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A Study on Unit Interpolation with

Rational Analytic Bounded Functions†
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This paper considers the problem of unit interpolation with rational analytic bounded functions. Lower bounds

of the degree and norm of the units which interpolates given data are derived, using the Nevanlinna-Pick matrix

and the non-Euclidean distance. These results explain why stable controllers tend to have large degree/norm in

the strong stabilization problem.
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1. Introduction

The strong stabilization problem was formulated by

Youla et al. 1), where in addition to the closed loop

stability the controller itself is required to be stable.

They derived a necessary and sufficient condition for the

strong stabilizability. Vidyasagar 2) extended the result

for multi-input multi-output systems. Also in 2), it was

shown that there is a close relation between the strong

stabilization problem and the simultaneous stabilization

problem, i.e., the problem of finding a single controller

which stabilizes multiple plants.

Vidyasagar 2) pointed out the following reasons why the

strong stabilization problem is important. The transfer

function of the closed feedback system has no further zero

in the right half plane in addition to a zero of the plant if

and only if it is stabilized by a stable controller. A right

half plane zero in general causes the degradation of the

sensitivity function, and therefore it should be avoided if

possible. The simultaneous stabilization problem is im-

portant as the stabilization technique for the uncertain

control system. Youla et al. 1) also pointed out the former

without giving a specific reason.
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When the strong stabilization is possible, the compu-

tation of a stable controller involves computing a unit in

bounded analytic function which satisfies a certain inter-

polation condition. There are several algorithms for this

computation. The algorithms found in the proof of the

sufficient part in 1), 2) are, as is pointed out in 1), not

for practical purposes. The algorithms by Cusumano et

al. 3) and Dorato et al. 4) uses the interpolation theory by

positive real functions, and as is shown in the papers they

generally yields lower order controller. However, some-

times they produce high order controllers. Smith et al. 5)

showed by an example that the degree of strong stabiliz-

ing controller is not bounded by a function of the degree

of the plant. Ghosh 6) made the same observation for the

simultaneous stabilization problem.

In this paper, we make a theoretical study on the degree

of stable controllers in the strong stabilization problem,

and show why the controller tends to have high order.

For this purpose, we study the problem of unit interpo-

lation with rational analytic bounded functions, and give

bounds of the minimum degree of interpolants. We first

show that when the number of interpolation point is more

than one the degree of unit interpolants is not bounded by

a function of the number of interpolation point. This is a

similar result as in 5), 6). Then we use the Nevanlinna-

Pick interpolation theory to derive lower bounds of the

degree of unit interpolants. This implies that a careful ap-

proach is required for the strong stabilization. The strong

stabilizability is sometimes not enough for practical pur-

poses because a high order controller is inevitable in some

situations. Another observation is that the tendency to

yield a high order controller is an intrinsic property of the

strong stabilization problem rather than a property of the
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Algorithms 1)∼4).

2. Strong stabilization

Consider the feedback system shown in Fig. 1, where p

is a plant and c is a controller. We assume that both p

and c are single input single output systems. We say the

feedback system is stable if any transfer functions from vi

to uj (i = 1, 2, j = 1, 2) are stable. In this case, we call

c a stabilizing controller. The plant p is called strongly

stabilizable if there is a stable stabilizing controller.
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Fig. 1 Feedback system.

Proposition 1 (strong stabilizability 1), 2)).

Consider the feedback system shown in Fig. 1. The plant

p is strongly stabilizable if and only if the following con-

dition (PIP condition) holds.

(PIP condition): The number of real poles of p between

any two zeros on the nonnegative real axis including the

infinity is even.

The condition is called the parity interlacing property,

or the PIP condition.

Notice that designing a stable stabilizing controller is re-

duced to finding a unit satisfying interpolation constraints

as the following procedure shows. First, let p = n/d be

coprime factorization over the ring of stable rational func-

tions. Solve the Bezout identity xy+ yd = 1 where x and

y are stable rational functions. Then a stabilizing con-

troller which are not necessarily stable is parameterized

as c = (x+ dq)/(y−nq) where q is a stable rational func-

tion. Hence c is stable if and only if y − nq is a unit.

Suppose that the zeros of n (i.e., the zeros of p) in the

closed right half plane are simple. If we can find a unit

u whose value at a zero z of n is y(z)−1, then setting the

free parameter q = (y − u−1)/n gives a stable stabilizing

controller.

