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Classes of Petri Nets That a Necessary and Sufficient Condition

for Reachability is Obtainable

Kunihiko Hiraishi∗ and Atsunobu Ichikawa∗∗

The central issue of this paper is to find a class of Petri nets that a necessary and sufficient condition for

reachability is obtainable. For this purpose, several new classes of Petri nets are defined by structural conditions

related to directed circuits.

A necessary and sufficient condition for reachability is obtained for trap circuit Petri nets (TC nets), where

a Petri net is called a TC net if the set of places on any directed circuit forms a trap, and for deadlock circuit

Petri nets (DC nets), where a Petri net is called a DC net if the set of places on any directed circuit forms a

deadlock. The class of TC nets is a subclass of normal Petri nets. For normal Petri nets, a sufficient condition

for reachability is obtained.

Reachability for any conflict-free Petri net can be decided by finding a legal firing sequence for a finite number

of minimal solutions of the state equation. This property also holds for larger classes of Petri nets. These are a

class of non-decreasing circuit Petri nets (NDC nets), where a Petri net is called an NDC net if the number of

tokens on any directed circuit is not decreased by any firing of transitions, and a class of non-increasing circuit

Petri nets (NIC nets), where a Petri net is called an NIC net if the number of tokens on any directed circuit is

non increased by any firing of transitions. The class of NDC nets and the class of NIC nets are subclasses of TC

nets and DC nets, respectively.
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1. Introduction

Petri nets are widely studied as a model of discrete event

systems, and have various kinds of application areas such

as computer hardware/software, communication protocol,

sequential control, and knowledge representation 1). Petri

nets represent structure of systems. This enables us to

characterize each system by its structure, and to analyze

it using specific properties on the structure.

One of the central issues in the analysis of Petri nets is

the reachability problem, the problem to decide whether

a given goal marking is reachable from the initial mark-

ing. It was already shown that the reachability prob-

lem is decidable 2). In addition, necessary and sufficient

conditions for reachability were obtained for some sub-

classes of Petri nets such as marked graphs and conflict-

free Petri nets 3), 4). On the other hand, classes of Petri

nets with semilinear reachability sets were studied with

respect to persistency, which is a property on behavior of
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Petri nets 5)∼7). All of these subclasses of Petri nets are

defined by structural properties.

A Petri net is defined by local description on the con-

nection between two kinds of nodes, places and transi-

tions. Local structure composes macrostructure. As such

macrostructure, we consider conditions related to the set

of places on each directed circuit, and study the reacha-

bility problem for Petri nets with such structure.

First we define two new classes of Petri nets. One is the

class of trap circuit Petri nets (TC nets), where a Petri

net is called a TC net if the set of places on any directed

circuit forms a trap, and the other is the class of deadlock

circuit Petri nets (DC nets), where a Petri net is called a

DC net if the set of places on any directed circuit forms

a deadlock. The condition of being a TC net is a special

case of being a normal Petri net, which was studied as

a class of Petri nets having semilinear reachability sets.

A sufficient condition for reachability can be obtained for

normal Petri nets.

Nonnegative integer solutions of the state equation in

a given Petri net play the important role in the analysis

of reachability. In conflict-free Petri net, reachability can

be decided by finding a legal firing sequence for a finite

number of minimal solutions. We show that this prop-

erty is also valid in larger classes of Petri nets, such as

non-decreasing circuit Petri nets (NDC nets) and non-



T. SICE Vol.E1 No.1 2001 93

increasing cuircuit Petri nets (NIC nets).

Finally, we discuss relationship between these new

classes and existing classes of Petri nets. These results

on subclasses of Petri nets can be applied to analysis, de-

sign, and control of discrete event systems represented by

Petri nets.

2. Preliminaries

Let IN denote the set of nonnegative integers, and let

INk denote the set of k dimensional nonnegative integer

vectors.

A Petri net is a quadruple M = (P, T,A,m0), where

P = {p1, p2, · · · , pv} is a finite set of places, T =

{t1, t2, · · · , tw} is a finite set of transitions, A : P×T ∪T×
P → {0, 1} is a function representing arcs between places
and transitions, and m0 ∈ INv is the initial marking. We
call the triple C = (P, T,A) a Petri net structure. Note

that Petri nets considered in this paper are assumed to

be single-arc.

