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Maneuverability of Master-Slave Telemanipulation Systems

Yasuyoshi Yokokohji∗ and Tsuneo Yoshikawa∗

Maneuverability of master-slave telemanipulation systems is difficult to evaluate exactly, since it seems intu-

itive sense for human operators. However, if we could not evaluate the system performance quantitatively, it

would be impossible to decide what kind of master-slave system is desirable and compare the performance among

the several control schemes. In this paper, we propose a way to evaluate the maneuverability of master-slave

telemanipulation systems. We first analyze a one degree-of-freedom system considering the operator and object

dynamics. Secondly, we define some ideal responses of master-slave systems and derive the conditions to achieve

these responses. Lastly, a quantitative performance index is given in order to evaluate the maneuverability of the

system. This index examines how close the actual response is to the ideal one. A numerical example is shown

where three conventional control schemes are evaluated by the proposed performance index.
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1. Introduction

Research on master-slave teleoperation has a long his-

tory, back to the origin of the robotics research. Master-

slave manipulators have been widely applied to many haz-

ardous environments, such as nuclear power plants and

bottoms of the sea, where remote operations are required.

The application area of master-slave teleoperation is get-

ting wider toward, for example, tasks in space. Total sys-

tem including a master arm, a slave arm and their control

schemes is called master-slave telemanipulation system.

Hereafter, it will be called master-slave system for short.

Looking back the previous studies on master-slave sys-

tems, isomorphic configurations of master and slave arms

had been taken over by different configurations since the

performance of digital computers improved fast enough to

execute coordinate transformation in real-time 1) 2). Con-

trol methodologies have been improved from unilateral

control, which was used at the beginning of the develop-

ment of servo manipulators, to bilateral control, which

mimics the property of mechanical master-slave manipu-

lators 3). Since then, however, we have been using some-

what classical control schemes, such as symmetric posi-

tion servo type, force reflection type, and force reflecting

servo type. Maneuverability of the present master-slave

systems is still far from satisfactory, requiring the opera-

tors to have special skills and being difficult for them to

continue the operation for long time 4).

Certainly, the maneuverability of master-slave systems

depends on the quality of mechanical design of the manip-
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ulators. However, it is also true that the maneuverability

depends on what kind of control scheme is implemented.

However, there has been little discussion about how to

evaluate different control schemes quantitatively. This is

because “maneuverability” is essentially an intuitive mat-

ter for the human operators and it is difficult to evaluate

such an intuitive aspect quantitatively. Another prob-

lem is that theoretical analysis of master-slave systems is

complex because both the operator dynamics and the re-

mote environment dynamics should be taken into account.

Hannaford 5) also pointed out the importance of consider-

ing the whole system including not only the arm dynamics

but also the remote object and operator dynamics for the

system stability analysis.

In this paper, we propose a way to evaluate the ma-

neuverability of master-slave systems quantitatively. For

this purpose, we first suppose a simple master-slave sys-

tem that has one degree-of-freedom (DOF).We also model

the operator and remote environment dynamics 6) 7). Sec-

ondly, we define three ideal responses of master-slave sys-

tems by paying attention to position and force responses

of the master and slave arms. We then derive the condi-

tions to achieve these ideal responses 8). Lastly, we show

performance indices that examine how close the actual re-

sponses are to the ideal ones. Using these indices, one can

evaluate the maneuverability of the system quantitatively.

2. Modeling of One DOF System

2. 1 Modeling of arms, remote environment,

and operator

Most master-slave systems consist of arms with multi-

ple DOF. In this paper, however, a one DOF system is

considered in order to make the problem simple.
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Dynamics of the master arm and the slave arm is given

by the following equations:

τm + fm = mmẍm + bmẋm, (1)

τs − fs = msẍs + bsẋs, (2)

where xm and xs denote the displacements of the mas-

ter and slave arms, respectively. In addition, mm and bm

represent mass and viscous coefficient of the master arm,

whereas ms and bs are those of the slave arm. More-

over, fm denotes the force that the operator applies to

the master arm, and fs denotes the force that the slave

arm applies to the remote object. Actuator driving forces

of the master and slave arms are represented by τm and

τs, respectively.