In what follows, we shall assume that there is no inter-

polation points on the imaginary axis including the infin-

ity for the sake of simplicity.

Let Z = {z1, · · · , zk} be the set of zeros of n in the open

right half plane, and let βj = y(zj)
−1, j = 1, · · · , k. We

call the pair (Z, {βj : j = 1, · · · , k}) as interpolation data.

It is possible to restate the PIP condition of Proposition

1 in terms of interpolation data. Since a zero of p in the

open right half plane is a zero of n and a pole of p in

the open right half plane is a zero of d, the PIP condition

holds if and only if the signs of d at the real zeros of n are

constant. Then by the Bezout identity, it follows that the

signs of y at the real zeros of n are constant. Hence the

plant p satisfies the PIP condition if and only if the in-

terpolation data (Z, {βj : j = 1, · · · , k}) has the property

that the signs of βj for the real zj are constant. When

this is the case, we say the interpolation data satisfies the

PIP condition.

3. Degree of strongly stabilizing controller

Though the strong stabilizability condition of Proposi-

tion 1 completely decides whether there is a stable stabi-

lizing controller, we must take some caution on the degree

of the controller. As the following Theorem indicates, a

stable controller of extremely high degree is unavoidable

in some situations. The same observations are made by

way of examples in 5), 6). This paper gives a new proof

which offers an insight into the order of a unit.

Theorem 1. Consider the set Pk of plants of degree k

which satisfy the PIP condition. For each plant p ∈ Pk,

let δ(p) be the minimum degree of strongly stabilizing

controller. Then {δ(p) : p ∈ Pk} is unbounded.

Proof. Let p ∈ Pk, and c be a strongly stabilizing con-

troller. Let p = np/dp and c = nc/dc be coprime factor-

ization over the ring of polynomials. We consider the case

where np has at least two positive zeros 0 < σ1 < σ2 <∞,

and is anti-Hurwitz, i.e., the real part of the zeros of np

are positive. Because the feedback loop is stable, the poly-

nomial ψ = dpdc +npnc is Hurwitz. Note that dc satisfies

the interpolation constraints

dc(σi) =
ψ(σi)

dp(σi)
, i = 1, 2. (3.1)

Since c is stable, dc is Hurwitz, and we may assume that

the coefficients of dc are positive. Thus it follows that

0 < dc(σ1) < dc(σ2). (3.2)

If the minimum degree of strongly stabilizing controllers

has an upper bound, then there is a positive integer N

such that for any p ∈ Pk we can select a strongly stabi-

lizing controller c for which deg(ψ) ≤ N . Then applying

Lemma 1 below, we have

log

���� ψ(σ2)

ψ(σ1)

���� ≤ N

�
σ2 − σ1

σ1 � . (3.3)

Let Pk(np) denote the set of k-th order transfer functions

which have np as a numerator and satisfy the PIP condi-

tion. Then it is easy to show that

inf � ���� dp(σ1)

dp(σ2)

���� : p =
np

dp
∈ Pk(np) � = 0. (3.4)
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Indeed, consider a sequence of transfer functions in Pk(np)

which have a real pole approaching to σ1 between σ1 and

σ2. Hence from (3.3) and (3.4) there is a p ∈ Pk(np) such

that
ψ(σ1)

dp(σ1)
>

ψ(σ2)

dp(σ2)
> 0. (3.5)

From (3.1) this implies dc(σ1) > dc(σ2), which contradicts

(3.2).

Lemma 1. Let ψ be an N -th degree Hurwitz polyno-

mial, and 0 < σ1 < σ2. Then we have

log

���� ψ(σ2)

ψ(σ1)

���� ≤ N

�
σ2 − σ1

σ1 � . (3.6)

Proof. Without loss of generality, we can assume that

ψ is monic. Let ψ(s) = � N
j=1 (s− zj), Re zj < 0. Then

we have

log

���� ψ(σ2)

ψ(σ1)

���� =

N�
j=1

log

���� σ2 − zj

σ1 − zj

���� (3.7)

≤

N�
j=1

log
|σ2 − σ1| + |σ1 − zj |

|σ1 − zj |

≤
N�

j=1

σ2 − σ1

|σ1 − zj |

≤ N

�
σ2 − σ1

σ1 � .

