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Design of Continuous-Time Deadbeat Tracking Systems

Eitaku NoBUYAMA™, Seiichi SHIN** and Toshiyuki KITAMORI***

This paper is concerned with deadbeat control of continuous-time systems. The objective is to construct a
continuous-time deadbeat tracking system, in which the tracking error settles down to zero in a finite time or
deadbeatly. It is shown that such a tracking system can be obtained by using controllers which include some

delay elements.
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1. Introduction

A dynamical system is called to have the deadbeat set-
tling property or finite settling property if its transient re-
sponse vanishes in a finite time. It is desirable for tracking
systems to have the deadbeat property, in which the track-
ing errors vanish completely in a pre-specified time. The
objective of this paper is to give a design method for con-
structing such tracking systems for continuous-time sys-
tems.

There are many design methods of deadbeat track-
ing systems for discrete-time systems, but a few for
continuous-time systems. The first one for continuous-
time systems is “posicast control” proposed by Smith %),
The posicast control is open-loop feedforward control for
tracking a step function completely in a finite time. The
control principle is to superpose some delayed step func-
tions on the step function to be followed so that the track-
ing error has the deadbeat property. Ando? has general-
ized the posicast control to a general case. Although the
idea of the posicast control is interesting the open-loop
scheme is lack of generality in the sense that in deadbeat
tracking systems it leads to dependence of the controller
design on initial states of the plant. Recently, Kurosawa %
has proposed a different kind of deadbeat tracking scheme
for continuous-time systems, in which a delay element is
included in a feedback controller. Although the design
method doesn’t depend on initial states of the plant it
is still lack of generality in the sense that the minimum-

phase property of the plant is required for internal stabil-

ity.
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Motivated by the Kurosawa’s work, the authors have
derived conditions for a continuous-time signal to have
the deadbeat property, and proposed a design method for
deadbeat regulation systems Y which can also be applied
to non-minimum-phase plants. In the present paper, by
extending the idea of the paper Y to tracking systems it is
shown that deadbeat tracking systems can be constructed
for general reference signals. To do this, it is first shown
that a continuous-time signal which deadbeatly settles to
zero is represented as a finite Laplace transform in the
frequency domain, and sufficient conditions are given for
a signal to be represented as a finite Laplace transform in
the frequency domain. Controllers used in this paper have
the form of the so-called Youla parameterization with the
free parameter including delay elements. By using such
controllers the problem to construct a deadbeat tracking
system is reduced to an interpolation problem for the free
parameter, and it is shown that the problem can be solved
on the assumption of the so-called tracking condition. As
a result, it is turned out that a deadbeat tracking system
can be constructed in continuous-time systems only on
the assumption of the tracking condition.

In this paper, the following notations are used:

R : the set of real numbers,
C : the set of complex numbers,
X' : the transpose of X,
deg, a(s) : the degree of a(s) with respect to s,
deg, a(z) : the degree of a(z) with respect to z.
1.1 Problem Statement
Consider the following scalar system:
z(t) = Az (t) + bu(t)
y(t) = ca(t)
where z(t) € R", u(t) € R, y(t) € R and A € R™*",
be R", ce R". Suppose (c', A,b) is minimal and P(s)

denotes the transfer function of the plant:

1)
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P(s)=¢/ (s —A)~'b. (2)
In the feedback system in Fig.1, K is a controller and
r is a reference signal to be followed. A controller K is
said to be admissible if K internally stabilizes the feed-
back system. The reference signal r(t) € R is supposed
to be generated by

r(t) = crz, (1), Tr = Ayz, (1) (3)

where z,(t) € R" with x,(0) # 0 and A, € R"" "7
c. € R".

Fig.1 Feedback system.

Definition. A controller K is called a deadbeat con-
troller or K is said to achieve deadbeat tracking if K sat-
isfies the following two conditions:

(i) K is admissible.

(ii) The tracking error e(t) = r(t) — y(t) completely set-

tles to zero in a finite time for any initial states x(0)

and z,(0), i.e., for any x(0) and x,(0), e(t) satisfies

et) =0, t > (@)
for some ty < oco. In this case, t; is called the deadbeat
settling time.

Note. Inordinary tracking systems, the tracking error
is required to track the reference signal only asymptoti-
cally:

e(t) = 0 (t = o0).

