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Workspace and Manipulability Analysis of Space Manipulator†

Yoji Umetani∗ and Kazuya Yoshida∗∗

This paper investigates operational performance of space manipulators mounted on a free-floating robot satel-

lite, by defining and analyzing their workspace and manipulability measure.

Since there is no one-to-one correspondence between the joint space and the inertial task space in space free-

floating manipulators, a variety of workspaces can be defined according to additional constraints on the motion

of the base satellite or on the operational path of the manipulator hand. By specifying such motion, the authors

classify and define five types of workspaces, which would be useful to understand the characteristics of a space

manipulator.

A new manipulability measure is also defined using the Generalized Jacobian matrix that describes kinematic

and dynamic characteristics of a space free-floating manipulator. The manipulability of such a space manipulator

is evaluated generally lower than that of ground-based manipulators, reduced by dynamical coupling between

the manipulator arm and the base satellite.

Operational posture and configuration design issues are discussed for a two dimensional space robot with

respect to wider workspace and higher manipulability.

Key Words: space manipulator, free-floating multi-link system, manipulator performance, workspace, manipu-

lability measure

1. Introduction

A spacecraft system that equips robotic manipulator

arms has high potential for future contribution to orbital

operation as a telerobotic servicing device. Control issues

of satellite mounted arms in such a system have been in-

tensively studied, paying attention to their unique char-

acteristics. 1)∼6).

A main difference of space manipulators from ground-

based ones is that the base of the manipulators is not fixed

but freely floats and rotates in the orbital environment.

We then need a special attention to the dynamic coupling

between the arm and the base during the manipulation.

Due to this reason, the operational performance of space

manipulators becomes reduced from that of the ground-

based ones. It is important to understand this mechanism

and evaluate how much the manipulator reachability to a

target is distorted and the measure of manipulability is

degraded for the manipulation in space.

This paper makes qualitative and quantitative analy-

sis on the measures of the workspace and manipulability,

both of which are key index to evaluate the performance

of a manipulator arm. For space arms, these measures

are function of both kinematic parameters such as link

length and dynamic parameters such as inertia proper-

ty. The paper shall provide a useful chart to design and
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Table 1 Specification of the system

Satellite Manipulator

link 0 link 1 link 2

Mass mi [kg] 1,000.0 100.0 100.0

Length �i [m] 2.6 2.0 2.0

ai [m] 1.2 1.0 1.0

bi [m] 1.4 1.0 1.0

Inertia Ii[kgm2] 635.3 33.3 33.3

operate a space arm with respect to a better mechanical

configuration and a better operational posture.

2. Modeling

Fig. 1 Model of 2 DOF satellite mounted manipulator
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2. 1 Definitions and Assumptions

For simplicity but not loosing generality, we consider a

planer space robotic system that makes a horizontal mo-

tion with a 2 DOF manipulator arm. Fig.1 and Table 1

illustrate the model configuration and parameter specifi-

cation. The model comprises three pieces of free-floating

rigid bodies connected by two revolute joints. In this sec-

tion, kinematic relationships for this model are derived.

Mathematical symbols are defined as follows:

ri: a position vector to the centroid of each body with

respect to the inertial frame.

p: a position vector to the end point of the arm with

respect to the inertial frame.

�i, ai, bi: relative vectors to indicate the link span and

its centroid position.

mi: mass of each link.

Ii: moment of inertia around the centroid of each link.

ωi: angular velocity around the centroid of each link.

φ0: orientation angle of the satellite base body (link 0).

φj : rotation angle of each joint.

θi: orientation angle of each link with respect to inertia

frame (=
∑i

k=0
φk).

Note: i = 0, 1, 2 and j = 1, 2

The inertial coordinate frame is indicated by ΣA and

the robot coordinate frame, which is fixed on the satellite

base body with the origin at joint 1, is indicated by ΣR

All vectors and matrices here are described with respect

to the inertial frame unless otherwise specified.

In order to make clear the issues of this paper, the fol-

lowing assumption are made:

(1) The system is composed by rigid bodies.

(2) The motion occurs on the x − y plane, in Fig.1,

but no motion in the z direction.

(3) No limitation on joint angles.

(4) In case no position or attitude control of the satel-

lite base, the entire motion of the system is generated

only by the joint actuation. In such a case, the conser-

vation of momentum holds true.