4. Degree and norm of unit interpolant

In Section 3, we have shown that the degree of strongly

stabilizing controller sometimes becomes quite large de-

pending on interpolation data. In another word, the PIP

condition does not guarantee if there is a strongly sta-

bilizing controller of moderate degree. In this section,

we scrutinize the situation, and decide which interpola-

tion data yields such undesirable strongly stabilizing con-

trollers. To do this, we will derive two lower bounds of

unit interpolants given interpolation data; namely a lower

bound of (i) the minimum degree, and (ii) the minimum

norm.

4. 1 Positive real interpolation problem

The following Proposition shows a necessary and suffi-

cient condition for the existence of a positive real func-

tion 7).

Proposition 2.7) Let Z = {z1, · · · , zn} be a subset

in the open right half plane. Consider the interpolation

data (Z, {β1, · · · , βn}). Then there is a holomorphic func-

tion f in the open right half plane such that Re f(s) > 0,

Re s > 0 and f(zj) = βj if and only if the following matrix�
βi + βj

zi + zj � (4.1)

is positive definite.

Proposition 3. Let Z and βj be defined as Propo-

sition 2. Suppose that Re βj > 0. If there is a holo-

morphic function f in the open right half plane such that

f(zj) = βj , then ρ(zi, zj) > ρ(βi, βj) holds, where ρ(zi, zj)

is the non-Euclidean distance in the right half plane de-

fined by

ρ(zi, zj) = log
1 +w

1 −w
, w =

|zj − zi|

|zj + zi|
. (4.2)

Proof. It is a consequence of the fact that the holo-

morphic function which maps the open right half plane

into itself is non-expansive if the non-Euclidean distance

is introduced. However, we shall prove the proposition

using Proposition 2 to show that this is a special case of

the Navenlinna-Pick condition. Since 2 × 2 principle mi-

nors of the Navenlinna-Pick matrix (4.1) are positive, we

have

|zi + zj |
2

Re zi Re zj
>

�� βi + βj

�� 2
Reβi Reβj

. (4.3)

Notice that the right hand side of (4.2) is monotone in-

creasing as a function of 0 ≤ w < 1, and that

2
1 +w2

1 −w2
=

(Re zi + Re zj)
2 + (Im zi − Im zj)

2

(Re zi) (Re zj)
− 2

(4.4)

=
|zi + zj |

2

Re zi Re zj

holds. Hence it follows that the inequality (4.3) is equiv-

alent to

ρ(zi, zj) > ρ(βi, βj). (4.5)

In what follows, we shall utilize these propositions on

the positive real interpolation condition, and study the

degree and norm of unit interpolants.

4. 2 Degree of unit interpolants

In this section, we study upper and lower bounds of the

minimum degree of unit interpolants. The upper bound

is identical to that given in 3). The implication of the

lower bound is that the degree of unit interpolants is not

bounded by a function of the number of interpolation

points. This contrasts the fact that an H∞ interpolation

problem always have a solution whose degree is equal to

the number of interpolation points if a solution exists.

We say that interpolation data (Z, {β1, · · · , βn}) satisfy

the conjugate condition if zj = zi implies βj = βi.

Theorem 2. Let Z = {z1, · · · , zn} be a subset of the

open right half plane. Let (Z, {β1, · · · , βn}) be interpo-

lation data which satisfy the conjugate condition and the

PIP condition. Suppose that if there is a real zi ∈ Z then

βi > 0. Let m be a positive integer, and consider the
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Nevanlinna-Pick matrix�
β

1/m
i + β

1/m

j

zi + zj � , (4.6)

where the m-th root is constructed in such a way that if

βi and βj are conjugate, so are β
1/m
i and β

1/m
j . Consider

all possible branches of the m-th root (there are mq com-

bination if there are 2q non-real complex numbers in Z).

Let m0 be the minimum integer such that the matrix (4.6)

is positive definite for a possible choice of the branches.

Then any unit interpolants have at least m0 degree. Fur-

thermore, there is a (nm0) degree unit interpolant.

Proof. The last assertion is due to 3). To show

the claim on the lower bound, suppose that there is

an m-th order unit interpolant. Since f is a unit, we

can define holomorphic logarithm of f which we denote

log f . Note that the phase of f is bounded from above

and below by mπ/2 and −mπ/2, respectively. Hence

f1/m := exp((1/m) log f) is positive real, and satisfy

f1/m(zi) = β
1/m
i . Hence from Proposition 2, the matrix�

f1/m(zi) + f1/m(zj)

zi + zj � (4.7)

is positive real. Thus there is at least one positive definite

matrix in (4.6).