In this paper, we use the so-called “Youla parameter-
ization” for constructing a deadbeat controller, which is
given by

K(s) = (M(5)Q(2) = Y (s)(X(s) = N()Q(2)) ™
= (X(s) = Q()IN(9) Q)M (s) = Y (5)) (5)
where z := T (T > 0),

l X Y ] = I+ l f ] (sT—A

—N(s) M(s) c

—he)! [ b h ] 6)

—I—f-l#](sl—A

C

| S

~of) b -n | @
with f € R", h € R" chosen so that

d(s) := det(sI — A—bf'), (8)

dn(s) := det(sI — A — hc') 9)
are stable polynomials. In this paper, the free param-
eter Q(z) is chosen as a polynomial of a delay element
z=e*T (T >0):

Q) = Qo+ Qrz+ -+ Qq2" (10)
where Q; € R (1 =0,---,q).

Note. If the free parameter ) can be realized causally
and stably the controller K of (5) can causally be realized
and the closed-loop stability will be guaranteed. In our
case, @ of (10) can be realized causally and stably; in fact,

the input-output relation
w(s) = Q(2)v(s)
is realized causally and stably as
w(t) = Qov(t) + Qro(t = T) +--- + Qqu(t — ¢T).

A causal realization of K with this Q(z) is given by

u(t) = f'&(t) =Y Qi(y(t—iT) —r(t —iT)

—cdz(t —iT)) (11)

:i:(t) = A&(t) + bu(t) — h(y(t) — r(t) — c'&(t)), (12)
which is known as an observer-based realization of the
Youla parameterization. Hence, the controller K with @
of (10) is admissible, and the problem of constructing a

deadbeat controller is reduced to that of finding @ so that

the condition (ii) is achieved.

2. Deadbeat Property of Finite Laplace
Transform

In this section, it is shown that a continuous-time signal
which settles to zero in a finite time is characterized as a
finite Laplace transform in the frequency domain.

Let ¢(s) be the Laplace transform of a continuous-time
signal ¢(t), i.e.,

o0 = [ stwear,
0
and truncate the integral range at ¢ = T to define ¢r(s)
by
T
i) = [ o0
0

which is called the “finite Laplace transform” of ¢(t). The
finite Laplace transform ¢(s) can be viewed as the Laplace

transform of the truncated signal

[ ew, o<t<r
ér(t) -—{ 0, T<t

because

or(s) = / ér(t)e *'dt.
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This means that the a continuous-time signal settles to
zero in a finite time if it is represented as a finite Laplace
transform in the frequency domain.

The next Theorem gives the sufficient conditions for a
continuous-time signal to be a finite Laplace transform in
the frequency domain.

Theorem 1. Let

S, s
vl = 222 o
where a(s) is a polynomial in s,

B(s,2) = Bo(s) + Bi(s)z + - + Pa(s)2"

with deg, Bi(s) < deg,a(s) (i = 0,---,q), and s; € C
(i =1,---,p) denote the zeros of a(s) with multiplicities
m; (¢ =1,---,p). Then if 8(s, z) satisfies

d’ s ) )

E'g(sive zT):07Z:17"'717;.7:07"'7777'1' (13)
then v (s) is a finite Laplace transform, i.e.,

Ty

P(s) = Wo(t)e*"dt

0
for some o (t) with

Ty < qT

Note. This Theorem shows that if ¢ (s) satisfies (13)
it settles to zero with the deadbeat settling time ¢T', i.e.,

| we(t), o<t<qT,
W)_{ 0, qT < t.

3. Construction of Deadbeat Controller

The objective of this section is to construct a deadbeat
controller. To do this, we assume the following condition:
(A1) The poles of r(s) are not zeros of P(s), i.e., there

exists no s € C which satisfies both d,(s) = 0 and

no(s) = 0 where
d,(s) := det(sI — A,), no(s) := c'adj(sI — A)b.

Note. This assumption is known as the “tracking con-
dition,” which is inevitable for tracking systems in gen-
eral.

For initial states (0) = o and x,(0) = x,o the feed-
back system in Fig.1 is represented in the frequency do-

main as follows:

sxz(s) —xo = Ax(s) + bu(s) 14

y(s) = c'z(s) 15
u(s) = K(s)e(s) 16

sxr(s) — @0 = Arx(8) 17

18
19

(14)
(15)
(16)
(17)
(18)
(19)

From these equations
y(s) = € (sT — A) " {bu(s) + mo}
= M(s)N(s)K(s)e(s) + ¢ (sI — A) "o
and
e(s) = {1+ M~ (s)N(s)K(s)} '
x{eh(sT — A,) a0 — &' (sT — A) a0}
= {X(5) = N(5)Q(2)} M (s)
x {ch(sT — A) a0 — &' (sT — A) a0}

Hence, e(s) can be written as

e(s) = 2(s)g(s) (20)
where
— vo(5) —no(s)Q(2)
) = S () (5)
vo(s) := det(sI — A—bf') —c'adj(sI — A—bf')h

do(s)c,adj(sI — A.) o
—d,(s)c'adj(sI — A)xo,
do(s) := det(sI — A).