Dynamics of the remote environment with which the

slave arm interacts is modeled by the following linear sys-

tem:

fs = mwẍs + bwẋs + cwxs, (3)

where mw, bw and cw denote mass, viscous coefficient and

stiffness of the environment, respectively. As can be seen

that the displacement of the environment is represented

by xs in eq.(3), we assumed that the slave arm is rigidly

contacting with the environment or firmly grasping the

remote object so that it does not depart from the envi-

ronment.

Likewise, dynamics of the operator will be approxi-

mated by a simple spring-damper-mass system:

τop − fm = mopẍm + bopẋm + copxm, (4)

where mop, bop and cop denote mass, viscous coefficient,

and stiffness of the operator, respectively, whereas τop

means force generated by the operator’s muscles. Sim-

ilarly to eq.(3), the displacement of the operator is repre-

sented by xm in eq.(4) because we assume that the opera-

tor is firmly grasping the master arm and he never release

the master arm during the operation. It should be noted

that the parameters of the operator dynamics may change

during the operation. For example, Akazawa et al. 9) re-

ported that bop and cop are proportional to the sum of the

forces exerted by flexor and extensor muscles. Therefore,

these parameters are actually not constant.

2. 2 Generalized control schemes of master and

slave arms

Let the following control schemes be considered as a

general framework for determining the actuator inputs of

the master and slave arms:

τm =
[

Kmpm +K′
mpm

d
dt
+K′′

mpm
d2

dt2
Kmfm

][
xm

fm

]

Fig. 1 Two-terminal-pair network.

−
[

Kmps +K′
mps

d
dt
+K′′

mps
d2

dt2
Kmfs

][
xs

fs

]
,

(5)

τs =
[

Kspm +K′
spm

d
dt
+K′′

spm
d2

dt2
Ksfm

][
xm

fm

]

−
[

Ksps +K′
sps

d
dt
+K′′

sps
d2

dt2
Ksfs

][
xs

fs

]
,

(6)

whereKmpm, K
′
mpm, K

′′
mpm andKmfm are feedback gains

of the master arm position, velocity, acceleration and

force, whereas Kmps, K
′
mps, K

′′
mps and Kmfs are gains

of the slave arm position, velocity, acceleration and force,

respectively. These eight gains specify the input τm. Sim-

ilarly, Kspm, K
′
spm, K

′′
spm, Ksfm, Ksps, K

′
sps, K

′′
sps, and

Ksfs specify the input τs. Equations (5) and (6) are

extension of the formulation by Fukuda et al. 10) Based

on their formulation, we added velocity and acceleration

terms.

In eqs.(5) and (6), we assume an ideal situation where

time delay due to the data transmission between the mas-

ter and slave sites is negligible. Although it would be pos-

sible to set up a more general form by adding differential

terms of force, we do not consider such terms for sim-

plicity. Conventional control schemes such as symmetric

position servo type, force reflection type and force reflect-

ing servo type can be represented as a special case of eqs.

(5) and (6) with appropriate gains.

2. 3 Representation of master-slave system by

two-terminal-pair network

Two-terminal-pair network is usually used for analyz-

ing electrical circuits. Impedance matrix Z is defined

from the relations between current and voltage of a two-

terminal-pair network as follows:

V1 = z11I1 + z12I2, (7)

V2 = z21I1 + z22I2, (8)

Z =

[
z11 z12

z21 z22

]
, (9)

where I1 and I2 denote current at each terminal pair, and

V1 and V2 denote voltage at each terminal pair, as shown

in Fig.1, respectively.
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Fig. 2 Connection of power source and load to two-terminal-

pair network.

Let us consider a two-terminal-pair network where each

terminal pair is connected to a power source and a load

as shown in Fig.2. Regarding the power source as an

operator, the load as a remote environment and the two-

terminal-pair network itself as a master-slave system, the

whole system can be represented by a electric circuit

shown in Fig.2. The correspondences between the model-

ing in the previous section and the circuit representation

in Fig.2 are given as follows:

velocity of the master arm ẋm ←→ current Im

velocity of the slave arm ẋs ←→ current Is

operator’s force τop ←→ voltage Vop

force at the master side fm ←→ voltage Vm

force at the slave side fs ←→ voltage Vs

Representation of the master-slave system by a two-

terminal-pair network is not a new idea 11). However, the

framework shown in Fig.2, where the operator and the

remote environment are considered as a power source and

a load connected to the network, was recently given by

Raju 12) 13). This circuit representation does not change

the nature of the problem at all. However, this repre-

sentation makes the formulations compact and easy to

handle.

