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Plant Identification and Synthesis of Optimal Control by Use of
Neural Network with Mixed Strcuture’

Yasuhi YOKOYAMA™*, Takehisa KOHDA™ and Koichi INOUE®*

In this paper, firstly we propose a neural network with a mixed structure, which consists of multilayer and

recurrent structure, for learning the dynamics of a nonlinear plant. A neural network with a mixed structure can

learn time series, therefore, it can learn the plant dynamics without knowing the plant order.

Next, we consider the optimal control synthesis problem using the neural network with a mixed structure,

which has learned the plant dynamics completely. Procedures are as follows: (1) the neural network is expanded

into an equivalent feedforward multilayer network, (2) it is shown that the gradient of criterion functional to be

optimized can be easily obtained from this multilayer network, and then (3) the optimal control is generated by

applying any of the existing nonlinear programming algorithms based on this gradient information.

The proposed method is successfully applied to the optimal control synthesis problem of a nonlinear coupled

vibratory plant with a linear quadratic criterion functional.

Key Words: neural network, optimal control synthesis, multilayer network, recurrent network, nonlinear plant

1. Introduction

Since Back Propagation algorithm, a learning method
for multilayer neural networks, proposed by D.E. Rumel-
hart et al (1986)"), various researches have been per-
formed on the application of neural networks (N.N.’s) in
various fields. In the field of control engineering, studies
on control systems using N.N.’s in various ways have been
reported 2.

To control a plant, the construction of a mathemat-
ical model representing the plant dynamics, in other
words, the identification of the plant, must be performed.
Then, the control system is synthesized using an appropri-
ate control theory for the obtained mathematical model.
Whether the plant can be identified appropriately, or the
mathematical model can represent the plant well, has
much effect on the performance of the control system con-
structed based on it.

The plant identification is generally based on the inves-
tigation of characteristics of plant components. However,
in case no information is available for the plant charac-
teristics, the identification must be based on only input-
output response data of the plant. In practical situations,

this condition occurs often. Some assumptions on the

T This paper was presented at the 1st Intelligent System
Symposium (1991-10).
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plant are necessary to obtain a mathematical model us-
ing only input-output data of the plant. In many cases,
the linearity of a plant performance or the plant order
is usually assumed for the identification. That is, based
on the assumption: ”"the plant characteristic can be rep-
resented by a linear X-th order differential equation”, its
parameters are obtained from input-output response data.

Using the property of a multilayer N. N. that it can
learn nonlinear mapping, studies have been performed on
the use of the N. N. that has learned the plant dynam-
ics as a plant model of the control. The study® shows
that the linearity assumption in the identification can be
removed, and an effective control can be obtained for a
plant with a strong nonlinear property.

In this paper, firstly, a N.N. with a mixed structure
is proposed that can learn the time series. For N. N.
with a mixed structure, a similar learning algorithm to
Back Propagation algorithm is given. N. N. with a mixed
structure can learn the time series directly from the input-
output response data of the plant, and do not require the
plant order. Then, as an example of control using N. N.
with a mixed structure learning the plant dynamics as a
plant model, a solution method is given that can solve
the optimal control problem as a nonlinear programming

problem.
2. N. N. with Mixed Structure

2.1 Problems in Multilayer N. N.

Multilayer N. N.’s can learn only input-output relation

such as mapping. In applying N. N.’s to the control, this
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Fig.1 Conventional method of learning plant dynamics

property often causes a problem. Especially for the con-
trol of plants that can monitor nothing but displacement,
a typical problem of this kind arises. In using a multi-
layer N. N. to learn the dynamics of such a system, time
delay elements or derivative elements are conventionally
applied as shown in Fig. 1, where output data collected
some sampling time steps ago or the derivative of out-
put data are used as a feedback to N. N.. For this kind
of method to hold, output data sampled at least N time
steps ago or N-th order derivative must be utilized for
the plant with N-th order. Here, an inconsistent problem
arises that its plant order must be given for a plant whose
dynamics must be identified.