Q
=
»
&
I

The objective of deadbeat tracking is to completely set-
tle e(t) down to zero in a finite time for any xo and x,o.
For this it suffices that e(s) satisfies the condition of The-
orem 1 for any xo and x,0. Since xo and x,o are in-
cluded only in g(s) it is obvious that e(s) satisfies it for
any xo and x,o if ®(s) satisfies the condition of Theo-
rem 1. Hence, to obtain a deadbeat controller it suffices
to find Q(z) such that ®(s) satisfies the condition of The-
orem 1. In the sequel, it will be shown that such Q(z) can
be obtained on the assumption of (A1)

Let

A(s) := dy(s)dn(s)dn(s) = [ [ (s — s:)™

1=1

(si # sj if i@ # j) then the condition of Theorem 1 for
®(s) becomes

A fonls) = mols)@( )} =0, (21

t=1,---,p;3=0,---,m; — 1.

Here, since (c’, A, b) is minimal d¢(s)dn(s) can arbitrarily
be chosen by appropriate choices of f and h, so that it
can be assumed that A(s) satisfies the following (B1).
(B1) On the assumption of (A1) A(s) and no(s) has no

common zeros.
Moreover, the delay duration 7" can be chosen so that the
following (B2) holds:
(B2) For different zeros si, s; (si # s;) of A(s)

e*SiT # efsz'
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It can be shown that on the assumptions (B1) and (B2)
there exists Q(z) with ¢ = 2n + n, — 1 which satisfies
(21), (The proof will be shown in the appendix.) Hence,
using the obtained Q(z) a deadbeat controller can be con-
structed. In particular, if A(s) has no multiple zeros the
condition (21) is represented as the interpolation condi-

tions:

Qe*T) = ZE((Z)), i=1,--,2n+n,. (22)

By the Lagrange interpolation theory Q(z) satisfying (22)
is given by

2n+4n,.
_ UO(Sj) L(Z)
Q) = Z no(s;) (2 —2)(dL(z;)/d2) | _, _.r

L(z) = (z— 21)(z — 22) -+ (2 — 22nim, ), 25 =97,

Let’s summarize the procedure to obtain a deadbeat
controller:
Step 1  Choose f, h and T so that (B1) and (B2) are
satisfied and df(s)di(s) is a stable polynomial.

Step 2 Find Q(z) such that the condition (21) is sat-
isfied.
Step 3 Using f, h and Q(z) obtained in Steps 1 and

2 construct a controller K(s) of (5).
Note. 1) Using K (s) obtained above the deadbeat set-
tling time ¢; of the tracking error e(t) is
tr <(2n+mn, — 1T.
2) The controller K(s) can be represented as

wo(s) +do(s)Q(2)
vo(s) — no(5)Q(2)

K(s) =
where
wo(s) = f'adj(sI — A —bf )h.

The condition (21) implies that zeros of r(s) are also poles
of K(s). This means that the so-called “internal model

principle” is satisfied in the deadbeat tracking system.
4. Examples

4.1 Example 1
Consider the following first-order system:
z(t) = —x(t) + u(?)
y(t) = =(t)
with the transfer function P(s) = 1/(s 4+ 1). In this case,
2n + n, — 1 = 2. For the step reference r(s) = 1/s a
deadbeat controller will be constructed.
Step 1: Let f = —1 and h = —2 so that ds(s)dn(s) =
(s+2)(s+3),and let T = 0.5.
Step 2: Q(z) is obtained as the Lagrange interpolation

polynomial:

L.5

step response

time

Fig.2 Simulation results of the example 1.

1.5

step response

0 0.5 1 15 2 25 3
time

Fig.3 Simulation results of the example 2.

Q(z) = 5.6300 — 1.801z + 0.17142%.

Step 3: Construct a deadbeat controller as an observer-
based realization.

