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Acquisition of Operational Design Knowledge from Designed

Objects Using Explanation-Based Learning Method'

Osamu KATAT*, Hiroshi KAwAkAMI™, Tetsuo SAWARAGI*™*,

Sosuke IwWAT**** and Tadataka KONISHI*****

An EBL-based method for acquiring conceptual design knowledge in physical systems was proposed and imple-
mented to a system based on the idea that such knowledge can be acquired by analyzing the structural features
of existing artifacts. Since any artifacts can be interpreted via various design rationalities such as teleological,
causal and economical ones, it can be modeled as a hierarchy which consists of designs goals, subgoals, structures
and substructures toward attaining those goals. This results in a generalized version of Functional Diagram used
in Value Engineering. From the Functional Diagram, general design knowledge of various levels can be acquired
by a single positive instance of designed objects. The operationality of the acquired knowledge is then analyzed
with reference to its modes of acquisition. The acquisition method is implemented to a system using PROLOG.

Key Words: explanation-based learning, value engineering, functional analysis, operationality of knowledge,

acquisition of design knowledge

1. introduction

For supporting design processes by using computers,
several kinds of CAD systems has been developed so far,
but the so-called “conceptual design process” is still de-
pendent on expertise of designers, thus it is required to
develop computer-aided “conceptual design” systems.

It is generally acknowledged that a detailed analysis of
existing artifacts is beneficial not only for the improve-
ment of the artifacts in question but also for the creation
of new ones. Value Engineering introduced by Miles
provides a systematic method of analysis for deducing
these improvements and new designsl), which focuses on
the functional composition of artifacts and the structures
supporting these functions. This analysis, called “Func-
tional Analysis”, enables us to deduce various new ideas
for improving.

In this paper, by introducing the notion of “func-

tional analysis”, we will discuss a “knowledge acquisi-
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tion method” which analyzes structural appearance of de-
sign examples in order to extract various pieces of design
knowledge. The knowledge are then generalized to be op-
erational for the conceptual design processes.

The difficulty of knowledge information processing in
conceptual design processes stems mainly from the follow-
ing three facts, i.e., (1) the relevant knowledge cannot be
enumerated, (2) we need not only heuristics but also deep
knowledge such as physical and/or mathematical princi-
ples (laws and effects), and (3) conceptual design itself is
highly creative, thus most of the expertise for conceptual
design cannot be described explicitly.

These facts imply that the examination of “opera-
tionality of knowledge” is crucial for supporting con-
ceptual design processes 2. For knowledge of the concep-
tual design, we will introduce three kinds of operational-
ities, i.e., “applicability” to design phases, “rationality”

” of design knowledge. These operationali-

and “efficiency’
ties of the acquired knowledge will be discussed in relation
to the modes of acquisition.

In our method of acquiring operational design knowl-
edge, the relevant domain theories for design are hier-
archically organized in relation to the “applicability” as
shown in the left part of the Fig. 1. This organization is
utilized to analyze design examples and to acquire design
knowledge which are operational in each design phases.
The domain theories are then refined to be “rational”

via the processes of “functional analysis”. Based on an
EBG (Explanation Based Generalization) method®, this
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Fig.1 Hierarchical knowledge representation of artifact and its relation to the domain

theory of Explanation Based Learning
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Fig. 2 Functional Diagram of the flexible rod

refinement process is done with an aid by a computer sys-
tem which is implemented by using the logical program-
ming language PROLOG.

2. Functional Analysis of Design Exam-

ples and Design Knowledge

2.1 A Brief Introduction of Functional Analy-
sis

In Value Engineering, the “Functional Analysis” tech-
nique analyzes how the design goal (the primary function)
is attained by the use of functional and structural compo-
sition of design examples (artifacts). The analysis results
in the so-called “Functional Diagram” on which basis we
can improve the artifact in question by searching for bet-
ter structural components or a completely new structural
composition. By focusing on the functional composition
of the artifact, the modification or structural alteration is
not constrained by the existing structural composition or
by the components of the artifact.

Fig. 2 shows the Functional Diagram of a sensing de-
vice shown in Fig. 3 which is used to measure the velocity
of melted lead™®.

function, “to measure the velocity of melted lead,” con-

This diagram shows that the primary

sists of three subfunctions, “to detect ...”, “to transmit

”

and “to transduce ...”, and that the second subfunc-

tion also consists of three primitive subfunctions F2, F3
and F4. Each primitive subfunction is supported by a set
of structural entities. For instance, each of the leaves F1
- F5 of this diagram is attained by a substructure of the
device as shown in the semantic network in the right part
of Fig.3. This network represents structural features of
the sensing device shown in the left half of Fig.3. The
rectangular nodes in the right half of the figure repre-
sent primitive structural components that are linked by
labeled linkage relations to each other. Ellipsoidal nodes
represent the associated attribute values.

