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Robust Stabilization of Multivariable High Gain Feedback Systems†

Hiroshi Nogami∗, Hajime Maeda∗∗,

Shinzo Kodama∗∗∗ and M. Vidyasagar∗∗∗∗

In this paper we consider a design problem of multivariable high gain feedback systems with robust stability.

High gain feedback control has many advantages for system performances, while it was reported that plant

perturbations often cause instability of high gain feedback systems. Hence we discuss a robust stabilization

problem of high gain feedback systems.

The plant is assumed to belong to the multiplicative output perturbation class M(P0, r) := {P : P =

(I +L)P0, ||L(jω)|| ≤ |r(jω)|, ∀ω, where L doesn’t change the number of unstable poles }. Here P0 denotes the

m× p nominal plant and r denotes the bound of perturbations. The system contains high gains (not necessarily

linear gains) in each feedback loop.

We say a system to be roubst positive real if PC(I+PC)−1 remains stable and positive real for all plant P be-

longing to M(P0, r), where C denotes a compensator. Obviously the robust positive realness (RPR) guarantees

the stability of the system for all P belonging to M(P0, r) and for all nonlinear gains (while D.C. gains ≥ 1).
We assume rank P0 = m, ψ(N0) and ψ(D0) are coprime, where P0 = N0D

−1
0 is a right coprime factorization

over the ring of stable real rational matrices and ψ(Q) denotes the largest invariant factor of Q. Moreover, we

assume the roots of |r(jω)|2 − 1 = 0 are finitely many and their multiplicities ≤ 2.
Under these conditions there exists a proper compensator which attains the RPR and rank P0C = m if and

only if the following two conditions are satisfied:

1) ψ(N0) has no finite zeros in the open right-half plane and has no multiple jω-axis zeros (including j∞), and
2)

|r(jω)| =



= 0, for jω-axis zeros of ψ(N0),

< 1, for jω-axis zeros of ψ(D0),

≤ 1, elsewhere.

A numerical example is given in order to show that RPR control copes with the perturbations which cause

instability for an LQ optimal control system.
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1. Introduction

High gain feedback control seems to have advantages of

good disturbance rejection, good tracking performance,

and easy realization of decoupling of the input/output

variables for a multivariable system. Regarding the high

gain feedback control, infinite gain margin problems have

been discussed in the literatures 1)∼3) where the realiza-

tion conditions for the infinite gain margin and the design

procedures of the compensators have been derived.
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In general, a plant model includes uncertainties origi-

nated from identification errors, the model simplification

for the purpose of compensator design, the variation of the

plant parameters due to the long time operation and/or

environment changes. These uncertainties can be treated

as perturbations of the nominal plant.

It has been reported that high gain feedback control is

easy to make the system unstable against even small vari-

ation of the parameters through an example of cheap op-

timal LQ control 4). In order to make high gain feedback

control more reliable, in this paper we consider a design

problem of multivariable high gain feedback systems with

robust stability for the plant perturbations.

A robust stabilization problem for single input/single

output high gain feedback control has been already dis-

cussed in the literature 5). This paper extends the results

to the case of multivariable systems. As in the single in-

put/single output case, the robust stability for the high

gain feedback system is treated in terms of the robust pos-
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itive realness(RPR) 5). An existence condition of a com-

pensator to attain the RPR is derived, and an allowable

range of the plant perturbation is described in detail.

It is also shown that a realization of the RPR attains

at the same time what we call a robust performance, that

is, the sensitivity function of the feedback system is sup-

pressed less than or equal to 1 over all the frequency6).

Through an example it is demonstrated that a compen-

sator designed in this paper’s manner can stabilize the

plant perturbations which cause instability for the con-

ventional LQ optimal control.

2. Robust Positive Realness

Through this paper, let R(s) denote the set of all proper

real rational functions of s, and S a subset of R(s) whose
element has no poles in the extended right-half plane. The

sets of matrices whose elements belong to R(s) and S are
represented by M(R(s)) and M(S), respectively.
Now, let us consider the feedback system in Fig. 1,

where P (s) and C(s) ∈ M(R(s)) denote the transfer ma-
trix of the m×p plant, and that of the p×m compensator.