In addition to the above correspondences, the actua-

tor driving forces τm and τs are rewrote to voltages Tm

and Ts, respectively. Then, eqs.(1), (2), (5) and (6) are

transformed from time domain into s-domain as follows:

Tm + Vm = (mms+ bm)Im
�
= ZmIm, (10)

Ts − Vs = (mss+ bs)Is
�
= ZsIs, (11)

Tm =
[

K′′
mpms+K′

mpm +Kmpm
1
s Kmfm

][
Im

Vm

]

−
[

K′′
mpss+K′

mps +Kmps
1
s Kmfs

][
Is

Vs

]

�
=

[
Pm Qm

][
Im

Vm

]
−

[
Rm Sm

][
Is

Vs

]
, (12)

Ts =
[

K′′
spms+K′

spm +Kspm
1
s Ksfm

][
Im

Vm

]

−
[

K′′
spss+K′

sps +Ksps
1
s Ksfs

][
Is

Vs

]

�
=

[
Ps Qs

][
Im

Vm

]
−

[
Rs Ss

][
Is

Vs

]
. (13)

Eliminating Tm and Ts from eqs.(10), (11), (12) and (13),

we obtain the following equation:[
Zm − Pm −Rm

−Ps −(Zs +Rs)

][
Im

−Is

]

=

[
1 +Qm −Sm

Qs −(1 + Ss)

][
Vm

Vs

]
. (14)

Noting that I1, I2, V1, and V2 in Fig.1 correspond to

Im, −Is, Vm, and Vs in Fig.2, respectively, elements of

the impedance matrix of the master-slave system are ob-

tained from eq.(14) as follows:

z11 =
(1 + Ss)(Zm − Pm) + SmPs

(1 + Ss)(1 +Qm)− SmQs

�
=

N11

DZ
, (15)

z12 =
−(1 + Ss)Rm + Sm(Zs +Rs)

(1 + Ss)(1 +Qm)− SmQs

�
=

N12

DZ
, (16)

z21 =
(1 +Qm)Ps +Qs(Zm − Pm)

(1 + Ss)(1 +Qm)− SmQs

�
=

N21

DZ
, (17)

z22 =
(1 +Qm)(Zs +Rs)−QsRm

(1 + Ss)(1 +Qm)− SmQs

�
=

N22

DZ
. (18)

The determinant |Z| is given by

|Z| = (Zm − Pm)(Zs +Rs) + PsRm

(1 + Ss)(1 +Qm)− SmQs

�
=

DY

DZ
. (19)

The admittance matrix is obtained by inverting Z as fol-

lows:

Y = Z−1 =

[
y11 y12

y21 y22

]

=




N22

DY

−N12

DY

−N21

DY

N11

DY


 . (20)

Dynamics of the operator and the remote environment

can also be represented as a form of impedance:

ZL = mws+ bw + cw
1

s
, (21)

ZG = mops+ bop + cop
1

s
. (22)

Equations (21) and (22) are obtained from the simple

modeling of the operator and the remote environment in

section 2. 1. Of course, one can suppose more appropriate

impedance models for ZL and ZG if necessary. When we

need to evaluate ZL and ZG numerically, however, we use

eqs.(21) and (22).
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3. Ideal Responses of Master-Slave Systems

3. 1 Definition of ideal responses

In this section, before evaluating the performance of

master-slave systems, we discuss what the ideal response

of master-slave systems is. If the definition of the ideal

response is valid, it would be possible to evaluate the per-

formance of the system by examining how close the actual

system response is to the ideal one.

DEFINITION : The following three responses are de-

fined as the ideal responses of master-slave systems.

Ideal response I : If the position responses, xm and

xs, to an operator’s input τop are identical, whatever

dynamics the remote environment has, it is said that

the system realizes ideal response I.