When A(tj , pi) = 1, tj is called an input transition of pi,

and pi is called an output place of tj . When A(pi, tj) = 1,

pi is called an input place of tj , and tj is called an output

transition of pi.

We define two matrices B+ = [b+ij ] and B
− = [b−ij ],

where b+ij = A(tj , pi) and b
−
ij = A(pi, tj). B

+ is called

the input incidence matrix and B− is called the output

incidence matrix. Let B = B+ −B−.
For s ∈ P ∪ T , let
•s = {r | r ∈ P ∪ T ∧ A(r, s) = 1},
s• = {r | r ∈ P ∪ T ∧ A(s, r) = 1}.

We say that a transition tj is enabled in a marking m if

m−B−ej ≥ 0 (1)

where ej denotes the unit vector with value 1 in the j-

th component. By firing of transition tj , the marking

changes to the following m0:

m0 = m+Bej (2)

A finite sequence of transitions of arbitrary length is

called a firing sequence. Let T ∗ denote the set of all fir-

ing sequences including the empty firing sequence. Given

a firing sequence σ, let ψ(σ) denote the firing count vec-

tor of σ, which is a w dimensional nonnegative integer

vector and its j-th component indicates the number of

occurrences of transition tj in the sequence.

A firing sequence σ = s1s2 · · · sr, si ∈ T (i = 1, 2, · · · , r)
is called legal in markingm, denoted bym

σ→, if each tran-
sition si (i = 1, · · · , r) can fire from m in this order. Firing

of σ changes the marking m to m0 defined by

m0 = m+Bψ(σ) (3)

We denote this situation by m
σ→ m0. Let m,m0 be two

markings. Then m0 is called reachable from m if there

exists a firing sequence σ such that m
σ→ m0. We shall

simply write m → m0 to denote only the reachability of

m0 from m. We say that a vector x ∈ INw is feasible in m
if there exists a firing sequence σ such that ψ(σ) = x and

m
σ→ m0.

Using (3), we immediately have the following lemma.

Lemma 1. Let M = (C,m0) be a Petri net. If m0 →
mT , then there exists x ∈ INw such that mT = m0 +Bx.

Given a Petri net M = (C,m0), the set of markings

reachable from the initial marking m0, R(M) = {m |
m0 → m}, is called the reachability set of M .
Let x = [xi] ∈ INw be a firing count vector. We define

the subnetMx induced by x is defined as the restriction of

M to Tx and Px, where Tx is the set of transition ti with

xi > 0 and Px is the set of places adjacent to transitions

in Tx.

A sequence c = c1c2 · · · ck of places and transitions is
called a directed path if A(ci, ci+1) = 1(i = 1, 2, · · · , k−1),
and is called a directed circuit if c1 = ck in addition.

A Petri net M is called weakly persistent if the follow-

ing holds for any marking m ∈ R(M) and for any firing
sequences σ,σ0 ∈ T ∗: if m σ→ ∧ m

σ0→ ∧ ψ(σ0) ≤ ψ(σ),

then there exists a firing sequence σ00 ∈ T ∗ such that

m
σ0·σ00→ ∧ ψ(σ0 · σ00) = ψ(σ).

3. Deadlocks and Traps

For a set Q ⊆ P of places, let

I(Q) = {t | t ∈ T ∧ •t ∩Q = ∅ ∧ t• ∩Q 6= ∅},

O(Q) = {t | t ∈ T ∧ •t ∩Q 6= ∅ ∧ t• ∩Q = ∅}.

I(Q) is the set of input transitions of Q from the out-

side, and O(Q) is the set of output transitions of Q to the

outside.

Q is called a deadlock(1) when I(Q) = ∅. A place with-
out any input transitions constitutes a deadlock by itself,

and is called a single-place deadlock. A deadlock without

any single-place deadlocks is called a circuit deadlock.

Q is called a trap when O(Q) = ∅. A place without

any output transitions constitutes a trap by itself, and is

called a single-place trap. A trap without any single-place

traps is called a circuit trap.

A deadlock (trap) is called token-free if any place in it

(1) A deadlock is often called a siphon in literature.
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has no tokens. We obtain the following result on dead-

locks and traps.

Lemma 2. Let M = (C,m0) be a Petri net. Sup-

pose that there exists a firing sequence σ ∈ T ∗ such that
m0 σ→ mT , and let x = ψ(σ). Then the following holds:

(i) Mx has no token-free deadlocks in m
0.