It is assumed that each feedback path has a nonlinear and

time invariant gain factor. In Fig. 1, K(·) = diag {ki(·)}
represents the gain matrix where the condition of (1) is

satisfied:

∞ > ki(yi)/yi ≥ 1, i = 1, . . . ,m. (1)

As well known, if C stabilizes P and A := PC(I +

PC)−1 ∈M(P), then the feedback system in Fig. 1 is sta-
ble for any gain matrix K(·) satisfying (1) 7), where M(P)
denotes the set of all positive real matrices. A necessary

and sufficient condition for a matrix to be positive real is

given as follows.

Lemma 1. 8) A square matrix A(s) ∈ M(R(s)) is a

positive real matrix if and only if the following four con-

ditions hold:

i) A(s) has no poles in the open right-half plane {s : Re
s > 0},
ii) A(s) has no multiple poles on the jω-axis,

iii) all residual matrices of A at the jω-poles are Her-

mitian positive semi-definite, and

iv) AH(jω) is positive semi-definite for all ω except for

the poles,

where AH(s) := (A∗(s)+A(s))/2, and A∗(s) denotes the

complex conjugate transpose matrix of A(s).

In this paper, firstly, the plant uncertainty is assumed to

be described in the form of the multiplicative perturbation

at the plant output. Here let us define the multiplicative

Fig. 1 Feedback System

output perturbation class M(P0, r):

M(P0, r) := {P : P = (I + L)P0, ||L(jω)|| ≤ |r(jω)|,
∀ω ∈ R, L(s) ∈M(R(s)),
P (s) has the same number of the

unstable poles as that of P0(s)},
where P0 ∈ M(R(s)) denotes the nominal model of the
plant dynamics, and r(s) ∈ S characterizes the allowable
range of the multiplicative perturbation. Also ||A|| de-
notes the largest singular value of a matrix A.

Now let us define the robust positive realness.

Definition 1. The system class (P0, C, r) in Fig. 1 is

robustly positive real or has the robust positive realness

if for all P ∈ M(P0, r)

C stabilizes P , and

A := PC(I + PC)−1 ∈ M(P),
where the system class (P0, C, r) is defined by the plant

class M(P0, r) and the fixed compensator C.

3. Robust Positive Real Control

3. 1 Preparation

The following Lemma 2 and 3 are both well known;

Lemma 2 describes a robust stabilization condition, and

Lemma 3 does the relationship between a positive real

matrix and a bounded real one, respectively.

Lemma 2. 9) C stabilizes all the plant P ∈ M(P0, r)

if and only if

C stabilizes P0, and

|r(jω)| · ||A0(jω)|| < 1, ∀ω ∈ Re := R ∪ {∞},
where A0 := P0C(I + P0C)

−1.

Lemma 3. 8) A square matrix A ∈ M(R(s)) is a posi-
tive real matrix if and only if

there exists Λ = (I −A)(I +A)−1, and

Λ is a bounded real matrix, i.e.,

Λ ∈ M(S), and
||Λ(jω)|| ≤ 1, ∀ω ∈ R.

For the purpose of easy handling of the problem, let us

introduce coprime factorization forms 10) of P0 ∈ M(R(s))
over M(S) as

P0 = N0D
−1
0 = D̃−1

0 Ñ0,

where

X0N0 + Y0D0 = I, Ñ0X̃0 + D̃0Ỹ0 = I,
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N0,D0, Ñ0, D̃0,X0, Y0, X̃0, Ỹ0 ∈M(S).

Then let us define a set

A(P0) := {A0 : A0 = N0(X0 + RD̃0), R ∈M(S)}.
When A0 ∈ M(S) belongs to A(P0), A0 is said to be

feedback realizable 11). The following Lemma 4 is useful

regarding the feedback realizability.

Lemma 4. 2) If A0 ∈ A(P0) and detA0 �= 0 then

ψ(N0)|ψ(A0) and ψ(D̃0)|ψ(I −A0). Conversely, if a0 ∈ S
satisfies that ψ(N0)|a0 and ψ(D̃0)|(1 − a0) then A0 :=

a0I ∈ A(P0), where ψ(Q) denotes the largest invariant

factor of Q ∈M(S) 10).

For a given A0, if P0 has the full column rank, a com-

pensator is given by

C = D0N
−R
0 A0(I − A0)

−1 (2)

where N−R
0 denotes the right inverse matrix of N0 over

the real rational matrix ring. Therefore, once A0 ∈ A(P0)

is suitably specified, design of C is completed by (2).