2.2 Functional Diagram and Design Knowl-

edge

Even though the pieces of knowledge embedded in the
Functional Diagram concerning the functional composi-
tion of artifacts, structural composition and function-
structure relationships may be beneficial to the improve-
ment of the artifacts analyzed, they lack generality i.e.,
they cannot be utilized for their improvement nor novel
design of artifacts. This is because the Functional Dia-
gram is strictly dependent on (1) the particular artifact
analyzed and also on (2) the particular way how it is de-
rived, i.e., it is dependent on the particular method used
in the functional analysis and also on the person or the

group of people who derived it.
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The velocity of melted lead (M) is measured as follows: A flexible rod (4) is

made of quartz glass whose upper end (4b) is supported by the arm (2). The
spoon-like lower end (4a) is placed in M, so that the mass flow of M bends the

(Quartz Glass)
obj4 :Flexible Rod

(Quartz Glass)
obj5 :Strain Gauge
obj6 :Electric Wire

obj15:Bevel Gear

0bj16:Brush and
Slip ring

objM :Melted Lead

In order to solve problem (2), a systematic method,
called FAST (Functional Analysis System Technique)®,
was proposed. Even by the use of this method, a need still

exists for standardizing the representation of the Func-
tional Diagram 6),

A multi-layered model of artifacts

3.
and an EBL method for acquiring de-

sign knowledge
3.1 Introducing EBL for Acquiring Design

Knowledge
In order to solve problems (1) and (2), we will introduce
a method based on an EBL (Explanation-Based Learn-
ing) ® to the Functional Analysis.

Given a “goal concept” and its single positive instance
(“training example”), EBL try to explain how the training
example satisfies the goal concept by referring to the “do-
main theory”. The explanation results in an “explanation
tree” which is then generalized as far as the attainment of
the goal concept is guaranteed. Any subtree of the gener-

alized explanation tree can be chunked into a description

rod producing tension on its surface, since the rod is made of an elastic
material. Finally, the strain gauge (5) attached to 4b transduces tension

(strain) as an electric signal.

Fig.3 Structure of the flexible rod for measuring velocity of melted lead

of a general piece of knowledge which shows that the con-
junction of leaves is one of the sufficient conditions of the
root of the tree.

By the use of this method, Functional Analysis can be
done in a quite systematic way, and the resultant Func-
tional Diagram contains all the essential knowledge on
design, i.e., it shows a “general” way for attaining the
primary function. In our method, the structural appear-
ances of a design example are encoded into a semantic
network as shown in Fig. 3, which is generalized by the so-

called “irrelevant feature elimination” 7 and by the “iden-

tity elimination” n.

We adopted a two-step strategy for acquiring design
knowledge. The first step produces a standardized and
generalized Functional Diagram from which, in the sec-
ond step, various types of operational design knowledge

are then extracted.
3.2 Hierarchical Model for Representing Arti-

facts
From the above perspective of Value Engineering, the

process of design can be interpreted as a successive se-
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lection of “ends” and “means” which correspond to de-

sign goals (primary functions), subfunctions, and sub-

structures such as primitive components, materials, etc..

This selection process can be conceived by three types
of rationalities: teleological, causal, and economical®,
as follows:

Teleological Rationality: the rationality on the se-
lection of the functional composition of design.

Causal Rationality: the rationality on the selection
of the structural composition of design for attaining the
subfunctions.

Economical Rationality: the rationality on the se-
lection of the substantial entities for realizing the struc-
tural composition of design.

In order to explain these rationalities of artifacts, we will

need the following kinds of domain-specific knowledge:

Planning Knowledge -Knowledge on Teleologi-
cal Rationality: knowledge on how to attain a goal
(primary function) by combining subgoals (subfunc-
tions).

Physical-Law Knowledge -Knowledge on Causal
Rationality: knowledge on causal laws which may be
used to explain the sufficiency of a substructure for at-
taining a subfunction.

Substantiation Knowledge -Knowledge on Eco-
nomical Rationality: knowledge on the selection of
substantial entities, for example, knowledge on cost,
properties of materials, etc.