Applying Proposition 3, we obtain cruder but simpler

lower bounds.

Theorem 3. Let (Z = {z1, · · · , zn} , {β1, · · · , βn}) be

interpolation data which satisfy the conjugate condition

and the PIP condition. Suppose that if there is a real

zi ∈ Z then βi > 0. Then the following integers m

are lower bounds of the minimum degree of unit inter-

polants.

(i) Let zi, zj ∈ Z be two distinct real numbers. De-

fine m as the smallest integer greater than

log (max {βi, βj}) − log (min {βi, βj})

log (max {zi, zj}) − log (min {zi, zj})
. (4.8)

(ii) Let zi ∈ Z be a non-real number. Define m as

the smallest integer greater than

|arg(βi)|

|arg(zi)|
, (4.9)

where arg(z) is the imaginary part of the principle value

log z (−π < arg(z) ≤ π).

Proof. (i): The non-Euclidean distance between the

two positive numbers zi and zj is

ρ(zi, zj) = log

�
max {zi, zj}

min {zi, zj} � . (4.10)

Proposition 3 implies that if there is a unit interpolants

for the interpolation data � Z, � β1/m
1 , · · · , β

1/m
n ��� then

ρ(zi, zj) > ρ(β
1/m
i , β

1/m
j ). (4.11)

Using (4.10), we see that the smallest integer m for which

(4.11) holds is given by (4.8).

(ii): The non-Euclidean distance between z and z for a

non-real number z is

ρ(z, z) = log
1 + sin(|arg(z)|)

1 − sin(|arg(z)|)
. (4.12)

Suppose that zj = zi is a non-real number. If

there is a unit interpolants for the interpolation data

� Z, � β1/m
1 , · · · , β

1/m
n ��� , then from Proposition 3 it fol-

lows that

ρ(zi, zi) > ρ(β
1/m
i , β

1/m

i ). (4.13)

Notice that the functions log {(1 + w)/(1 − w)}, 0 ≤ w <

1 and sin θ, 0 ≤ θ < π/2 are monotone increasing. Thus

using (4.12) we see that (4.13) is equivalent to

|arg(zi)| >
��� arg(β

1/m
i )

��� . (4.14)

The right hand side of (4.14) is minimized when we take

the principle value of β
1/m
i . In this case

��� arg(β
1/m
i )

��� =

|arg(βi)| /m. Hence the minimum integer m for which

(4.14) holds is the minimum integer greater than (4.9).

4. 3 Norm of unit interpolants

In this section, we study the minimum norm of unit

interpolants, and derive lower bounds of the norm as in

Section 4. 2. We employ the H∞ norm which is defined

as

‖f‖
∞

= sup {|f(s)| : Re s > 0} .

The following theorem is due to 8), but is included for

reference.

Theorem 4.8) Let Z = {z1, · · · , zn} be a subset of

the open right half plane, and (Z, {β1, · · · , βn}) be inter-

polation data which satisfies both the PIP and conjugate

conditions. Suppose that if there is a real zi ∈ Z then

βi > 0. Let M be a positive number and consider the

following Nevanlinna-Pick matrix�
log (M/βi) + log (M/βj )

zi + zj � , (4.15)

where the m-th root is constructed in such a way that if

βi and βj are conjugate, so are β
1/m
i and β

1/m
j . Consider

all possible branches of the m-th root (there are mq com-

bination if there are 2q non-real complex numbers in Z).

Let M0 be the infimum of M for which the matrix (4.6)

is positive definite for a possible choice of the branches.

Then the norm of any unit interpolants is greater than or

equal to M0.

The proof of Theorem 4 uses the fact that if there is

a unit interpolant whose norm is less than M then there

is a positive definite function satisfying the interpolation

data (Z, {log(M/β1), · · · , log(M/βn)}).



128 T.SICE Vol.E-1 No.1 2001

Applying Proposition 3, we obtain cruder but simpler

lower bounds just as Theorem 3.

Theorem 5. Let (Z = {z1, · · · , zn} , {β1, · · · , βn}) be

interpolation data which satisfy the conjugate condition

and the PIP condition. Suppose that if there is a real

zi ∈ Z then βi > 0. Then the following positive numbers

M are lower bounds of the norm of unit interpolants.

(1) Let zi, zj ∈ Z be two distinct real numbers.