2. 2 Kinematic Equations

The kinematic equation for the manipulator end point

p is derived as follows, in case the origin of ΣA is located

on the centroid of the entire system.

p = K0

[
C0

S0

]
+ K1

[
C1

S1

]
+ K2

[
C2

S2

]
(1)

where

K0 = m0b0/w

K1 = (m0�1 + m1b1)/w

K2 = {(m0 + m1)�2 + m2b2}/w

w = m0 + m1 + m2

Ci = cos θi, Si = sin θi

By differentiating equation (1) with respect to time, we

obtain the following relationship:

ṗ =

[
−K0S0 − K1S1 − K2S2

K0C0 + K1C1 + K2C2

]
φ̇0

+

[
−K1S1 − K2S2 −K2S2

K1C1 + K2C2 K2C2

][
φ̇1

φ̇2

]

≡ JSφ̇0 + JM φ̇M (2)

This equation describes a basic kinematic relationship a-

mong the end point velocity ṗ, the base angular velocity

φ̇0, and the joint angular velocities φ̇M .

In a free-floating system without any external control

forces or moments, φ̇0 and φ̇M are determined dependent-

ly due to the internal coupling, and this coupling effect is

modeled by the momentum conservation law.

The conservation equations for linear momentum and

angular momentum are expressed as follows, respectively:

2∑
i=0

miṙi = const. (3)

2∑
i=0

(Iiθ̇i + miri × ṙi) = const. (4)

Equation (3) is time integrable and yields a kinematic

equation about mass centroid (1). On the other hand,

the integral of equation (4) is not uniquely determined

but depends on the manipulator motion paths, and hence

Equation (4) gives a non-holonomic constraint to the sys-

tem. By solving Equation (3) for ṙi, then substituting it

into (4), we obtain the following equation about angular

velocities:

ISφ̇0 + IM φ̇M = 0 (5)

Here zero initial momentum is assumed. The matrices IS

and IM are the moment of inertia corresponding to φ̇0

and φ̇M , respectively.

Equations (2) and (5) form a set of simultaneous lin-

ear equation for φ̇0 and φ̇M . By solving (5) for φ̇0 and

substituting into (2), we obtain the expression for the end

point velocity ṗ as a direct function of joint angular ve-

locity φ̇M , by canceling out the base variables:

J = (JM − JSIM/IS)φ̇M

≡ J∗φ̇M (6)

Equation (6) describes the kinematic and dynamic re-

lationship of the space manipulator mounted on a free-

floating base, in the same format as a conventional kine-
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Fig. 2 Satellite attitude change by a cyclic manipulator op-

eration

matic equation for ground-based manipulators. The ma-

trix J∗ (a 2 by 2 square matrix here) is called “Generalized

Jacobian matrix” for space free-floating manipulators 5).

3. Workspace Analysis

3. 1 Definition of Workspaces

In this section, reachable workspaces of a space manip-

ulator are discussed.

In case of no external forces or moments on a space

free-floating robot, the state of the system depends on its

motion history and there is no closed form solution for in-

verse kinematics problems. For example, when a 2 DOF

space manipulator is operated in a cyclic motion sequence

in the joint space as depicted in Fig.2 (a), the course of

postural change of the system is computed by equations

(1) and (5) to yield Fig.2 (b). The end point positions of

the arm become different in the inertial space, although

the joint angles are the same between the before and af-

ter the motion. This evidences that there is no one-to-one

correspondences between the joint space and the inertial

task space, then infers that the kinematic reachability of

the arm in the inertial space cannot be discussed only by

joint angles, but the consideration to their motion trace

or other motion constraints is necessary.

Vafa and Dubowsky 3) pointed out three fundamental

cases to discuss the workspace with respect to the con-

dition of the base satellite: (1) the orientation and the

position of the base is constraint, (2) only the orienta-

tion is constraint, and (3) no constraint on the base. This

paper follows their idea and elaborate the last case into

three sub cases, then proposes five cases of workspaces in

total. They are defined as follows:

(1) Fixed Vehicle Workspace

Fixed Vehicle Workspace is a reachable envelope of the

manipulator end point in case the orientation and position

of the base satellite (vehicle) are fixed. Such situation can

be achieved by the control with reaction wheels and gas

jet thrusters mounted on the base, so that the space ma-

nipulator shall behave in the same way as ground based

manipulators. In this case, the workspace is in a circle

with radius L = �1 + �2, centered at the manipulator at-

tachment point (joint 1), or the origin of ΣR.

(2) Attitude Constraint Workspace

Attitude Constrain Workspace is a reachable envelope

in case only the orientation of the base satellite (vehicle)

is fixed. Such condition is given with φ0 = const. and

a maximum reach is obtained at φ2 = 0. By putting

φ0 = φ2 = 0 in equation (1), we obtain the following

expression for the end point position p:

p =

[
K0

0

]
+ (K1 + K2)

[
cos φ1

sin φ1

]
(7)

This equation represents a circle with radius K1 + K2,

centered at (K0, 0) in the inertial frame.