As shown in Fig. 1, Planning Knowledge (P) mediates (re-

lates) a certain set of possible primary functions (Goal

Space: G) with a certain set of possible functions (Func-

tion Space: F). Physical-Law Knowledge (L) mediates

Function Space with a certain set of possible structure-

attributes (Structure-Attribute Space: S). Substantiation

Knowledge (I) mediates Structure-Attribute Space and a

certain set of possible substantial entities (Substantial En-

tity Space: R).

3.3 Domain Theory for EBL
According to the above mentioned seven knowledge
spaces (G, P, F, L, S, I and R), domain-specific knowledge

(Domain Theory) for design, with which an EBL system

yields a generalized form of Functional Diagram, can be

organized. In the following, we will confine ourselves to
the case of conceptual design of sensing devices”. Hence,
we will not consider the Substantiation Knowledge (I) or

Knowledge on Substantial Entities (R).

The Domain Theory of this EBL system, illustrated in
the right half of Fig. 3, consists of five kinds of knowledge

as follows:
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Y a =
\ _Solid has— pendng /o 2
(Y h . N 23
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Fig.4 Causal chain explanation of the measurement of fluid
velocity

Goal Space (G):

The goal of sensing devices is to measure the amount of
specified physical quantity together with auxiliary goals
such as “being adapted to the environment,” etc. In the
above example, the goal is not only to measure the ve-
locity but also to be resistant to high temperature and to
localize the velocity measurement.

Physical-Law Knowledge Space (L):

The process of measuring physical quantities usually
consists of causal chains of physical laws. Fig. 4 shows
the causal chain of the example (Fig.3).

The causal chain consists of causal laws (M1~MS5)
which provide the base of each leave of the Functional
Diagram (Fig.2: F1~F5). Causal laws are given as gen-
eral knowledge(l), and they are specified in terms of the
design example and linked to be the causal chain, which
explains the way of measurement.

For example, both of the variables in Fig.4: Solid (M1)
and Elastics in (M2) are specified (instantiated) to objda
in the design example in Fig. 3, then M1 and M2 are linked
to form a part of the chain.

Function Space (F):

Functions which are common to the area of sensing de-

(1) The general form of causal laws are encoded into Horn-
clauses.
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Fig.5 Generalized Functional Diagram generated by the proposed EBL system

vices are “to detect”, “to compare”, “to balance”, “to

transmit”, “to transduce”, etc.
Planning Knowledge Space (P):

As shown in Fig.4, a physical causal chain is estab-
lished when a primary function (G) is attained. As men-
tioned above, the constituents of the chain are originally
given as fragmentary pieces of general knowledge, and
they are specified to the artifact in question and linked
to form a chain. Examining infinite number of combina-
tions of these knowledge is practically impossible, there-
fore some plans which guide the combination are required
even though they are dependent on particular domains.

One of the typical plans for measuring a physical quan-
tity (P of X) is to detect P as a physical quantity Q of Y
and then to transmit Q to a transducer (Z) which then
transforms Q into a quantity (R) of prespecified type such
as an electric current, voltage, etc.

Another typical one is to balance and to compare it
with a standardized quantity and then to transform their

difference into a specified type of quantity.
Structure-Attribute Space (S):

We use semantic network representation of the struc-
tures and of the attributes of sensing devices, as shown in
Fig. 3, which enables the inheritance of attribute values

through “is-a” or “part-of” relations.

4. Acquisition of operational knowledge
by EBL method

4.1 Generating and generalizing Functional
Diagram

In this section, we will discuss a way for supporting
knowledge acquisition from structural descriptions of de-
sign examples (artifacts).

The inputs to the proposed EBL system are the seman-
tic network representation of the structure of a sensing
device (Fig.3) and its primary function. The system de-
rives the explanation tree, which shows the way how the
primary function is attained by the use of plans, subfunc-
tions, physical-laws, structure-attributes, by referring to
the domain theory in the left half of Fig.1. This explana-
tion tree is then generalized by filtering out unnecessary
terms which have no use in attaining the primary func-
tion (“irrelevant feature elimination”) and by generalizing
terms which are dependent to the particular artifact in
question (“identity elimination”). The inference system
is implemented by modifying and extending a PROLOG-
based EBG method '), We will hereafter call the re-
sultant diagram (tree) a Generalized Functional Dia-
gram (GFD).