3. 2 Realizability of RPR and Compensator

Design

A main interest of this paper is to derive a realizability

condition of the RPR control for the multivariable system.

This is stated in Theorem 1 under Assumption 1.

Assumption 1. Let us assume that rank P0 = m,

and that ψ(N0) and ψ(Q0) are coprime. Additionally,

the roots of |r(jω)|2 − 1 = 0 are finitely many and their
multipliticies are less than or equal to 2.

Theorem 1. Under Assumption 1, there exists a

proper compensator C ∈M(R(s)) which realizes the RPR
and rank P0C =m if and only if the following conditions

hold:

(i) ψ(N0) ∈ M1 and (3a)

(ii) |r(jω)|



= 0, ω ∈ Ωn (3b)

< 1, ω ∈ Ωd (3c)

≤ 1, other ω ∈ R (3d)

where M1,Ωn and Ωd are defined as

M1 := {f ∈ S : f has no zeros in the open right half
plane, andf has no multiple zeros on the jω-

axis including j∞},
Ωn := {ω ∈ Re := R ∪ {∞} : ψ(N0)(jω) = 0},
Ωd := {ω ∈ R : ψ(D̃0)(jω) = 0}.

According to Theorem 1, in order to realize the RPR,

the nominal plant and the plant uncertainty range are

restricted as follows:

•No zeros of the nominal plant are allowed in the right-
half plane; no multiple zeros on the jω-axis(including

j∞) are allowed in terms of the largest invariant factor.

•The plant model uncertainties at the jω-zeros are not
allowed, if jω-zeros of the nominal plant exist.

•The plant model uncertainties at the jω-poles must

be less than 100% to the nominal model, if jω-poles of

the nominal plant exist.

•The plant model uncertainties must be less than or
equal to 100% to the nominal model on the jω-axis ex-

cept for the jω-zeros and jω- poles of the nominal plant.

Proof

It is useful to note that by Definition 1, Lemma 2 and

3, the system class (P0, C, r) is robust positive real if and

only if

C stabilizes P0, and (4a)

|r(jω)| · ||A0(jω)|| < 1,∀ω ∈ Re, (4b)

and for all L ∈ L(r) there exists
Λ = (I −A)(I + A)−1

(I − T0)(I + LT0)
−1

such that

Λ ∈ M(S) and (4c)

||Λ(jω)| ≤ 1,∀ω ∈ R, (4d)

where

L(r) := {L ∈ M(R(s)) : ||L(jω)|| ≤ |r(jω)|,∀ω ∈ R,
the number of the plant unstable poles

is same as that of P0} and
T0 := 2P0C(I + 2P0C)

−1.

Let us give the proof of Theorem 1 based on the above

fact.

”Sufficiency” It is enough to show that there exists a

proper compensator C satisfying all the conditions of (4)

under the assumptions of (3) and Assumption 1. This will

be completed by firstly designing a compensator C0 which

attains infinite gain margin (Step 1) 2), and secondly spec-

ifying the gain factor κ(≥ 1) for the desired compensator
C := κC0 so as to attain the robust stability (Step 2 ∼
Step 6).

Step 1 The first step is to find a solution for the fol-

lowing interpolation problem. As shown in Lemma B in

Appendix of the literature 5), this problem has a solution.

[Interpolation Problem] Find a stable positive real

function η(s) satisfying the following six conditions:

(I) η(jωni ) = 0, ωni ∈ Ωn,

(II) η(qi) = 1, qi ∈ Q,

(III) η(k)(qi) = 0, k = 1, . . . ,mi − 1, qi ∈ Q,

(IV) η(jωri ) =: βi, 1 > βi > 0, ωri ∈ Ωr,

(V) η(jω) �= 0, ∀ω ∈ R \ Ωn, and
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(VI) η(j∞) �= 1,
where

Q := {Re qi ≥ 0 : ψ(D̃0)(qi) = 0, qi is of m-th order},
Ωr := {ω ∈ Re : |r(jω)| = 1}.

From Lemma 4, the interpolation conditions (I) ∼ (III)

imply ηI ∈ A(P0), and this η gives

C0 := D0N
−R
0 η/(1 − η) (5)

where it is noted that N−R
0 exists since P0 has the row

full rank.