In this case, the robot frame keeps a constant orien-

tation but the position of its origin changes due to the

manipulator reaction.

(3) Free Workspace

In case of no constraint on the base satellite, the ma-

nipulator workspace depends on its motion path. Here,

three types of workspaces are defined with respect to the

motion specification of the arm.

(3-a) Maximum Reachable Space

If we do not specify the path of the manipulator ar-

m, equation (1) can take arbitrary values on φ0, φ1 and

φ2, noting that a cyclic motion path can change the base

orientation φ0. Therefore the manipulator end point can

reach any point inside a circle with radius K0 + K1 +K2,
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Fig. 3 Straight-path workspace

centered at (0, 0) in the inertial frame. This area is named

Maximum Reachable Space.

(3-b) Straight-Path Workspace

As a typical motion constraint of the arm, straight path-

s of the end point are considered. A reachable limit of the

straight path approach is given by kinematic singularity

at φ2 = 0 in the joint space. However, as the orientation

of the base changes along the manipulator motion, it is d-

ifficult to obtain an algebraic expression to describe such

a limit in the inertial space. Here a numerical method

is employed to illustrate the straight-path reachable limit

from a given initial point to all possible motion directions.

Fig.3 shows an example of such limits from an initial

posture at φ0 = 0 [deg], φ1 = −60 [deg], and φ2 = 120

[deg]. Fig.3 (a) depicts a single path from the initial pos-

ture to a reachable limit in the XA direction. This is

obtained by numerical simulation using the inversion of

equation (6). By checking the limits for all directions

in this way, Straight-Path Workspace for the given initial

posture is obtained as Fig.3 (b)

(3-c) Guaranteed Workspace

Finally, a workspace within which the accessibility is al-

ways guaranteed from arbitrary initial postures and with

arbitrary approaching paths, is considered.

A common area, or union, of the Straight-Path

Workspaces with various initial postures forms a circu-

lar workspace, to which the hand is accessible from ar-

bitrary initial postures. An expression for such a circle

is obtained as follows. The boundary of the Straight-

Path Workspaces is given by the manipulator singularity

at φ2 = 0. Substituting φ2 = 0 into equation (1), we

obtain:

p = K0

[
cosφ0

sin φ0

]
+ (K1 + K2)

[
cos(φ0 + φ1)

sin(φ0 + φ1)

]

Among the solution for p, the minimum reach (shortest

distance) from the system centroid is given at φ1 = ±π,

and with this condition, the equation becomes as:

p = {K0 − (K1 + K2)}
[

cos φ0

sin φ0

]
(8)

This equation represents a circle with radius |K0 − (K1 +

K2)|, centered at (0, 0) in the inertial frame. This area

is termed Guaranteed Workspace. In this workspace, the

manipulator motion is free from the singularity of φ2 = 0,

then the accessibility is guaranteed from arbitrary initial

postures and with arbitrary motion paths.

Vafa and Dubowsky called this particular workspace

as Free Workspace 3). But as discussed here, the Free

Workspace, in the sense that the base is free, is not u-

nique but defined into three typical cases depending on

the motion path of the arm. Here the present authors

propose to redefine Vafa and Dubowsky’s Free Workspace

as Guaranteed Workspace to clarify its meaning.

3. 2 Relationship Among Workspaces

Fig.4 depicts the relationship of four of workspaces de-

fined above, Area 1: Fixed-Vehicle Workspace, Area 2:

Attitude Constraint Workspace, Area 3: Maximum

Reachable Space, and Area 5: Guaranteed Workspace.

Among them, the relationship

Area 3 ⊇ Area 2 ⊇ Area 5

holds always true, and with an additional condition:

b0 ≥ w

m0
(L − K1 − K2), (9)

another relationship

Area 3 ⊇ Area 1 ⊇ Area 2

becomes also true.

Fig.5 depicts the relationship of three Free Workspaces,

Area 3: Maximum Reachable Space, Area 4: Straight-

Path Workspace and Area 5: Guaranteed Workspace.
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Fig. 4 Relationship of workspaces

Fig. 5 Relationship of free workspace

Area 3 is a union of Area 4 with various initial postures.

