) be the solution

of (4) for some (ñ; T ) 2 D. Then the condition in the

main theorem is rewritten as follows.

Ué õ Ûé ë
ö

x

ååååj x j< sup
(ñ;T )2D

î
ñ

beaT !(T )

ÄeaT (1 Ä aT )r(ñ; T ) Ä b ñT

ïõ
(16)

4. Several Corollaries

4. 1 Linear Systems

In case of linear systems, Ûé can be rewritten as follows

by using ë(r; ñ) = 0

Ué õ
ö

x

ååååjxj < sup
0<ñ<1
0<T <1

ñ
be2aT !(T )

õ
If we can set ñ as an arbitrarily large value, then Ûé can

also be arbitrary value, namely the system is completely

controllable. If there exists some restriction on ñ, then

the null controllability region is also restricted.

Corollary 1 . In case of linear systems, the null

controllability region with the admissible control äñ[0;T ]

is evaluated as follows:

Ué õ
ö

x

ååååjxj < sup
0<ñ<1

ñ
be2aT !(T )

õ
(17)

4. 2 In Case of jg(x; u)j î L

Let us consider a case that the nonlinear term of the

system(1) has an uniform upper bound L, which is

independent of x or u. In this case, we can set as

ë(ò(ñ; T ); ñ) = L and do the same discussion as in

section 4.1. The result is summarized in the next

corollary. This result is same as the result in the

reference 7).

Corollary 2 . If the nonlinear term of the system(1)

satisåes jg(x; u)j î L, where L is constant, then the

system is completely controllable with unbounded

control input u. In case that the control input should be

included in an admissible control set äñ[0;T ], the null

controllability region is described as follows.

Ué õ
ö

x

ååååjxj < sup
0<ñ<1

í
ñ

be2aT !(T )
Ä T eaT L

ìõ
(18)

The diãerence between the above evaluation and the

evaluation for linear systems is just a term TeaT L,

which is derived by nonlinear eãect. If the magnitude of

the admissible control is so small, the above evaluation

may have no means.

4. 3 In Case of jg(x; u)j < kjuj
If jg(x; u)j î kjuj, then we can derive the following

corollary.

Corollary 3 . If the nonlinear term g(x; u) of the

system(1) satisåes jg(x; u)j î kjuj, where k is a constant

that satisåes 1=k > inf
0<T <1

(T e3aT b!(T )), then the

system(1) is completely controllable with unbounded

control input u. If the control input is restricted in a

admissible control äñ[0;T ], the null controllability region

is evaluated as:

Ué õ
ö

x

ååååjxj < sup
0<ñ<1

ö
ñ

í
1

be2aT !(T )

Ä TeaT k

ìõõ
(19)

4. 4 Bilinear Systems

Let us consider a case that the system(1) is a bilinear

system, namely the nonlinear term can be described as

g(x; u) =
mP

i=1

Cixui, where ui is the i-th element of u. Let

jCij = ci and
mP

i=1

ci = c. We can derive the following

corollary.

Corollary 4 . The null controllability region of the

following bilinear system

_x = Ax + Bu +

mX
i=1

Cixci

can be evaluated by:

Us õ
ö

x

ååååjxj < sup
0<ñ<1
0<T <1

ö
ñ

be2aT !(T )

Ä ñ2bcT 2 exp(a + cñ)T

õõ
(20)



T. SICE Vol.E-1 No.1 2001 5

The above corollary is easily derived from the facts that

ò(ñ; T ) = bñT exp(ã+ cñT ) and ë(r; ñ) = crñ.

4. 5 In Case of g(x; u) = x0Qx

Let us consider a case that the nonlinear term g(x; u) of

the system(1) is quadratic, namely g(x; u) = x0Qx. Since

we can set as ë(r; ñ) = r2q and q = jQj, ò(ñ; T ) is

written as follows by using (4).

ò(ñ; T ) = r(ñ; T )

=
1 Ä aT Ä

p
(1 Ä aT )2 Ä 4bñT 2q

2Tq
(21)

From the relation(16), we can conclude the next

corollary.

Corollary 5 . The null controllability region Ué of

the nonlinear system,

_x = Ax + Bu + x0Qx

is evaluated as follows.

Us õ
ö

x

ååååjxj < sup
(ñ;T )2D

î
ñ

beaT !(T )

+ eaT bñT Ä eaT (1 Ä aT )

Å
ö

1 Ä aT Ä
p

(1 Ä aT )2 Ä 4bñT 2q

2Tq

õïõ
(22)

where, q = jQj and D = f(ñ; T )j1 Ä aT > 2T
p

bñq > 0g

5. Conclusion

In this paper, we have evaluated size of the null

controllability region of general nonlinear systems

without adding any conditions except the linearized

systems at the origin are controllable. We have also

derived several corollaries for speciåed nonlinear systems

such as bilinear systems, quadratic systems and so on.

There have been many researches using functional

analysis and åxed-point theorem, but almost all of them

try to derive qualitative properties by adding strict

conditions to the target nonlinear systems. On the other

hand, this paper derives the quantitative properties

without adding any speciåc restriction. This result is

applicable to many calsses of nonlinear systems and it

may derive various quantitative results as well as

qualitative results.
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