Ideal response II : If the force responses, fm and

fs, to an operator’s input τop are identical, whatever

dynamics the remote environment has, it is said that

the system realizes ideal response II.

Ideal response III : If both the position responses,

xm and xs, and the force responses, fm and fs, to an op-

erator’s input τop are identical at the same time, what-

ever dynamics the remote environment has, it is said

that the system realizes ideal response III.

Obviously, when the position responses and force re-

sponses are identical between the master and the slave,

the resultant position and force responses coincide with

the responses when the operator directly interacts with

the remote environment. Therefore, if the ideal response

III is realized, the operator can maneuver the system as

if he were interacting with the remote environment him-

self. In this sense, the ideal response III can be regarded

as a final goal of master-slave systems. This ideal situa-

tion could be described as ideal kinesthetic coupling, object

teleperception, or transparent system.

3. 2 Conditions for ideal responses

The concept of the two-terminal-pair network is widely

used to design electric filters. The master-slave system

can also be regarded as a sort of mechanical filter be-

tween the operator and the remote environment. Here,

we define some transmission coefficients in order to derive

the conditions of the ideal responses.

First, we define a velocity transmission coefficient, Ti,

which specifies how the velocity is transmitted from the

master side (Im) to the slave side (Is), as follows:

Ti
�
=

Im

Is
. (23)

From eqs.(15) through (18) and the relationship of Vs =

ZLIs, the velocity transmission coefficient is given by

Ti =
z22 + ZL

z21
=

N22 +DZZL

N21
. (24)

Since Ti ≡ 1 for any ZL is necessary for realizing the ideal

response I, the following conditions can be obtained.

[ Conditions for ideal response I ]

(A) DZ = 0 (25)

(B) N21 = N22 �= 0 (26)

Next, we define a force transmission coefficient, Tv, which

specifies how the force is transmitted from the master side

(Vs) to the slave side (Vs), as follows:

Tv
�
=

Vm

Vs
. (27)

Similarly to eq.(24), Tv is obtained from eq.(20) and the

relationship of Vs = ZLIs as follows:

Tv =
y22 +

1

ZL

−y21
=

N11ZL +DY

N21ZL
. (28)

Since Tv ≡ 1 for any ZL is necessary for realizing the ideal

response II, the following conditions are obtained.

[ Conditions for ideal response II ]

(C) DY = 0 (29)

(D) N21 = N11 �= 0 (30)

Note that Tv cannot be defined when ZL = 0. It will be

shown later that the conditions (C) and (D) are valid in

such a special case (see the footnote in section 4. 1).

When all of the conditions for the ideal responses I and

II are satisfied, the system realizes the ideal response III.

Letting xm = xs
�
= x and fm = fs

�
= f in eqs.(3) and (4),

it is obvious that x and f become the responses when the

operator directly interacts with the remote environment.

In fact, the input impedance from the operator side is

given by

ZIN = z11 − z12z21

z22 + ZL
=

DY +N11ZL

N22 +DZZL
. (31)

Substituting the conditions (A), (B), (C) and (D) into

eq.(31), we get

ZIN ≡ ZL, (32)

showing that the operator can feel the remote environ-

ment impedance through the system, i.e., the system is

transparent and realizes ideal kinesthetic coupling.

[ Conditions for ideal response III ]

All of conditions (A), (B), (C) and (D).

Due to the conditions (A) and (C), impedance matrix and

admittance matrix cannot be defined when the system re-

alizes the ideal response III. In this case, Ti and Tv cannot

be defined by using zij and yij as in eqs.(24) and (28).
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Therefore, we should check the consistency of the derived

conditions.