It is easy to see that, for the interpolation conditions (I)

and (VI), C0 given by (5) is proper. Now let the desired

compensator be in the form of

C := κC0 (6)

and find a suitable κ(≥ 1) by the following procedure.
Step 2 Let us find κ(≥ 1) satisfying
|r(jω)| · ||A0(jω)||+ ||I −A0(jω)|| ≤ 1, ∀ω ∈ R. (7)

Since

A0 = P0C(I + P0C)
−1

= κη/{(κ − 1)η + 1}I =: a0I,

clearly (7) is equivalent to the following inequality:

|r(jω)| · |a0(jω)|+ |1 − a0(jω)| ≤ 1, ∀ω ∈ R, (8)

and so as to (4.4) in the literature 5). As shown in the

literature 5), κ satisfying (8) can be found. Let κ0 denote

this value of κ, then the next several steps describe κ0C

is desired one.

Step 3 Since ηI is a stable positive real matrix, C0

given by (5) stabilizes the feedback system consisting of

P0 and C for the gain of (1). Therefore, for κ ≥ 1, κC0

is a stabilization compensator for the nominal plant P0,

and this implies (4a).

Step 4 This step shows that (4b) is satisfied. Two

cases are considered.

(1) For ω such that η(jω) �= 1, it is shown that

||I −A0(jω)|| =
∣∣∣∣ 1 − η(jω)

(κ0 − 1)η(jω) + 1

∣∣∣∣ > 0.
Thus, by using (7), (4b) is obvious.

(2) For ω such that η(jω) = 1, it is clear that

||A0(jω)|| = |η(jω)| = 1. Then by using the inter-

polation condition (IV) and (3d), it is derived that

|r(jω)| < 1 for such ωs. Hence (4b) holds.

Step 5 This step shows (4d) is satisfied. Since (8)

holds for all κ ≥ κ0, it obviously holds for a specific case

of κ = 2κ0. By noting that for κ = κ0

T0 = 2P0C(I + 2P0C)
−1

= 2κ0η/{(2κ0 − 1)η + 1}I,

it is easy to see that

|r(jω)| · ||T0(jω)||+ ||I − T0(jω)|| ≤ 1,∀ω ∈ R. (9)

Moreover,

|r(jω)| · ||T0(jω)|| < 1,∀ω ∈ Re (10)

is derived through a similar manner as in Step 4. From

(9) and (10), for all L ∈ L(r)

||Λ(jω)|| = ||(I − T0(jω))(I + LT0(jω))
−1||

≤ 1, ∀ω ∈ R.

This implies (4d).

Step 6 The last step shows that (4c) holds for all

L ∈ L(r). From (9) it is easy to see

||I − T0(jω)|| = ||(I − A0)(I +A0)
−1(jω)||

≤ 1,∀ω ∈ R. (11)

By noting that A0 = a0I, (11) implies Rea0(jω) ≥ 0,∀ω ∈
R. Additionally, since a0 ∈ S, it follows that a0I is a

stable positive real matrix. According to the passive the-

orem, the feedback system is stable for the linear gain

ki(yi)/yi = 2, i = 1, . . . , m, and therefore 2C is a stabi-

lization compensator for the nominal plant P0. Based on

this statement and (10), 2C is a robust stabilizer for a

class of M(P0, r), and Λ = (I + 2(I + L)P0C)
−1 ∈ M(S)

for all L ∈ L(r).
”Necessity” The necessity part of proof is given in Ap-

pendix.

3. 3 Robust Performance of RPR control

The compensator designed above realizes additionally

the robust performance, that is, the sensitivity function

||S(jω)|| := ||((I+PC)(jω))−1|| is less than or equal to 1
for all the frequency regardless of the multiplicative per-

turbation at the plant output, even when the channel gain

is nominal, i.e., ki(yi)/yi = 1, i = 1, . . . ,m, as described

below.

Actually, it is easy to derive that for all P ∈ M(P0, r)

and for all ω ∈ R,

||S(jω)|| = ||(I −A0(jω))(I + (LA0)(jω))
−1||

≤ ||I −A0(jω)||/{1 − |r(jω)| · ||A0(jω)||}
≤ 1,

where (7) is applied to derive the third line.

Since the robust stability is guaranteed for higher gains,

the sensitivity performance can be improved by having

higher gains, depending on demands.