(ii) Mx has no token-free traps in m
T .

Proof. In the firing of σ, every transition in Mx fires

at least once by the definition. If there exists a token-free

deadlock in m0, then every transition having an output

place in the deadlock also has at least one input place in

the deadlock, and therefore it is not enabled. That is, any

transition having an input place in the deadlock cannot

be enabled forever, and we obtain (i).

If there exists a trap with at least one token, then the

number of tokens in the trap is not decreased to 0 by any

firing of transitions. Therefore, if a trap has no tokens

after firing of a firing sequence, then every transition hav-

ing an input place in the trap has not fired, i.e., it is not

in the firing sequence, and we obtain (ii).

In what follows, we shall abbreviate a deadlock with-

out any tokens as TFD, and a trap without any tokens as

TFT.

The following result is known 10).

Lemma 3. If no transitions are enabled in a marking

m, then there exists at least one TFD in m.

Lemma 4. Let M = (C,m0) be a Petri net, let m be

a marking, and let x ∈ INw. if m+Bx ≥ 0, then Mx has

no single-place TFD’s in m.

Proof. If Mx has a single-place TFD, then the num-

ber of tokens in the place need to be negative in marking

m+Bx. This contradicts m+Bx ≥ 0.
Lemma 5. Let M = (C,m0) be a Petri net and let

x ∈ INw. If the following (i) and (ii) hold, thenm0+Bx ∈
R(M).
(i) m0 +Bx ≥ 0;
(ii) For any reachable marking m ∈ R(M): if there exists
y ∈ INw such that m = m0+By and y ≤ x, then Mx−y

has no circuit TFD’s in m.

Proof. From (i) and Lemma 4, Mx has no single-place

TFD’s in m0. Moreover, no circuit TFD’s exist by (ii).

By Lemma 3, Mx has at least one enabled transition in

m0. Let m0 be the marking after firing of one of such

transitions, and let x0 be the remaining firing count vec-

tor. Then m0 + Bx0 ≥ 0 holds. By the same argument,
Mx0 has at least one enabled transition. Repeating this

process until the remaining firing count becomes 0, we

will reach to the marking m0 +Bx.

In the above proof, the transition to be fired at each

step is selected arbitrarily from enabled transitions such

that the corresponding component of the remaining fir-

ing count vector is positive. From this fact, we have the

following lemma.

Lemma 6. Let M = (C,m0) be a Petri net. If the

condition (ii) of Lemma 5 holds for any x ∈ INw such that
m0 +Bx ∈ R(M), then M is weakly persistent.

4. A Necessary and Sufficient Condition

for Reachability in Trap Circuit Petri

Nets

In this section, we first define a class of Petri nets in

which no TFD’s are newly generated by any firing of tran-

sitions, and obtain a necessary and sufficient condition for

reachability in the class.

A Petri net is said to be a trap circuit Petri net (TC

net) if the set of places on each directed circuit is a trap.

Lemma 7. Let M = (C,m0) be a TC net and let

x ∈ Nw. Suppose that Mx has no circuit TFD’s in m
0.

Then the following holds for any m ∈ R(M): if there ex-
ists y ∈ Nw such that m = m0 + By and y ≤ x, then

Mx−y has no circuit TFD’s in m.

Proof. Let Q be any circuit deadlock of Mx−y. Since

Mx−y is a subnet of Mx, Q is contained in Mx. Since M

is a TC net, Q is a circuit trap in M .

(i) The case that I(Q) = ∅ in Mx: Since Q is a circuit

deadlock in Mx, Q has token(s) in m0 by the assump-

tion. Since Q is a circuit trap in M , the number of

tokens in Q cannot become 0 by any firing of transi-

tions, and Q still has token(s) in m.

(ii) The case that I(Q) 6= ∅ in Mx: Since I(Q) = ∅ in
Mx−y, firing of transitions in I(Q) puts some token(s)

on places in Q. Since Q is a circuit trap in M , Q still

has token(s) in m.

Theorem 1. Let M = (C,m0) be a TC net and let

mT be a marking. Then m0 → mT if and only if there

exists x ∈ INw such that
(i) mT = m0 +Bx;

(ii) Mx has no circuit TFD’s in m
0.

Proof. Necessity: (i) is obtained from Lemma 1, and

(ii) from Lemma 2.

Sufficiency: From (ii) and Lemma 7, we obtain the con-

dition (ii) of Lemma 5. Hence, we have m0 → mT by

Lemma 5.