Fig. 5 shows the GFD obtained by our EBL system
for the sensing device shown in Fig.3. Compared with

the manually-made diagram in Fig.2, the new diagram
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Fig. 6 Five modes of knowledge acquisition from Generalized
Functional Diagram

is more systematic and standardized. It contains all the
necessary information for the measurement and no other
surplus information. In the figure, “transmit(Y1, bend,
71, tension)” shows that the amount of bending in the
structural component Y1 is transmitted to the amount of
tension in component Z1. (The system is implemented
by PROLOG where capital letters represent variables.)
Also, the new diagram contains more general information
on how to measure fluid velocity “in general,” and is not
confined to measurement of melted lead. Moreover, it
should be noted that the terms (arguments of “p_p”) lo-
cated in space L constitute a “causal chain” joining from
(L1,velocity) to (Z1,cir) whose existence are supported by
the terms in space S.

4.2 Modes of knowledge acquisition from Gen-

eralized Functional Diagram

The GFD has a hierarchical structure which naturally
reflects the hierarchy of the design knowledge in the left
half of Fig.1. This hierarchy corresponds to the bound-
aries of operationality 12) in the design knowledge embed-
ded in the diagram in Fig.5. We extract operational de-
sign knowledge from the GFD, by arbitrarily setting the
“Goal Concept” (GC) to be explained and the “Level of
Explanation” (LE) in the Diagram. It is well-known that
appropriate selection of LE is important when applying
EBL method **). As shown in Fig. 6, the combination of
GC and LE results in five modes of knowledge acquisi-
tion.

In Mode I, the GC is set to be the measurement of
fluid velocity in general and the LE is set to be in the
Function Space F. In this model, we obtain an associa-
tional knowledge which is a general planning knowledge
for attaining the primary function. In other words, the
associational knowledge relates the primary function to
the component functions whose combination attains the
primary function. Namely, by the EBL system, we can ex-

tract the general knowledge which is embedded implicitly

object (liquid) object (X)

measurand (velocity) measurand (P)

detect detect
(M,velocity,Y bend)™ XPY.Q )

physical physical
quantity (bend) quantity @

transmit transmit(Y,Q,Z,R)

(Y ,bend,Z,tension)
physical
quantity ®)

transduce(Z,R) —

o0 —< o0
® o0 —< o0

Qs —=cunoo
Qs —=coool

hysical .
ZUintity (tension)

transduce(Z,tension) —/

measured quantity measured quantity

(@) (b)

Fig. 7 Acquired planning knowledge (b) for measuring liquid
velocity, which can be regarded as a specialization of
domain theory (a) in the Planning Knowledge Space

in the mediating spaces between GC and LE. The knowl-
edge acquired is shown in Fig.7 (a). This knowledge
turns out to be a specialization of the original planning
knowledge (Fig.7 (b)) prepared in the Planning Knowl-
edge Space. Namely physical quantities P, Q and R in
the planning knowledge are specified as “velocity” “bend
(bending)” and “tension”, respectively, to constitute an
operational knowledge whose causal rationality is assured
by the causal chain.

Mode IT (GC measurement of fluid velocity, LE the
uppermost level in the Structure-Attribute Space S) yields
the most general (abstract) structure (and attributes) for
measuring fluid velocity. For example, from the flexible
rod, one of the sufficient conditions for measuring fluid
velocity is acquired as the conjunction of terms that are
encircled by a broken line illustrated in Fig. 5.

In Mode III (GC — measurement of fluid velocity, LE —
the lower-most level in Space S), we can acquire the most
detailed (concrete) structure which reflects in fidelity the
original structure of the input instance which is in con-
trast with Mode II. In the case of the flexible rod, the
conjunction of all the leaves of GFD is acquired as one
of the sufficient condition of GC.

Mode 1V (GC  Function Space F, LE  Space S)
yields the knowledge on the essential structural condi-
tions for attaining various functions in the diagram. In
the case of the flexible rod, when GC are set to the
node “detect(L1,velocity,Y1,bend)” and LE is set to be
the uppermost level in Space S, the acquired knowledge
shows that “fluid velocity can be detected by the bend of
a stick when its one end is dipped into the fluid”. Thus,

we can acquire associational knowledge linking functions,
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physical-laws and structure-attributes.

In Mode V (GC, LE — Space S), we can obtain knowl-
edge on the structural modules which are common to var-
ious designs as shown in the shaded area in Fig.5, which
shows a “knowledge module” which explains that an ob-
ject is solid.

4.3 Applicability of Acquired Knowledge

The notion of operationality of the acquired knowledge
is one of the most important aspects of knowledge acqui-
sition?. The first notion of operationality is the quality
of acquired design knowledge which can be evaluated in
relation to the “phases” of the conceptual design process.
For example, the knowledge represented in functional de-
scriptions, i.e., the definition of the GC or the general
method for attaining the GC in terms of functional enti-
ties, is applicable to the functional design phase, and the
knowledge in structural descriptions is applicable to the
structural design phase.