Area 5 is an intersection of Area 4 with various initial

postures. Point A is characterized as a point to which the

accessibility is guaranteed from arbitrary initial postures

via arbitrary paths. Point B is characterized as a point

which can be accessed from the depicted initial posture

via a straight-line path. Point C is characterized as a

point which cannot be accessed from the depicted initial

posture via a straight-line path, but can be reached after

reorienting the base by a suitable cyclic maneuver.

In the above discussions, it is assumed no limitation on

the joint angles. In practical cases with joint angle limita-

tions, the workspaces become subsets of the areas defined

and discussed above.

4. Manipulability Analysis

4. 1 Definition of Manipulability Measure for

Space Manipulator

In this section, a new manipulability measure for space

manipulator is defined. As a performance index of a ma-

nipulator arm, the concepts called Manipulability Mea-

sure and Manipulability Ellipsoid are defined based on

the singular value analysis of the manipulator Jacobian

matrix 7) 8).

Here the same methodology is applied to define those

concepts for a space manipulator using the Generalized

Jacobian Matrix J∗, given in equation (6). The manip-

ulability measure of a space free-floating manipulator w∗

is defined as:

w∗ =
√

det{[J∗][J∗]T} (10)

A set of possible end tip motion ṗ corresponding to the

confined joint motion by ‖φ̇M‖ ≤ 1 form an ellipsoid in n

dimensional space (n is the number of DOF of the hand.)

The length of principle axes of the ellipsoid is given by

the singular values of matrix J∗ and the volume of the

ellipsoid is in proportion to w∗.

Since the Generalized Jacobian Matrix J∗ is not a sim-

ple kinematic function but involves dynamic properties

such as mass and moment of inertia of the base and the

arm, as its derivation is described in equations (2)(5)(6),

the manipulability measure for space manipulator w∗ is

also the function of both kinematic and dynamic property

of the robot.

4. 2 Manipulability Analysis for Space Manip-

ulator

Fig.6 depicts a Manipulability Ellipsoids for a space

manipulator specified in Fig.1 and Table 1. There are t-

wo configurations, elbow-down and elbow-up, to reach a

given point and here the elbow-down (φ2 ≥ 0) cases are

considered. As discussed in the previous section, there

is no one-to-one correspondence between the robot pos-

ture and inertial end tip position, then the Manipulability

Measures and Ellipsoids are displayed in the robot fixed

coordinate frame ΣR.

The distribution of the Manipulability Measure is dis-

played by a contour map in Fig.7 (a). For comparison, a

contour map of the manipulability for a ground-based ma-

nipulator is depicted in Fig.7 (b). Index numbers written

on the figures are normalized value of the manipulability

measure by:

ŵ∗ = w∗/Ln (here n = 2.) (11)

The numbers are multiplied by 40 to be marked in the

figures.

From these figures, it is clearly seen that the manip-

ulability measure of a space free-floating manipulator is

generally lower than that of a ground-fixed manipulator.

This is because the manipulability is degraded by the base

motion due to the manipulator reaction. Looking at the
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Fig. 6 Manipulability ellipsoids for a 2-link space manipula-

tor

Fig. 7 Contour maps of manipulability measure

distribution of the manipulability measure, the space arm

has non-circular, non-symmetric counter lines, while the

ground arm does concentric-circular counter lines. Partic-

ularly, the manipulability measure shows relatively lower

values in the first quadrant of the robot coordinate frame

and relatively better in the third quadrant. This is be-

cause the manipulator reaction effect is more significant

when the arm is reached out in front of the robot, but

less significant when the arm is retracted to work on and

behind the robot base.

Here, an illustrative example is given to show the pos-

ture dependency of the manipulability due to the reaction

effect. Fig.8 (a) and (b) show two different postures to

reach the same end tip position. Posture 1 is an elbow-

down configuration corresponding to the first quadrant

case of Figs.6 and 7. Posture 2 is an elbow-up configura-

tion, which is equivalent to the case where the end tip is

located in the fourth quadrant in Fig.6 and 7. The ob-

tained manipulability ellipsoids become different between

the two postures.

Fig. 8 Manipulability ellipsoids for different postures

Fig. 9 Satellite attitude change according to the same tip mo-

tion in the different postures

Now, let us consider small go-and-back motion of end

tip in the YR direction. As seen from posture 1 of Fig.8,

the given motion direction almost coincides with the di-

rection of minimum axis of the ellipsoid. The minimum

axis of ellipsoid means minimum manipulability of the

hand and maximum reaction on the base for the given

operation. On the other hand, in posture 2, the ellip-

soid is relatively roundish then has longer intersection in

the direction of the end tip motion. This suggests higher

manipulability measure and smaller reaction.