2.2 N.N. with Mixed Structure

To solve problems described in the previous section, in-
stead of installing an additional element that can deal
with time property, N.N.’s by themselves should be able
to learn time property in their internal mechanism. N.N.’s
with interconnected networks can deal with time series
data. Therefore, a N. N. as shown in Fig. 2 is proposed,
which has a multilayer structure and whose hidden layer
has recurrent connections. N.N.’s with this structure are
called N.N.’s with a mixed structure. A N.N. with a mixed
structure has the same processing mechanism as a multi-
layer N.N., where activation value of each unit at input,

hidden, and output layers are calculated sequentially as

Hidden Units

Fig.2 Neural network with mixed structure

well as synchronously.
For a N.N. in Fig.2, a unit at the input layer has the
following activation value determined from an external in-

put.
Te(t) = u(?) (1)

Then, a unit at the hidden layer receives input net s, (t),
the sum of output signals from the input layer and signals
from the hidden layer one time step ago through recurrent
connections, and calculates its activation value H;(t) as

follows:
netn; (1) = ajpup(t) + > bjHi(t—1) (2)
k=1 =1

H;(t) = fu(nets, (1)) ®3)

A unit at the output layer receives output from hidden
layer as input neto, (t), and calculates its activation value
as output x;(t) of the entire N.N.:

L4

netoi (t) = Z Cij H]‘ (t) (4)

zi(t) = Oi(t) = fo(neto, (1)) (5)

In this way, by dividing units based on the layer and
calculating activation values of units at each layer syn-
chronously, the input-output relation of the entire N.N.

can be obtained as:

T m

z;(t) = fo Zciij Zajkuk(t)

ji=1 k=1

+ ) b Hi(t — 1) (6)



T.SICE VolE-1

2.3 Learning Algorithm for N.N. with Mixed
Structure

In considering a learning algorithm for any N.N.| it is
necessary to obtain the gradient of an error criterion with
respect to its connection coefficients. For this purpose,
two types of algorithms are considered.

As demonstrated by Rumelhart et al®, for a general
recurrent N.N. such as a N.N. with feedback loops, there
is a feedforward multilayer N.N. with identical behavior
over a finite period of time. Thus, the equivalent mul-
tilayer N.N., which is transformed from a N.N. with a
mixed structure, can learn the system dynamics over a fi-
nite period of time by Back Propagation algorithm to give
the gradient of the error criterion. This method is effec-
tive if plant dynamics over a finite period of time or some
input-output data are available, which can be considered
suitable as an off-line learning algorithm.

For the direct solving method using the derivative of
a composite function, other than a similar calculation
method to Back Propagation method, the use of simul-
taneous equations of derivatives of input value with re-
spect to connection coefficients can give the gradient of
the error criterion with respect to connection coefficient.
Here, the derivatives of input with respect to a connection

coefficient are defined as:

Bira(t) = 2252, ) = 7

Using the similar error signals to a feedforward multilayer

N.N. defined as:
bo, (t) = fo' (neto, (t))

Onet g, (t)
Oapq

OE, (1)
Oz (t)

(3)

bu; (1) = fu' (netw, (£) D o, (H)eis 9)

the gradient is calculated as:

O8-0) — o, (11, (0) (10)
OB = 3 b, ) By (1)
) = S, () A1) (12

and, simultaneous equations are given as:

ijq(t) = Hq(t - 1)6171’

+ ) bjufu' (netm(t —1))Buyg(t—1)  (13)

=1
Aqu(t) = ﬂq(t - 1)6pj

+ ) b fu' (netm(t — 1)) Aipg(t — 1) (14)

=1
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This calculation method is called Simultaneous Error
Back Propagation Method 4), which can be considered as
one of the most powerful methods as a calculation algo-

rithm of gradient for an off-line learning.

3. Learning of Plant Dynamics Using
N.N. with Mixed Structure

3.1 Plant Identification

When some control system should be installed in a
plant, the designer must understand the plant dynamics
to make a mathematical model. This action to learn the
plant dynamics is called ”identification of plant”. Firstly,
by investigating plant components and its environments, a
mathematical model of the plant is constructed. However,
the plant model can be rarely constructed only through
this process. If the plant model cannot be constructed,
the designer must estimate a mathematical model based
on the input-output data of the plant. To construct a
mathematical model from the input-output data, some
assumptions are usually necessary.