Hence, knowledge acquired in Mode 1 is applicable to
the functional design phase; those in Modes II and III are
applicable to the structural design phase; that in Mode
IV is applicable to searching for substructures which sup-
port subfunctions that are validated by the firm linkages
among space F, L and S; that in Mode V is applicable to
search for useful structural modules. Comparing modes
IT and III, the pieces of knowledge by mode II are more
general than those by mode 111, whereas the latter are
more “efficient” than the former in the sense of advancing
the design plans.

In general, the modes in an explanation tree (GFD
are hierarchically organized, and hence, we will have var-
ious options on selecting the nodes for explanation. This
freedom is utilized to extent EBG to plural training ex-
amples '¥. The selection of nodes for explanation is thus
a crucial problem in applying EBG. Thus we will need
a method to confine the selection. The proposed five
modes of knowledge acquisition are derived by confining
the explanation level near the operationality boundary.
In Mode III, the definition of GC is given as the con-
junction of the leaves of the GFD which are located at
the bottom of GFD. In Mode 11, on the other hand, it
is given as the conjunction of the uppermost branches in
Space S which are located above the leaves (lower-most
branches). Hence Mode II provides more general and ab-
stract knowledge whereas Mode III provides more detailed
and concrete knowledge n.

4.4 Rationality of Acquired Knowledge

The second notion of operationality is the quality of

knowledge which can be evaluated in relation to what ex-

No.1 January 2001

tent this a piece of knowledge is certified its usage. In this
sense, we take “knowledge which requires certification of
its usage by causal rationalities” not operational. In other
words, even though its applicability is relatively narrow, a
piece of knowledge which is certified its causal rationality
is regarded to be operational.

As mentioned in Section 2.2, the acquired knowledge
has teleological and/or causal rationalities when the me-
diating spaces P and/or L (Planning Knowledge Space
and/or Physical-Law Knowledge Space) of these rational-
ities are located between the GC and the LE. It is quite
difficult to prepare the domain theory in Space P before-
hand such that it has causal rationalities; to do so we
would have to examine a large number of cases of usage for
each physical law. Hence, we have adopted an approach
where the domain theory in Space P is rational only in the
teleological sense. This knowledge becomes causally ra-
tional when compiled with the knowledge on Space L or S
by the EBL process. For instance, the acquired knowledge
(in Mode I) in Fig. 7(a) is causally rational, although it is
derived from the planning knowledge prepared in Space P
shown in Fig. 7(b) that is not necessarily causally rational.

4.5 Efficiency of Acquired Knowledge

The third notion of operationality is the “efficiency” of
knowledge which can be evaluated by the amount of ad-
vancement of design processes when it is applied. Hence,
it can be roughly estimated by the distance (depth) be-
tween the GC and the LE. For example, Mode III pro-
vides more efficient knowledge than Mode 11, even though
both of them provide the same sort of applicability and
rationality. Also, Mode I provides less efficient one than
Mode II. Mode IV provides more efficient one than Mode
V and less efficient one than Mode 1II. Hence, we have

the following comparisons:
111 >1V >V

111> 11>1

5. Conclusions

We have proposed a knowledge acquisition method for
supporting conceptual design processes. The framework
of this method consists of two steps, i.e., the first step
analyzes a design example by using hierarchically orga-
nized domain theories and produces a standardized and
generalized Functional Diagram from which, in the sec-
ond step, various types of operational design knowledge
are then extracted. Each extracted knowledge reflects do-
main theories and the information of the analyzed arti-

fact. In other words, the proposed method is a hybrid
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system of “deductive learning” and SIG (Single Instance
Generalization). It is well-known that this kind of frame-
work elucidated several problems. For example, knowl-
edge acquisition system requires its own knowledge, and
the acquired knowledge is not a “novel” one but a com-
bination of prepared knowledge, and so on. In order to
solve these problems, we discussed the operationality of
knowledge and pointed out that the fundamental differ-
ence between the prepared knowledge (domain theory)
and acquired knowledge is the “rationality” of its usage.
The prepared knowledge should be as general as possible,
therefore their rationality of usage are not certified. It
may be noted that over generalization of domain theory
leads to loose the ability to guide the SIG processes.

We employ the Horn-clause form for encoding domain
theory at the present stage, but we are now investigating
some other representational schemes of knowledge, e.g.,
determination rule® which is more general and more
easy to encode design knowledge.

We also introduced some modes for extracting opera-
tional design knowledge from a single instance of artifacts,
and clarified the quality of acquired knowledge with ref-
erence to its modes of acquisition.
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