Let us define another matrix called chain matrix. In

Fig.1, let the following relations be considered:

V1 = k11V2 + k12(−I2), (33)

I1 = k21V2 + k22(−I2). (34)

Chain matrix is defined by

K
�
=

[
k11 k12

k21 k22

]
. (35)

Chain matrix, which also specifies the property of two-

terminal-pair networks, is used when the output of a two-

terminal-pair network is connected to the input of another

two-terminal-pair network. In the case of master-slave

systems, the chain matrix can be represented by

K =
1

z21

[
z11 |Z|
1 z22

]
=




N11

N21

DY

N21

DZ

N21

N22

N21


 . (36)

Note that elements ofK correspond to the conditions (A),

(B), (C) and (D), respectively. Substituting conditions

(A) and (B), we get I1 = −I2, namely Ti ≡ 1. Likewise,
substituting conditions (C) and (D), we obtain V1 = V2

or Tv ≡ 1. When all conditions (A), (B), (C), and (D)
are satisfied, we get

K =

[
1 0

0 1

]
. (37)

Therefore, the chain matrix can be defined even when the

system realizes the ideal responses. It was also shown that

the derived condition is consistent with this ideal case.

3. 3 Consideration of position and force scaling

factors

We have been implicitly assuming that position and

force scaling factors are identical between the master and

the slave. Of course, we may have a situation where po-

sition and force scaling factors are different, i.e., manip-

ulating micro objects or handling heavy ones. We can

deal with such situations by setting Ti = α and Tv = β

instead of setting them one, where α and β denote posi-

tion (velocity) transmission ratio and force transmission

ratio, respectively. Introducing these transmission ratios,

we can derive new conditions of the ideal responses that

include α and β. For example, a new transparent situa-

tion corresponding to eq.(32) is given by

ZIN ≡ β

α
ZL. (38)

In this way, one can formulate more generally by intro-

ducing α and β. In this paper, however, we will consider

the case when α = 1 and β = 1 for simplicity.

3. 4 Guideline for designing control schemes to

realize ideal responses

Now, let us discuss the possibility of designing a new

control scheme that can realize the ideal responses. In

eqs.(5) and (6), we introduced acceleration terms to gen-

eralize the framework of control schemes. Compared to

position and velocity, however, acceleration is difficult to

measure and we would like to exclude the acceleration

terms from the control scheme if possible.

However, it is impossible to satisfy the condition (C)

when the acceleration signals are not used in eqs.(12) and

(13), i.e., when K′′
mpm = K′′

mps = K′′
spm = K′′

sps = 0 in

Pm, Rm, Ps, and Rs. Consequently, the following fact is

obtained.

PROPOSITION : In the framework of (5) and (6), any

control scheme without acceleration terms cannot realize

the ideal response II nor III.

4. Evaluation of Maneuverability and
Stability

4. 1 Evaluation of maneuverability

In this section, we propose a performance index of ma-

neuverability based on the concept of the ideal responses

introduced in the previous section.

Let us consider four transfer functions from the opera-

tor’s force τop (Vop) to the master side displacement xm

(Im/s), to the slave side displacement xs (Is/s), to the

master side force fm (Vm), and to the slave side force

fs (Vs), respectively. Denoting these four function by

Gmp(s), Gsp(s), Gmf (s), and Gsf (s), they are given by

Gmp(s) =
s[N22 +DZZL]

s2[DY +N11ZL +N22ZG +DZZLZG]
,

(39)

Gsp(s) =
s[N21]

s2[DY +N11ZL +N22ZG +DZZLZG]
,

(40)

Gmf (s) =
s2[DY +N11ZL]

s2[DY +N11ZL +N22ZG +DZZLZG]
,

(41)

Gsf (s) =
s2[N21ZL]

s2[DY +N11ZL +N22ZG +DZZLZG]
.

(42)

By using these transfer functions, one can evaluate how

well the actual system realizes the ideal responses as fol-

lows.
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[ Performance index of maneuverability ]

The following two indices are defined:

Jp =

∫ ωmax

0

F (Gmp(jω), Gsp(jω))W (ω)dω, (43)

Jf =

∫ ωmax

0

F (Gmf (jω), Gsf (jω))W (ω)dω, (44)

where F () denotes an appropriate function represent-

ing the difference of two transfer functions and W ()

means a weighting function with respect to frequency.

ωmax means the maximum frequency of the manipula-

tion bandwidth of human operators. One can evaluate

the maneuverability of master-slave systems by checking

how small these indices are.

When the system realizes the ideal response I, index Jp

is zero. When the system realizes the ideal response II,

index Jf is zero. Consequently, if both Jp and Jf are close

to zero, the response of that system is close to the ideal

response III.