3. 4 Multiplicative Input Perturbation

Here, let us consider the feedback system depicted in

Fig. 2, where the plant with perturbation is assumed to
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Fig. 2 Feedback System

belong to the class N(r, P0), instead of M(P0, r), repre-

senting the multiplicative uncertainty at the plant input:

N(r, P0) := {P : P = P0(I + L), ||L(jω)|| ≤ |r(jω)|,
∀ω ∈ R, L(s) ∈ M(R(s)),
P has the same number of the unstable

poles as that of P0}.

As in (1) the nonlinear gain elements of K(·) :=

diag{ki(·)} satisfy

∞ > ki(yi)/yi ≥ 1, i = 1, . . . , p. (12)

Definition 2. The system class (r, P0, C) in Fig. 2

is robustly positive real or has the robust positive real-

ness (for the multiplicative input perturbation), if for all

P ∈ N(r, P0)

C stabilizes P , and

A := CP (I + CP )−1 ∈ M(P),
where the system class (r, P0, C) is defined by the plant

class N(r, P0) and the fixed compensator C.

This robust positive realness guarantees that the feed-

back system in Fig. 2 is stable for all plants belonging to

N(r, P0) and all nonlinear gains K(·) of (12).
Here Assumption 2 is put for Assumption 1 .

Assumption 2. Assume that rank P0 = p, and that

ψ(Ñ0) and ψ(D̃0) are coprime. Also assume that the roots

of |r(jω)|2 − 1 = 0 are finitely many, and their multiplic-
ities are at most 2.

Then Corollary 1 holds through a similar discussion as

in Theorem 1.

Corollary 1. For the feedback system in Fig. 2, Theo-

rem 1 holds, where the term of rank P0C =m is replaced

by rank CP0 = p.

The compensator is given by

C(s) = κ0η/(1 − η)Ñ−L
0 D̃0,

where η(s) is the solution of Interpolation Problem,

the compensator gain κ0 is given by Step 2 in the proof

of sufficiency for Theorem 1, and Ñ−L
0 denotes the left

inverse matrix of Ñ0.

Additionally, the feedback system shows the robust per-

formance against the multiplicative perturbations at the

plant input, as described in 3.3.

4. Examples

[Example 1] For a givenM(P0, r), let us design a com-

pensator C to realize the robust positive realness.

Assume that

P0 =

[
s3+3s2+2s+1
(s+1)3(s+2)

s
(s+1)3

−s
(s+1)2(s+2)

s
(s+1)2

]

and

r =
s

s2 + s+ 1
.

The right coprime factorization of P0 is given by

N0 =

[
1/(s + 2) s/(s+ 1)3

0 s/(s+ 1)2

]
and

D0 =

[
1 0

1/(s + 2) 1

]
.

Since ψ(N0) = s/(s + 1)2 ∈ M1, |r(jω)| ≤ 1, ∀ω ∈ R,
and r(jω) = 0 at jω = j0 and j∞ which are the zeros

of ψ(N0), the desired compensator can be designed by

Theorem 1. Solving the interpolation problem, we have a

solution as

η(s) = s/2(s2 + s+ 1),

and calculating κ0, we obtain κ0 = 3. Hence C is designed

as

C = 3η(1 − η)D0N
−1
0

=

[
3s(s+2)

2s2+s+2

−3s(s+2)

(2s2+s+2)(s+1)

3s
2s2+s+2

3(s3+3s2+2s+1

(2s2+s+2)(s+1)

]
.

[Example 2] In this example, the RPR control is ap-

plied to a state-space feedback system. In Fig. 2, let us

assume

P0 = (sI −A)−1B,

where (A, B) is a stabilizable pair. Then

D̃0 = (sI −A)/(s + 1) and

Ñ0 = B/(s+ 1)

is a left coprime factorization over M(S). Obviously

ψ(Ñ0) ∈ M1 and this guarantees the existence of a com-

pensator C to realize the infinite gain margin for the nom-

inal plant 3) (According to the LQ control theory, it is well

known that C can be a constant so as to attain the infi-

nite gain margin). Additionally, Corollary 1 implies that

there exists a robust stabilization compensator which re-

alizes the infinite gain margin not only for the nominal

plant but also for the multiplicative plant perturbations

at the plant input within the range of (3). In this case,

C is required to be a dynamical compensator as demon-

strated in Example 3.
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Fig. 3 Stable region

[Example 3] On a regulator problem, let us compare

the RPR control with the conventional LQ optimal con-

trol from the stability point of view against parameter

perturbations. Here assume in the feedback system in

Fig. 2

p0 = 1/(s− 1) and (13)

r = 1/(s+ 1).