For example, the linearity of the plant dynamics is
among most common assumptions, which assumes that
the input-output relation of a plant can be represented
in terms of linear differential equations or linear algebraic
equations. If the range of variations in an input-output
relation is narrow, the plant often shows the linear perfor-
mance. But, many plants have nonlinear plant dynamics,
and show nonlinear performance for a wide range of varia-
tions in their input-output relation. Therefore, the use of
a mathematical model under the linear assumption often
causes a problem.

On the other hand, the plant order is often assumed.
That is, it is assumed that the plant is governed by some
specific order of differential equations, or the plant out-
put at the present time is affected by the input and output
over a certain period of time. This assumption causes a
serious problem, because such an assumption is based on
the experience and subjective judgment of the designer.

3.2 Application of N.N. to Plant Identification

N.N.’s can learn the nonlinear plant dynamics. Using
this property, many studies have been done on the iden-
tification of nonlinear plant dynamics, in other words,
making N.N.’s learn the nonlinear plant dynamics. Us-
ing a N.N. as a plant model, the linear assumption in
the identification can be removed. However, since feed-
forward multilayer N.N.’s with their established learning
algorithm have been used, the learning method as shown
in Fig. 1 must be applied for the plant identification. But,

on the other hand, using a N.N. with a mixed structure,
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the plant dynamics can be learned simply as a temporary
relation between input and output data without feedback
of plant output data. Thus, the assumption of plant order
in the plant identification can be removed.

3.3 Example of Learning Plant Dynamics

As an example of nonlinear plant, consider a hypotheti-
cal second order nonlinear vibration system obtained from
Rayleigh equation representing a typical nonlinear vibra-

tion system.

[Plant A]
#1 4 2.581 — 49 + 0325 +0.821 — 0322 = 0 (15)
iy — 21 4 2@+ 0.2d5 — 0221 + S22 = w

This system is asymptotically stable at steady point(z1 =
o = 0)(1). Further, since a N.N. with a mixed structure
represents a discrete system, the subject system is trans-
formed into a discrete system with sampling time equal
to 0.1.

Since plant A has 1 input variable and 2 out-
put variables, a N.N. with a mixed structure used
in this example has 1 input unit, 2 output units,
and 15 units at its hidden layer. As the learn-
ing method, the off-line learning with 500 sampled
data is applied with BFGS(Broyden-Fletcher-Goldfarb-
Shanno) method % as a gradient method. Using in-
put time series {u(0),---,%(500)} and output time se-
ries {z1(0),-- -, x1(500)} & {z2(0),- - -, z2(500)}, the error

function is defined as:
500

E=> {(@()—#:1(1))° + (22(t) — 22()°}

Using BFGS method, the error function is to be decreased
so that its value is less than sufficiently small specific value
€. This procedure is called one batch of off-line learning
in this paper. The off-line learning is applied, because
quasi Newton method or method of conjugate gradients
does not work well in on-line learning. Input signals for
learning is random step signal as shown in Fig. 3. Figure
4 shows how the error function decreases as the off-line
learning proceeds.

Let N.N.1 denote a N.N. which learns off-line once with
e = 0.001 using 500 sampled data, and let N.N.2 denote
a N.N. which learns off-line twice. To investigate how
well these N.N.’s learn the plant dynamics, examine the
frequency response for each N.N.. Figure 5 shows the fre-

quency responses of 1 of the plant, N.N.1 and N.N.2 to a

(1) Transforming Eq. (15) into a vector differential equation
such as ‘i—f = Az + f(z) where the first term denotes a linear
part and the second term denotes a nonlinear part, the real
part of any eigenvalue of A is negative and ||f(z)|| — 0 when

||z|| — 0. Thus, point & = 0 is stable.
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sine wave input signal with amplitude = 0.3. From Fig. 5,
it is clear that the difference between the plant and N.N.’s
appears more clearly in high-frequency area rather than
low-frequency area. And, naturally, N.N.2 is more con-
sistent with the plant response than N.N.1. Thus, when
a N.N. with a mixed structure learn a plant dynamics,
the input-output responses in low-frequency area are eas-
ier to learn, while those in high-frequency area are more
time-consuming. Thus, it is shown to be useful to use
high-frequency response as the criterion to evaluate the

process of learning.
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4. Determination of Optimal Control Input

4.1 Optimal Control Problem

It is proven that using the N.N. with a mixed structure
that has learned a plant dynamics, the optimal control
problem for the plant can be solved. Generally, the opti-
mal control of a nonlinear plant can be solved as follows.
1. Construct a mathematical model of a plant.