Examples of Jp and Jf are

Jp =

∫ ωmax

0

|Gmp(jω)−Gsp(jω)|
∣∣∣∣ 1

1 + jωT

∣∣∣∣ dω,

(45)

Jf =

∫ ωmax

0

|Gmf (jω)−Gsf (jω)|
∣∣∣∣ 1

1 + jωT

∣∣∣∣ dω,

(46)

where F () is simple absolute difference and W () is the

gain of first-order-lag to put larger weight on the low

frequency area than on the high frequency area. T

(Tωmax > 1) denotes time constant of the first-order-lag.

One problem when evaluating the maneuverability of

the system by eqs.(43) and (44) is that indices Jp and Jf

contain ZL and ZG. Therefore, even if we fix the control

scheme, Jp and Jf may vary according to the change of

operator and remote environment dynamics.

Therefore, it might be better to consider another indices

which contain neither ZL nor ZG. On the other hand, it

would be reasonable to include the dynamics of the oper-

ator, who maneuvers the system, in the indices, because

the operator dynamics could be a criterion for evaluating

the system.

Now, let us consider two special cases when ZL = 0 and

ZL =∞. The former case(1) corresponds to the situation
when the slave arm is free. The latter case corresponds

(1) In the case when ZL = 0, we get Gsf = 0 from eq.(42).

Substituting the conditions (C) and (D) into eq.(41), we get

Gmf (s) = 0, which means fm = fs = 0, i.e., the ideal re-

sponse II. Therefore, conditions (C) and (D) are valid even

in this case.

to the situation when the slave arm is constrained by a

rigid environment. In these special cases, the differences

between two transfer functions in eqs.(43) and (44) are

given as follows:

[ ZL = 0 ]

Gmp(s)−Gsp(s) =
s[N22 −N21]

s2[DY +N22ZG]
, (47)

Gmf (s)−Gsf (s) =
s[DY ]

s2[DY +N22ZG]
, (48)

[ ZL =∞ ]
Gmp(s)−Gsp(s) =

DZ

s[N11 +DZZG]
, (49)

Gmf (s)−Gsf (s) =
s[N11 −N21]

s[N11 +DZZG]
. (50)

Making eqs.(47), (48), (49) and (50) zero corresponds to

the conditions (B), (C), (A) and (D), respectively. Sub-

stituting eqs.(47) through (50) into eqs.(45) and (46), we

can get the performance indices that do not contain ZL.

4. 2 Numerical examples of evaluation

Let us evaluate the maneuverability of the conventional

control schemes such as symmetric position servo type,

force reflection type, and force reflecting servo type by

the proposed indices. Parameters of the master and slave

arms are given by

mm = ms = 2.0[kg], bm = bs = 0.2[Ns/m].

The following three kinds of remote environments are con-

sidered.

[case 1]: mw = 1.0[kg], bw = 2.0[Ns/m], cw = 10.0[N/m]

[case 2]: mw = 10[kg], bw = 50[Ns/m], cw = 1000[N/m]

[case 3]: mw = 1.0× 104[kg], bw = 2.0× 104[Ns/m],
cw = 4.0× 104[N/m]

In case 1 we supposed a relatively soft environment,

whereas a relatively hard one in case 2, and in case 3

we supposed a nearly rigid one. To simplify the problem,

we set the parameters of the operator constant as follows:

mop = 1.0[kg], bop = 2.0[Ns/m], cop = 10.0[N/m].

Control gains of each scheme were given as follows:

[Symmetric Position Servo Type]

Kmpm = Kmps = −500[N/m], K′
mpm = −50[Ns/m],

Kspm = Ksps = 500[N/m], K
′
sps = 50[Ns/m]

[Force Reflection Type]

Kmfs = 1.0, Kspm = Ksps = 500[N/m],

K′
sps = 50[Ns/m]

[Force Reflecting Servo Type]

Kmfm = 2.5, Kmfs = 3.5,

Ksps = Kspm = 500[N/m], K
′
sps = 50[Ns/m]
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Fig. 3 Numerical example of maneuverability index

Other gains that are not specified explicitly as above are

zero.