It is easy to see the conditions of (3) are all satisfied and

hence the RPR control is available. The design procedure

gives the compensator as

c(s) = 63(5s+ 1)/(2s − 1).
With the above compensator, the nonlinear infinite gain

margin is attained for the perturbed plant of

p = p0{1 − δ/(s + 1)} (14)

if −1 ≤ δ ≤ 1. Especially, when k is additionally assumed

to be linear, the characteristic equation of the closed loop

system in Fig. 2 is given by

∆ = [2s3 + (315k − 1)s2 + {63k(6 − 5δ) − 2}s
+63k(1 − δ) + 1]/(s+ 1)3.

The stable region in the δ - k diagram is illustrated by

the portion shaded with oblique lines from the upper left

to lower right in Fig. 3.

On the other hand, in order to design a compensator for

the LQ optimal control, let the system (13) be represented

by a state-space realization of

A = 1, b = 1, c = 1.

The optimal gain c(s) = k is obtained by solving the alge-

braic Riccati equation under suitable weight coefficients.

For the perturbed plant of (14), the characteristic equa-

tion is

∆ = {s2 + ks + k(1 − δ)− 1}/(s + 1)2.
The stable region for δ and k is shown by the portion

shaded with oblique lines from the upper right to lower

left in Fig. 3. It is well known that the optimal regula-

tor attains the infinite gain margin for the nominal plant

(corresponding to the case of δ = 0). However, according

to the results in Fig. 3, when δ becomes closer to 1, the

allowable range of k becomes narrower. Especially, in the

case of δ = 1, the feedback system cannot avoid instabil-

ity regardless of the value of k, in other words, regardless

of the weight coefficients for the Riccati equation.

Through the example, it is observed that the RPR con-

trol realizes a wider stable region for the δ - k variations

compared to the LQ optimal control as shown in Fig. 3.

5. Conclusion

This paper has discussed the robust stabilization prob-

lem for multivariable high gain feedback systems, where

the problem has been reduced to the realization problem

of the robust positive realness of the system. The exis-

tence condition of a compensator attaining the robust pos-

itive realness is derived in terms of the conditions on the

largest invariant factor for the numerator in the coprime

factorization form of the nominal plant model ψ(N0), and

in terms of those on the allowable range of the model un-

certainty or perturbation |r(jω)|.
The results show that the infinite gain margin con-

siderably gives constraints on the allowable range of the

plant perturbation, though this might be slightly surpris-

ing since in a conventional understanding a feedback sys-

tem with a large gain margin seems to attain better robust

stability against the plant perturbation. This can be re-

garded as a trade-off between the robustness against the

gain perturbation and that against the unstructured plant

perturbation.

Also it has been shown in this paper that the RPR con-

trol makes the sensitivity function of the feedback system

less than or equal to 1 over all the frequency.

Moreover, through the simple examples the RPR con-

trol has been compared to the conventional LQ control,

and it has been demonstrated that the RPR control of

a dynamical compensation scheme is more robustly sta-

ble against the unstructured plant uncertainty than the

conventional LQ optimal control of a statical one.
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Appendix A. Proof of Necessity Part for
Theorem 1

Step 1 Derivation of (3a). For rank P0C = m, there

exists A−1
0 , and it is also a positive real matrix 8). Now

let A0 be expressed as

A−1
0 = Â0/ψ(A0),

where Â0 ∈ M(S) and ψ(A0) ∈ S are coprime. From

Lemma 1, it follows that ψ(A0) ∈ M1. Additionally, by

using Lemma 4 on the feedback realizability, ψ(N0) ∈ M1

is derived.

Step 2 Derivation of (3b). Under the assumption of

|r(jωn)| > 0, ωn ∈ Ωn, it can be shown that there exists

L ∈ L(r) which does not satisfy Lemma 1. To do this,
firstly, let A−1

0 (jω) be approximated at the neighborhood

of jωn in the form of

A−1
0 (jω) � Z/{j(ω − ωn)}, (Z �= 0).