2. For the mathematical model obtained at the previous
step, formulate an optimal control problem and solve it
using the calculus of variation or differential dynamic pro-
gramming method.

3. Control the plant using the optimal control input ob-
tained.

For the plant whose mathematical model is exact, the
application of such a optimal control procedure causes
no problem. However, if a mathematical model is con-
structed under an uncertain condition, this method will
cause a severe problem. Generally, the exactness of a
mathematical model plays an important role as the con-
trol becomes complex. In this sense, the optimal control
requires a high accuracy of the mathematical model.

4.2 Problem Formulation

Consider the optimal control problem of a plant repre-
sented by the following difference equations:

[Problem *]
Assume that the plant to be controlled is represented by:

Z(0) = Zo
), #(t —1),#(t - 2),--) (16)
for t=1,---,T

8y
—~

o~
&

Il

Let the criterion functional represented as follows in terms
of Z(t) and 4(t):

B = E (&), d(t)) (17)
Obtain the optimal time series of control inputs that min-
imize E:

Uopt(t) t=1,---,T (18)

Here, the different point from the conventional optimal
control problem is that the difference equation, Eq. (16),
representing the plant dynamics is unknown. Instead, a
N.N. with a mixed structure which has learned the plant
dynamics is given.

4.3 Expansion of N.N. with Mixed Structure

into Equivalent Feedforward Multilayer
N.N.

Before solving the optimal control problem, consider
a feedforward multilayer N.N. as shown in Fig.6. This
N.N. is a N.N. obtained by the same type of multilayer
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Fig.6 Equivalent multilayer N.N. representation of N.N. with
mixed structure

expansion from time 0 to time T, where input units at
the input layer are connected to a uniform input source
by weights @(1),---,d(T), sequentially. The outputs at
the output layer of the N.N. in Fig.6 are proven to be
equal to time series of outputs Z(0),---,Z(T) given time
series of input @(1),---,d(T).

4.4 Determination Method of Optimal Control

Input

Using the feedforward multilayer N.N. in Fig. 6, the so-
lution of [Problem *], that is, the optimal control input
can be obtained.

Error Back Propagation method can be considered as
the algorithm to obtain the gradient of the error criterion
with respect to weights so that the error criterion can be
minimized. Though error functional F is usually set as
the sum of square errors, any form of function for £ can
be assumed if F is a function of output z;(t). Now, as-
sume that for a general feedforward multilayer N.N., units
at its output layer receive the following signal as the error
back propagation signal:

OF (2(r))

b,(1) = 1b (neto, (1)) 5,703 (19)

In Back Propagation method, let ¢; denote an error signal
feeded back to unit ¢ of the hidden layer, and let a; de-
note active value (or output) of unit j which sends signal
to unit ¢ through a connection with weight w;;. Then,
the derivative of error function F(Z(7)) with respect to

weight w;; is represented as:
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IE (#(1))

= bia; 20
aw” aj; ( )
Here, the error function is allowed to have weights explic-
itly in its form. For example, consider the following error

function:
E=FE(&(r), wij) (21)

In this case, according to the formula for the derivative of

a composite function, the following equation holds.

OF (&(1),wi;) oFE -
20vi) = 22 (5w
OF dxi(t)

+ Z@ml(t ) Ow; (22)

The first term in the right hand side of Eq. (22) shows

the partial derivative of error criterion E with respect to

w;j which is explicitly included in F, and can be obtained

easily. When an error back propagation signal to a unit

at the output layer is given as:

OF (#(1), wi;)
Ox;(t)

the second term can be obtained as follows using error

80, (t) = fo (neto, (t)) (23)

signal é; given by Error Back Propagation method:

oF Qa:z(t)
Gwz(t) 811)-;]‘

= é;a; (24)

Thus, the derivative of error function with respect to
weights represented by Eq. (22) can be obtained.