The above comments are evidenced by simulations for

the base attitude reaction, as shown in Fig.9. The same

go-and-back motion is given at the end tip although, the

base reaction becomes very different between the postures

1 and 2. The posture 1 has a lower performance of the

end tip motion to the given direction and bigger reaction

effect on the base. Yet, the posture 2 has higher end tip

performance and lower reaction effect. The latter case is

better from this specified operation.

The manipulability measure for a space manipulator is

under strong influence of the base reaction, then its eval-

uation is useful to understand not only the performance

of the end-tip motion but also the attitude disturbance of

the base due to the manipulator reaction.
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Table 2 Normalized average manipulability measure ¯̄w∗ and

normalized work areas ŜM , ŜG.

b0/B0 ¯̄w∗[×10−2] ŜM ŜG

0 5.59 0.84 0.84

0.5 5.93 1.13 0.59

1.0 6.70 1.46 0.39

1.5 7.52 1.83 0.23

2.0 8.08 2.25 0.11

5. Application to Design Issues

In this section, the performance evaluation by the

workspace volume (area) and manipulability measure is

applied to a design issue of a space robot.

As an illustrative example, a discussion is made to de-

cide the attachment point of a manipulator arm in a 2

DOF planar system as shown in Fig.1. Here, we try to

change the distance from the base centroid and joint 1,

b0, while holding other parameters as listed in Table 1.

The value of b0 in Table 1 is 1.4 [m] and set it as B0, then

b0 = 0 means the arm shall be attached on the base cen-

troid, b0/B0 = 1 is the case same as Fig.1, and b0/B0 > 1

indicates cases the arm shall be mounted at the end of a

massless bar, sticking out of the base.

The evaluation is made with three indices: (1) the area

of Maximum Reachable Space, ŜM , and (2) the area of

Guaranteed Workspace, ŜG, both are normalized by πL2,

and (3) the manipulability measure averaged the reach-

able area in the robot coordinate frame:

¯̄w =

∫
ŵ∗ds/

∫
ds (12)

(where ds is an infinitesimal area on the robot frame.)

The result of the evaluation is listed in Table 2 and

typical three cases at b0/B0 = 0, 1, 0, 2, 0 are depicted in

Fig.10. The result shows that the area ŜM and the ma-

nipulability ¯̄w increase, on the other hand, the area ŜG

decreases, according to the increment of the length b0.

The reason for the increment of ¯̄w is understood that the

moment of the inertia of the base increases for longer b0,

then the robot base receives smaller effect from the ma-

nipulator reaction.

From the view point of the space robot design with high-

er performance, it is desirable to have wider guaranteed

workspace and higher manipulability. However, the result

shows that these two yield contradictory criteria. Partic-

ularly, longer b0 is effective to increase the manipulability

but limits the Guaranteed Workspace to close vicinity of

the base.

Here, an important consequence is that the operational

performance is greatly influenced just by changing the at-

tachment point of the manipulator arm. Careful trade-off

Fig. 10 Workspace and manipulability distributions for dif-

ferent space robot configurations

is therefore necessary to design a practical system with re-

spect to the workspace area and manipulability measure,

which are function of not only kinematics but also inertia

property of the entire system.

6. Conclusions

In this paper, the measures of workspace and manipu-

lability for a free-floating space robot are discussed.
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First, it is pointed out that the workspace should be

defined with various conditions on the motion of the base

satellite or the operational path of the manipulator hand.

According to these conditions, the authors define five

types of workspaces. They are all important but, of par-

ticular, two concepts named Maximum Reachable Space

and Guaranteed Workspace are useful to characterize the

performance of the free-floating manipulator.

Next, the measure of the manipulability is defined using

the Generalized Jacobian matrix. It is clarified that the

manipulability measure of space manipulator is degraded

in non-isometric way due to the dynamic coupling of the

arm and base.

Finally, the design issue of a space robot is discussed

with an illustrative example to determine the position to

attach the shoulder joint. The performance of each de-

sign is evaluated by Maximum Reachable Space, Guaran-

teed Workspace, and Manipulability Measure. These in-

dices show contradictory evaluation versus the parameter

b0/B0, the normalized distance of the attachment point.

It is suggested that a careful trade-off is necessary for the

design of a practical system. However, an important note

is made here that the operational characteristics is not de-

termined just by kinematic conditions, but also dynamic

conditions such as inertia property of the entire system.

The authors express their special thanks to Mr. Mitsua-

ki Fujimori, who was with the authors at Tokyo Institute

of Technology as a graduate student and currently with

Yokogawa Electric Corporation, for his contribution to

make the contour maps of the manipulability measure.
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