From Lemma 1, Z is positive semi-definite, and hence

there exists i such that zii > 0.

Now let us define

m(s) := εr(s)
∏

i

(s− αi)/(s + αi)

and αi > 0 such that m(jωn) = −ε|r(jωn)|. Then by
using this m(s), let us define L(s) as

L(s) := eie
′
im(s),

where ei is an unit vector whose i-th element is 1, and

make ε sufficiently small so that (I + L)N0 and D0 are

coprime. Then obviously L ∈ L(r), and (I + L(jω0))
−1

exists since ||L(jω0)|| < 1 holds where ω0 is the neigh-

borhood of ωn(ω0 �= ωn). Here calculate a quadratic form

e′iA
−1(jω)ei, then its real part is negative:

Re e′iA
−1(jω)ei � −ε|r(jωn)|

1 − ε|r(jωn)| < 0.

This contradicts the condition (iv) in Lemma 1.

Step 3 Derivation of (3c). Since ωd ∈ Ωd is a pole of

P0, there exists ξ(�= 0) ∈ Cm to satisfy (I−A0(jωd))ξ = 0.

Therefore, it follows that ||A0(jωd)|| ≥ 1. By noting that
|r(jωd)| · ||A0(jωd)|| < 1 from (4b), it is clear to obtain

(3c).

Step 4 Derivation of (3d). As in Step 2, let us use

reduction to absurdity. Let us assume |r(jω0)| > 1 for

some ω0 ∈ R \ (Ωn ∪ Ωd), it is shown that there exists

L ∈ L(r) contradicting (4d).
With unitary matrices U and V , a singular value de-

composition of T0(jω) is given by

UT0(jω)V =

[
Σ 0

0 0

]
,

where Σ := diag{σi}, i = 1, . . . , n, and σ1 ≥ σ2 ≥ . . . ≥
σn > 0 are the singular values of T0(jω0). Without loss

of generality, we can assume σ1 > 0. This is because if

σ1 = 0, i.e., T0(jω0) = 0, then we can alternatively choose

jω′
0 in the neighborhood of jω0 so that T0(jω

′
0) �= 0, and

thus we can assume T0(jω
′
0) �= 0 and |r(jω′

0)| > 1.
Let r(jω0) be expressed as |r(jω0)| exp(jδ), and let u

and v denote the first row of U and the first column of V ,

respectively. Each element of u and v can be written by

ui = µi exp(jθi) and

vi = νi exp(jφi),

where µi and νi are real. Then let us define

L := −r(s)ṽ(s)ũ′(s), (A. 1)

where

ṽ(s) :=




ν1

∏
i
(s− α1i)/(s+ α1i)

...

νm

∏
i
(s− αmi)/(s+ αmi)


 ,

ũ(s) :=




µ1

∏
i
(s − β1i)/(s+ β1i)

...

µm

∏
i
(s − βmi)/(s+ βmi)




and αji, βji > 0 can be decided to satisfy

arg{
∏

i

(jω0 − αji)/(jω0 + αji)} = φj − δ/2

arg{
∏

i

(jω0 − βji)/(jω0 + βji)} = θj − δ/2.

According to the above manner, L belongs to M(S), and
||L(jω)|| ≤ |r(jω)|, ∀ω ∈ R, and hence L ∈ L(r) follows.
However, this L does not satisfy (4d) as shown in the

follows.

||(I − T0(jω0))(I + L(jω0)T0(ω0))
−1||
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≥
∣∣||I + L(jω0)T0(jω0))

−1||
− ||T0(jω0)(I + L(jω0)T0(jω))

−1||
∣∣

=

∣∣∣∣∣
∥∥∥∥∥V
(
I − |r(jω0)|e1e

′
1

[
Σ 0

0 0

])−1∥∥∥∥∥
−
∥∥∥∥∥U∗

[
Σ 0

0 0

](
I − |r(jω0)|e1e

′
1

[
Σ 0

0 0

])−1∥∥∥∥∥
∣∣∣∣∣

= |(1 − σ1)/(1− |r(jω0)|σ1)|
> 1,

where it should be noted that |r(jω0)| · ||T0(jω0)|| < 1 is
employed which is required for the robust stability in case

that each channel gain is 2(ki = 2, ∀i). As shown in the
above, A = (I + L)A0(I + LA0)

−1 is not a positive real

matrix for L given by (A.1). Therefore, (3d) is necessary.