We also have the following result by Theorem 1, Lemma

6, and Lemma 7.

Theorem 2. Any TC net is weakly persistent for ar-

bitrary initial marking.
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5. A Necessary and Sufficient Condition

for Reachability in Dealock Circuit

Petri Nets

For a Petri net structure C = (P, T,A), let C−1 =

(P, T,A−1) is called the inverse of C, where A−1 : P ×T ∪
T×P → {0, 1} is a function such that for each r, s ∈ P∪T :
A−1(r, s) = A(s, r). We immediately have the following.

Lemma 8. Let M = (C,m0) be a Petri net. Then

m0 σ→ mT in M if and only if mT σ−1→ m0 in M−1 =

(C−1,mT ), where σ−1 is the sequence obtained by ar-

ranging each transition of σ in the reverse order.

A Petri net is said to be a deadlock circuit Petri net

(DC net) if the set of places on any directed circuit is a

deadlock. It is easy to see that any DC net is the inverse

of a TC net. From Theorem 1 and Lemma 8, we obtain a

necessary and sufficient condition for reachability in DC

nets.

Theorem 3. Let M = (C,m0) be a DC net and let

mT be a marking. Then m0 → mT if and only if there

exists x ∈ INw such that
(i) mT = m0 +Bx;

(ii) Mx has no circuit TFT’s in m
T .

A DC net is not necessarily weakly persistent, but from

Theorem 3 we have the following algorithm to obtain a

firing sequence to mT .

Algorithm:

Given a firing count vector x = [xi] ∈ INw such that

mT = m0 +Bx:

Step 1. Find a transition tj that satisfies all of the fol-

lowing three conditions, and fire it.

(i) xj > 0:

(ii) tj is enabled;

(iii) Let x0 be the remaining firing count vector after a

firing of tj . Then Mx0 has no TFT’s in m
T .

Step 2. If x = 0, then halt. Otherwise, let x := x − ej
and go to step 1.

6. A Sufficient Condition for Reachabil-

ity in Normal Petri Nets

A Petri net is said to be a normal Petri net if the set of

places on any directed circuit contains a circuit trap(2).

Let M be a normal Petri net. We say that a marking

m is called sufficient for M if the following holds. Let Q

be the set of places on any directed circuit. If I(Q) = ∅
or O(Q) 6= ∅, then Q contains a trap having token(s) in

m.

(2) This definition of normal Petri nets is equivalent to that

in 7), but is in a different form.

Such a set Q of places is a deadlock of M or may be a

deadlock of a subnet of M .

Lemma 9. Let M = (C,m0) be a normal Petri net

such that m0 is sufficient for Mx, and let x ∈ INw. Then
the following holds for any reachable marking m ∈ R(M):
if there exists y ∈ INw such that m = m0+By and y ≤ x,
then Mx−y has no circuit TFD’s.

Proof. Let Q be any circuit deadlock in Mx−y. Since

Mx−y is a subnet of Mx, Q is contained inMx. There are

two cases:

(i) The case that I(Q) = ∅ and O(Q) 6= ∅ in Mx: In

the subnet Mx, Q contains a trap with token(s) in the

initial marking m0. Therefore, Q has token(s) also in

m.

(ii) The case that I(Q) 6= ∅ and O(Q) = ∅ in Mx: Since

I(Q) = ∅ in Mx−y, firing of transitions in I(Q) put to-

ken(s) on places in Q before the marking reached to m.

Since O(Q) = ∅ (i.e., Q is a trap) inMx, Q has token(s)

also in m.

Theorem 4. Let M = (C,m0) be a normal Petri net.

Then m0 → mT if there exits x ∈ INw such that
(i) mT = m0 +Bx;

(ii) m0 is sufficient for Mx.

Proof. From (ii) and Lemma 9, we have the condition

(ii) of Lemma 5. Therefore, we obtain m0 → mT by

Lemma 5.

Any TC net is a normal Petri net, and any marking in

a TC net is sufficient for the net as a normal Petri net.

Using Lemma 6 and Lemm 9, we have the following

theorem.

Theorem 5. A normal Petri net is weakly persistent

if the initial marking is sufficient.