The simulation results are shown in Fig. 2. The solid
line c is the step response for z(0) = 0, and the dotted
line is the one for 2(0) = 0.3. In both cases, the responses

settle completely to zero in
t=(2n+n, —1)T =1.0.
The solid lines a, b, d, e are the step responses for

T = 0.1,0.3,0.7,0.9, respectively. The corresponding

Q(z)’s are as follows:
a: Q(z) = 17.3922 — 16.9609z + 3.56872°,
b: Q(z) = 7.5114 — 4.1034z + 0.59202,
d: Q(z) = 4.8874 — 0.9448 + 0.057427,

: Q(2) = 4.5193 — 0.5397z + 0.20402°.

(¢

4.2 Example 2

Consider the following second-order system:

][ ]
l‘z(t) -2 -3 $2(t) 1

y(t) = z1(t)
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with the transfer function P(s) = 1/{(s+1)(s+2)} In this
case, 2n +n, — 1 = 4. For the step reference r(s) =1/s a

deadbeat controller will be constructed.

Step 1: Let
f’:[—10 —4 ],h':[—s —4]
so that

dy(s)dn(s) = (s +3)(s +4)(s +5)(s +6),
and let 7= 0.5.
Step 2: Q(z) can be obtained as the Lagrange interpola-

tion polynomial:
Q(z) = 92.2956 — 23.2829z + 3.17712°
—0.19392° 4 0.00422".

Step 3: Construct a deadbeat controller as an observer-
based realization.
The simulation results are shown in Fig. 3. The solid
’

line is the step response for xz(0) = [ 0 0 ] , and the

!
dotted line is the one for z(0) = [ 03 0 ] . The dead-

beat settling time is
2n+n, — 1)T = 2.0,

while the responses settle almost in ¢ = 1.5, because the

coefficient of z* in Q(z) is very small.
5. Concluding Remarks

It has been shown in this paper that a deadbeat track-
ing system can be constructed even for continuous-time
systems by using delay elements in the feedback controller
only on the assumption of the tracking condition (A1).

If some model error exists in the plant model the dead-
beat tracking would not be obtained. However, as men-
tioned in the note the deadbeat tracking system satisfies
the internal model principle, which implies that at least
“asymptotical” tracking will be achieved even if the model

error exists.
Acknowledgement

The authors would like to thank R. Kurosawa for his
valuable comments.
References

1) E. Nobuyama, S. Shin and T. Kitamori: Deadbeat Control
of Continuous-Time Systems, Proceedings of the Interna-
tional Symposium MTNS-91, 1, 191/196 (1992)

2) H. Kimura: Robust Deadbeat Control, Journal of SICE
Japan, 27-12, 1078/1084 (1988) (in Japanese)

3) O.J.M. Smith: Posicast Control of Damped Oscillatory
Systems, Proceedings of IRE, 45, 1249/1255 (1957)

4) K. Ando: On the Generalization of Posicast Control, Sys-
tem and Control, 25-6, 358/363 (1981) (in Japanese)

5) R. Kurosawa: Continuous Deadbeat Control, Transactions
of SICE Japan, 28-6, 680/689 (1992) (in Japanese)

No.1 2001

6) D.C. Youla et al.: Modern Wiener-Hopf Design of Optimal
Controllers, part II: The Multivariable Case, IEEE Trans-
actions on Automatic Control, AC-21-3, 319/338 (1976)

7) J.M. Maciejowski: Multivariable Feedback Design,
Addison-Wesley (1989)

8) C.H. Anderson: The Linear Differential-Difference Equa-
tion with Constant Coefficient, J. Mathematical Analysis
and Applications, 40, 122/130 (1987)

Appendix A. Proof of Theorem 1

For a € C let
T _ ,—aT —st
Bu(s,e” ") := / e*e™dt = 16—6, T>0
0 s—a
then
d* r
—sty __ _ k _at —st
dskGQ(s,e ) —/0 (—=t)"e*"e™""dt
(_1)kk' aT —sT : T] j
(k=0,1,---). Hence, let
k
ng)(s,e_“) = @ga(s, e ")
then 6% (s, 2) can be written as
60 (s,2) = 222 (A1)

fr(s)
ki ,
gr(s,2) = (=1)"k! {l — eaTzZ f—'(s — a)’}
j=0

fi(s) = (s —a)**

with
dj —sT .
Egk(ave )_07,7_07“'7]67
which can be verified directly.
Lemma 1. Suppose h(s, z) is a polynomial in both s

and z which satisfies

& —aT .