Fig.3 shows the indices Jp and Jf defined by eqs.(45)

and (46) in the above three cases as well as the cases when

ZL = 0 and ∞, which are given by eqs.(47) through (50).
We set ωmax = 100[Hz] and 1/T = 50[Hz].

From Fig.3, one can see that symmetric position servo

type shows small Jp but Jf is large. Force reflecting servo

type gives larger Jp than that of symmetric position servo

type, i.e., worse position response performance, but Jf is

smaller, showing that force response was improved. Force

reflection type gives larger Jp and Jf than those of sym-

metric position servo type when the remote environment

impedance is large.

Since Fig.3 is just one example with the particular

gains, we cannot get any general conclusions from this

example. However, the evaluation result by the proposed

indices meets our intuition and seems reasonable.

As shown in Fig.3, indices Jp and Jf give different val-

ues according to the remote environment parameters. If

we could estimate the parameter range of the target envi-

ronment in advance, we can calculate the indices Jp and

Jf by using a representative value from that parameter

range. On the contrary, if we cannot estimate the object

parameters beforehand, we can evaluate the system using

indices Jp and Jf when ZL = 0 and ∞. Of course, it is
very important to use appropriate parameters of the hu-

man operator to get valid evaluation results. Since the

parameters of the human operator, such as bop and cop,

may fluctuate during the task, we need to select a repre-

sentative value appropriately.

In eqs.(45) and (46), we evaluated absolute difference

of the two transfer functions. It would be possible to

evaluate the difference relatively with respect to the ideal

situation. Namely, we can use the following indices:

Jp =

∫ ωmax

0

∣∣∣∣Gmp(jω)−Gsp(jω)

Gip(jω)

∣∣∣∣
∣∣∣∣ 1

1 + jωT

∣∣∣∣ dω,

(51)

Jf =

∫ ωmax

0

∣∣∣∣Gmf (jω)−Gsf (jω)

Gif (jω)

∣∣∣∣
∣∣∣∣ 1

1 + jωT

∣∣∣∣ dω,

(52)

where Gip(s) and Gif (s) denote the transfer functions of

ideal response III, which are given by

Gip(s) =
1

s[ZL + ZG]
, (53)

Gif (s) =
s[ZL]

s[ZL + ZG]
. (54)

It should be noted, however, that Gif (s) = 0 when ZL = 0

and Gip(s) = 0 when ZL = ∞ and one cannot evaluate
the system by using eqs.(53) and (54).

4. 3 Evaluation of stability

For precise analysis of stability, it is necessary to con-

sider the whole system including the operator and ob-

ject dynamics. Characteristic polynomial of four transfer

functions in (39) through (42) is given by

H(s) = s2[DY +N11ZL +N22ZG +DZZLZG]. (55)

Of course, if all roots of the characteristic equation

H(s) = 0 are in the left half side of complex plane, the

system is stable. However, H(s) is a fourth-order polyno-

mial with respect to s containing many parameters, such

as the control gains and the dynamics parameters of the

human operator and the remote environment. Therefore,

it would be difficult to obtain a general stability condition

that is valid even when ZL and ZG fluctuate.

5. Conclusion

The main results of this paper can be summarized as

follows:

•A simple one DOF master-slave system was modeled,
where both the operator dynamics and the remote envi-

ronment dynamics were taken into account. A general

framework of control schemes was formulated including

acceleration terms of the master and slave arms, as well

as position, velocity and force terms.

•We discussed the ideal situation of master-slave sys-
tems mathematically and three ideal responses were de-

fined. Conditions to achieve these ideal responses were

derived. It was shown that acceleration measurement is

necessary to make the force responses coincide between

the master and slave.
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• Performance indices, which evaluate the system ma-
neuverability quantitatively, were proposed. The pro-

posed indices examine how close the actual responses

are to the ideal ones.

Using the results of this paper, one can evaluate the

maneuverability of master-slave systems with various con-

trol schemes quantitatively. The result of the quantitative

evaluations could be a guideline for designing a new con-

trol scheme that gives better maneuverability than the

conventional schemes. For the future works, we would

like to design a new control scheme that realizes the ideal

responses and extend the discussion into a multiple DOF

case.
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