In the N.N. of Fig. 6, (%) is set as weights to input layer.
Thus, the error criterion functional in [Problme *] can be
represented in terms of weights and outputs of the N.N.
in Fig. 6. Therefore, using the result obtained above, the
derivative of criterion functional with respect to u,(7) is

given as:
oF or R
8up(7') - Gup(T) (u(T)vm(t))

OFE Ozt
+ Z Z Ox; GUPET)) (25)

Let Slp(T) denote the error signals obtained at the input

layer by Back Propagation method when the following er-
ror signals 60, (t) is given at the output layer of the N.N.
in Fig. 6:

- oF
501', (t)

EE0) fo (neto, (t)) (26)

Using error signal é;,(7), the second term of Eq. (25)

reduces to:

>3 e e @

Thus, the derivative is given by:

or (#(r), #(1)) + bip (7) (28)

Oup (1) 8“p ( )

No.1 January 2001

This equation shows that for any form of criterion func-
tional, its derivatives with respect to parameters can be
obtained through simple arithmetic calculation and Error
Back Propagation method. Using the obtained deriva-
tives, the input signal that minimizes the criterion func-
tional can be obtained. That is, the optimal control prob-
lem can be solved for a general criterion functional given
by [Problem *].

4.5 Calculation Example

Using N.N.1 and N.N.2 obtained in Section 3 that have
learned the dynamics of plant A, the solution obtained for
the optimal control problem is shown below. The optimal
control input is obtained for the case where the initial

state is given as:

21(0) =04 25(0) =10

#1(0) =0.0 5=0.0 (29)

and the criterion functional is given as:

B(Z(t), Z2(t), 4(1))

100

=) {z1(r)* + 22(r)” +0.2u(r)°}

+100.0(z1(100)* + :2(100)?) (30)

If eq. (15) representing the plant dynamics is given,
the optimal control input can be obtained using differ-
ential dynamic programming method ® (DDP). Figure 7
shows the optimal control inputs obtained using N.N.1,
N.N.2, and DDP. It is clear from this figure that the in-
put obtained by N.N.2 is the same as the input obtained
by DDP, but the input obtained by N.N.1 has a little de-
viation from that obtained by DDP. The optimal value of
the criterion functional for each case is obtained as: 6.70
for N.N.1, and 6.68 for N.N.2. Thus, the solution obtained
by N.N.2 is better. Similarly to the solution obtained by
other methods, the quality of the solution obtained by
a N.N. with a mixed structure depends on the quality
of the mathematical model obtained in the identification
process.

BFGS method is applied as a gradient method to de-
crease the criterion functional. Figure 8 shows the con-
vergence property of the criterion functional, while Fig-
ure 9 shows the convergence property of the correspond-

ing control input.
5. Conclusions

By the use of N.N.’s with a mixed structure in the plant
identification, assumptions on the linear property of the
plant and the plant order becomes unnecessary. Further,

using the N.N. with a mixed structure that has learned the
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plant dynamics as the plant model, the optimal control
problem can be solved. And, simulation results confirm
that the proposed method can be applied to nonlinear
plants, can learn the plant dynamics, and can obtain the
optimal solution.

Learning of the plant dynamics thorough the conven-
tional feedforward multilayer N.N. can obtain only a func-
tional relation between plant input space and output
space. If the functional relation between input and output
is stored as a teaching signal, the learned N.N. is essen-
tially equivalent to the functional representation of the
entire function by interpolation of outputs corresponding

to representative inputs in the input space. However, us-

ing a N.N. with a mixed structure in learning the plant
dynamics, not only the input and output relation, but
also its relation in the time domain can be obtained. The
internal mechanism of a N.N. with a mixed structure can
interpret and learn the relation in the time space. That is,
only the input-output relation given as a teaching signal
is sufficient for a N.N. with a mixed structure to learn its
temporary relation.

Making a N.N. learn a temporary relation is essential
for the control requiring the time concept. And, the use
of N.N. with mixed structure could make it relatively easy
to obtain the optimal control input which was considered
difficult for the conventional N.N..

As points to be considered further in the proposed
method, the following problems exist. Firstly, more com-
putation is necessary compared with the conventional
multilayer N.N., because the structure of a N.N. with a
mixed structure is more complex. Secondly, a plant still
exist whose dynamics N.N.’s with a mixed structure can-
not learn. For a N.N. with a mixed structure to learn any
plant dynamics, introduction of units which can calcu-
late the sum of products may be necessary. However, this
introduction will make the structure of a N.N. more com-
plex, and also make it difficult to verify its effectiveness

in using computers of Von Neumann type.
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