Eh(a,e )=0,7=0,---,v—1(a€C) (A.2)
with deg, h(s,z) < v. Then there exist polynomials (in
z) ¢j(2) (j=0,---,v—1) such that

v—1

peil > 80,2 (4.9)
deg, cj(z) < deg, h(s,z)— 1. (A.4)

Proof. Since deg, h(s,z) < v there exists polynomials
(in 2) &(2) (i=1,---,v) such that
M) _ ) )
(s—a)  (s—a)

From the condition (A.2) for j =0

co(e™h) =0,

s—a’

and hence ¢2(z) can be written as

e(z) = {3 (2)(~1)" (v — DIH(L - e*T2)
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where ¢} (2) is a polynomial in z with
deg, ¢ (2) < deg, h(s,2) — 1.
Since from (A.1) 65"~ can be written as

6((111—1)(3, Z) — (_1)1/—1(,0 — 1)'(1 — eaTZ)

(s —a)®
ro—1(8, 2)
(s —a)—1

for some r,_1(s, z) which is a polynomial in both s and z

we have
h(S, Z) _ 1 v—1
ey IO
1 1
cy—1(2) ci(2)
it 3 AT 4 G2 A.
(s —a)v—1 s—a (A-5)
where ¢} (z) (i =1,---,v) are polynomials in z.

Next, apply the condition (A.2) for j = 1 to (A.5) to

have
Cil;—l(@_aT) =0.
By the similar argument above we have

h(s, 2) _ cl(z)G((l"_l)(s,z)

(s—a) 7
+en 1 (2)88 7 (s, 2)
—03_2(2:) R c%ﬁ
(s—a)v—2 s—a
for some c7(z) (i = 1,---,v—1) which are polynomials in

z.
By repeating the similar argument above until j = v — 1
we have (A.3) and (A.4). 0
Proof of Theorem 1.

First, decompose (s, z) into the partial fractional de-

composition with respect to s as follows:

h1(57z) hP(Saz)
=2 4.4 B A.
(s,2) (s —s1)™ ot (s —sp)7» (4.6)
where h;i(s,z) (i =1,---,p) are polynomials in both s and
z. Then from (13) h;(s, z) satisfies
a7

Ehi(si,e_sﬁ) =0,7=0,---,m; — 1,

and every term on the right-hand side in (A. 6) is strictly
proper in s, because %(s,z) is so. This implies that
hi(s,z)/(s — s;)™ satisfies the condition of Lemma 1.
Hence, 9 (s, z) can be represented as

p m;—1

Wis,2) =Y D cij(2)65)(s,2)

i=1 j=0

where ¢;j(z) are polynomials in z with
deg, ci; () < deg, (s, 2) — 1.

By letting

q—1

cij(z) = Zcijkzk (g = deg_ B(s,2))

k=0

we have the following

p mi—1qg—1

Ws,e™ M) = DN D eine 0D (5,77

i=1 j=0 k=0

qT
= / to(t)e *'dt
0

where
=30 YT cin(RT — t) et (R,
o (t) KT <t<(k+1)T;k=0,---,q—1
=0,qT <t.

This shows 1(s) is a finite Laplace transform of to(t).

i

Appendix B. Proof for Existence of Q(z)

Let
G) _ Pwols) () _ dno(s)
L N
iy, — Q") & Q(z)
D(p=sTy — T ) AU () =
Q (e ) - dSJ b Q (Z) dZJ
then

QU™ ) = (-1)QY(2)

Hence, the condition (21) can be represented as

z2—e—sT

V. = N.¥Q. =0 (B.1)
where

[ v, vo(si)

Ve = : y Veii= : )
| Voo o M (s1)
[ N 0

Ne = )
Lo Nep
[ no(si) 0

N, := : ;
| ng" T (s) e mo(si)
[ Q. Qo(e™*")

Qeo= | |, Qei:= : ,
| Qe o e T)
[ v, 0

U= )
0 v,
[ 1 0

U, =
| 0 (=T)mi~!

Now, let

Q(z) =Qo+Qiz+ -+ Quz" (M =2n+n, —1)
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Qo A
Q.=2 , 7 = (B.2)
Qum Zp
where
Z; =
0 1 oz - Mt
(zi := e~ It is known that Z is a generalized Vander-

monde matrix and nonsingular if z; # z; for ¢ # j. Hence,
Z is nonsingular from the assumption of (B2). Moreover,
Ny is also nonsingular from the assumption of (B1), so

that we have

Qo
=z "IN,

Qum

This gives Q(z) of degree M (= 2n+n, —1) which satisfies
(21). 0
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