Let z+ = max {zi, zj}, z− = min {zi, zj}, β+ =

max {βi, βj}, and β− = min {βi, βj}. Define M as

M = exp

�
z+ log(β+) − z− log(β−)

z+ − z− � . (4.16)

(2) Let zi ∈ Z be a non-real number. Define M as

M = |βi| exp

�
Re zi |arg(βi)|

|Im zi| � , (4.17)

where arg(z) is the imaginary part of the principle value

log z (−π < arg(z) ≤ π).

Proof. (1): If there is a positive real function satisfying

the interpolation data (Z, {log(M/β1), · · · , log(M/βn)}),

then Proposition 3 implies that

ρ(zi, zj) > ρ(log(M/βi), log(M/βj)). (4.18)

From (4.10),

ρ(zi, zj) = log(z+/z−), (4.19)

ρ(log(M/βi), log(M/βj)) = log

�
log(M/β−)

log(M/β+) � . (4.20)

Since
log(M/β−)

log(M/β+)
<
z+
z−
, (4.21)

we have (4.16).

(2): Suppose that zj = zi is a non-real number. If there is

a positive real function satisfying the interpolation data

(Z, {log(M/β1), · · · , log(M/βn)}), then from Proposition

3 it follows that

ρ(zi, zi) > ρ(log(M/βi), log(M/βi)). (4.22)

Notice that the functions log {(1 + w)/(1 − w)}, 0 ≤ w <

1, sin θ, 0 ≤ θ < π/2, and tan θ, 0 ≤ θ < π/2 are mono-

tone increasing. Thus using (4.12) we see that (4.13) is

equivalent to

tan(|arg(zi)|) > tan(|arg(log(M/βi))|). (4.23)

The right hand side of (4.23) is minimized when we take

the principle value of log(M/βi). In this case (4.23) is

equivalent to ���� Im zi

zi

���� > |arg(βi)|

logM − log |βi|
, (4.24)

and hence (4.17) is a lower bound.

Note. Theorems 2–5 give lower and upper bounds

of the minimum degree and the norm of unit inter-

polants. Let us summarize the implication of these re-

sults to the strong stabilization problem. As was pointed

out in Section 2, designing a strongly stabilizing con-

troller is reduced to finding a unit satisfying interpola-

tion constraints. If we find a unit u(s) which interpo-

lates d(z) at the right half plane zero z of p = n/d, then

c(s) = (u(s) − d(s))/n(s) is a strongly stabilizing con-

troller. Note that the interpolation data depends on the

co-prime factorization of p, and the degree and the norm

of the unit interpolant are different from those of the con-

troller. However, a simple calculation shows that

deg(c) ≥ deg(u) − deg(d) − deg(n),

‖c‖
∞

≥
‖u‖

∞
− ‖d‖

∞

‖n‖
∞

.

If we use the normalized coprime factorization 9) for ex-

ample, the above inequalities give lower bounds of the

minimum degree and the norm of strongly stabilizing con-

troller.

5. Examples

Example 1. Let Z = {1, 2}, β1 = 1, and β2 = 1×104.

From Theorem 3, we have m0 > (log β2)/(log 2) ≈ 13.3,

and hence we conclude that any unit interpolant has de-

gree larger than or equal to 14. From Theorem 5, we have

M0 ≥ exp(2 log(β2)) = 1 × 108. Using the algorithm in

2), a unit interpolant is

u(s) =

�
1 + 0.96582

s − 1

s + 1 � 33

,

whose degree is 33, and ‖u‖
∞

= 4.8634 × 109.

Example 2. Let Z = {1 ± 0.1j}, and β1 =

β2 = 1 + j. From Theorem 3, we have m0 >

|arg(1 + j)| / |arg(1 + 0.1j)| ≈ 7.88, and hence we con-

clude that any unit interpolant has degree larger than or

equal to 8. From Theorem 5, we have M0 ≥ 3.643 × 103.

Using the algorithm in 2), a unit interpolant is

u(s) =

�
1 + 0.04571

s − 0.96196

s + 0.96196 � 345

,

whose degree is 345, and ‖u‖
∞

= 4.9761 × 106.

6. Conclusions

In this paper, it was shown that a stable controller

which solves the strong stabilization problem sometimes

has large degree depending on the interpolation data. In

order to specify which data tends to yield high order con-

trollers, non-Euclidean distance was exploited to compute

lower bounds of the degree and norm of unit interpolants.
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The results indicate that for the interpolation data which

yields large lower bounds, strong stabilizing controllers

are sometimes impractical.
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