Hiroshi NOGAMI

He received the B.E. and M.E degrees in

electronic engineering from Osaka University,

Osaka, Japan, in 1985 and 1987, respectively.

Also he received the Ph.D. degree in commu-

nication engineering from Osaka University in

1998. He joined Hitachi, Ltd. in 1987. From

1991 to 1993, he was a Visiting Scholar at the

Georgia Institute of Technology, Atlanta, GA,

USA. From 1995 to 1999, he was loan to the

Advanced Digital Television BroadcastingLab-

oratory, Tokyo, Japan. Currently, he is with

System LSI Development Center, Device De-

velopment Center, Hitachi, Ltd. He is a mem-

ber of IEICE, ITE, and IEEE.

Hajime MAEDA

He was born in Osaka, Japan, in 1943. He re-

ceived the B.E., M.E. and Ph.D. degrees all in

communications engineering from Osaka Uni-

versity, Osaka, Japan, in 1966, 1968, and 1971,

respectively. In 1971, he joined the Depart-

ment of Mechanical Engineering at the Fac-

ulty of Engineering Science, Osaka University.

From 1983 to 1984, he was a Visiting Asso-

ciate Professor at the University of Waterloo,

ON, Canada. Since 1993, he has been with

the Department of Communication Engineer-

ing, Osaka University, where he is currently a

Professor. His main research interest is in the

area of control theory, nonlinear analysis, and

signal processing.

Shinzo KODAMA

He received B.S. degree from Waseda Uni-

versity, Tokyo, Japan, in 1955 and his Ph.D.

from the University of Calfornia, Berkely, CA,

USA, in 1963. He joined Osaka University, Os-

aka, Japan, as a Lecturer in 1962, and became

a Professor in 1974. He is currently a Profes-

sor in Kinki University, Higashi-Osaka, Okaka,

Japan. His research interest includes control

theory, net theory and medical engineering. He

is a member of SICE, ISCIE, and IEEE.

Mathukumalli VIDYASAGAR

He was born in Guntur, Andhra Pradesh, In-

dia on 29 September 1947. He received the

B.S., M.S., and Ph.D. degrees, all in electrical

engineering, from the University of Wisconsin,

in 1965, 1967, and 1969, respectively. He has

taught at Marquette University, U.S.A.(1969-

70), Concordia University, Canada(1970-80),

and the University of Waterloo, Canada(1980-

1989). In 1989 he returned to India as the Di-

rector of the Centre for Artificial Intelligence

and Robotics, (under the Defence Research

and Development Organisation) in Bangalore.

In 2000 he took up his current assignment

as Executive Vice President (Advanced Tech-

nology) in Tata Consultancy Services, which

is India’s largest IT firm. At present he is

based in the city of Hyderabad. In his cur-

rent position, his responsibilities are to create

an Advanced Technology Centre(ATC) within

TCS, to develop futuristic technologies of rele-

vance to the IT industry. At the present time,

the scope of activities of the ATC includes

PKI(Public Key Infrastructure), security in e-

and m-commerce, advanced cryptography in-

cluding elliptic curve cryptography, and neu-

ral networks. Most recently, the ATC has also

undertaken a major initiative in the emerging

area of bioinformatics.

In the past, he has held visiting posi-

tions at several universities including M.I.T.,

California(Berkeley), California(Los Angeles),

C.N.R.S. Toulouse, France, Indian Institute of

Science, University of Minnesota, and Tokyo

Institute of Technology. He is the author or

co-author of seven books and more than one

hundred and twenty papers in archival jour-

nals. He has received several honours in recog-

nition of his research activities, including the

Distinguished Service Citation from his Alma

Mater(The University of Wisconsin), and the

IEEE Hendrik W. Bode Lecture Prize for the

year 2000. In addition, he is a Fellow of

Institute of Electrical and Electronics Engi-

neers(IEEE), the India Academy of Sciences,

the Indian National Science Academy, the In-

dian National Academy of Engineering, and

the Third World Academy of Sciences. His cur-

rent research interests are control theory, ma-

chine learning and its applications to bioinfor-

matics, and elliptic-curve cryptography.



T. SICE Vol.E No.1 January 2001 91

Translated from Trans SICE Vol. 23, No. 4, 364/370(1989)