7. Feasibility of a Minimal Solution of

State Equation

Let M = (C,m0) be a Petri net and let mT be a mark-

ing. Then mT − m0 = Bx is called the state equation

with respect to the reachability. By (3), we know that

the firing count vector of any firing sequence legal in the

initial marking is a nonnegative integer solution of the

state equation. Since we need only nonnegative integer

solutions in checking the rechability, we shall simply call

a solution to denote a nonnegative integer solution of the

state equation.

Let x be a solution of the state equationmT −m0 = Bx

and let y be any nonnegative integer solution of a ho-

mogenous equation 0 = By. Then any vector in the form

x + k · y, k ∈ IN is also a solution of the state equa-

tion. Therefore, there exist infinitely many solutions in
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general. However, the following results was obtained for

conflict-free Petri nets. This implies that the reachability

can be decided by checking feasibility of a finite number

of minimal solutions.

Lemma 10. Let M = (C,m0) be a conflict-free Petri

net and let α be a solution of the state equation mT −
m0 = Bx. If α is feasible, then any solution β such that

β ≤ α is also feasible.

TC nets do not necessarily have this property. For ex-

ample, consider m0 = [0, 0, 0]t and mT = [0, 0, 1]t for the

TC net in Fig. 1. The solutions of the state equation

are x = [1, 1, 1, 0, 0]t + k[1, 0, 0, 1, 1]t, k ∈ IN. Solution
α = [2, 1, 1, 1, 1]t is feasible, because there exists a legal

firing sequence σ = t5t3t1t2t1t4 such that ψ(σ) = α, but

solution β = [1, 1, 1, 0, 0]t is not. This is because Mα has

no TFD’s but Mβ has a TFD in m
0.

Now we define a class of Petri net by using a stronger

condition than that of TC nets. A Petri net is said to be

a non-decreasing circuit Petri net (NDC net) if for each

directed circuit, the number of tokens in the circuit is not

decreased by any firing of transitions. It is easy to verify

that any NDC net is a TC net.

Lemma 11. Let M = (C,m0) be an NDC net and let

α,β be solutions of mT −m0 = Bx such that β ≤ α. If

Mα has no circuit TFD’s in m
0, then Mβ has no circuit

TFD’s.

Proof. Let Q be any circuit deadlock in Mβ . If Q is a

circuit deadlock of Mα, then Q is not a TFD of Mβ . If Q

is not a circuit deadlock ofMα, then there exists tj ∈ I(Q)
in Mα such that ej ≤ α− β. Considering B(α− β) = 0,
this contradict the property that that the number of to-

kens on any directed circuit does not decrease.

Since any NDC net is a TC net, we have the following

corollary by Theorem 1 and Lemma 11.

Corollary 1. Let N = (C,m0) be an NDC net and let

mT be a marking. Then m0 → mT if and only if there

exists x ∈ INw such that
(i) x is a minimal nonnegative integer solution of mT −
m0 = Bx;

(ii) Mx has no circuit TFD’s in m
0.

We can obtain a similar result on the inverse of NDC

nets. A Petri net is said to be a non-increasing circuit

Petri net (NIC net) if for each directed circuit, the num-

ber of tokens in the circuit is not increased by any firing

of transitions. Any NIC net is a DC net.

By Corollary 1 and Lemma 8, we have the following.

Corollary 2. Let N = (C,m0) be an NIC net, and let

mT be a marking. Then m0 → mT if and only if there

exists x ∈ INw such that

(i) x is a minimal nonnegative integer solution of mT −
m0 = Bx;

(ii) Mx has no circuit TFT’s in m
T .

8. Discussion

In Fig. 2, we show relationship among new subclasses

of Petri nets studied in this paper, together with existing

classes of Petri nets, marked graphs, forward-conflict-free

nets (FCF nets), and backward-conflict-free (BCF nets)

nets.

The condition that (i) the state equation has a solution

and (ii) Mx has no TFD’s in the initial marking (Mx has

no TFT’s in the goal marking), is necessary and sufficient

for reachability in the classes contained in TC nets (DC

nets, resp.). Moreover, we can replace the above condi-

tion (i) with the existence of a minimal solution in the

classes contained in NDC nets (NIC nets, resp.).

While any normal Petri net is weakly persistent if the

initial marking is sufficient, any TC net is weakly persis-

tent for arbitrary initial marking. However, inverses of

these nets are not necessarily weakly persistent.
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Fig. 1 An example of TC nets in which a minimal solution is

not feasible.

Fig. 2 Relations among classes of Petri nets.
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