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The Relationship of a Space Robot’s Hand Trajectory

and Its Attitude Variation

Katsuhiko Yamada∗ and Kazuo Tsuchiya∗∗

The subject of this paper is a space robot that has a manipulator arm mounted on its body, which is an artificial

satellite. Because the attitude of the space robot varies with the arm motion, it is necessary to understand the

relationship of the arm trajectory and the attitude variation. In this paper, we evaluate the attitude variation and

obtain a hand trajectory that minimizes it for the simple case where the arm mass is concentrated at the hand.

We study here two coordinate systems of the hand: an inertial frame and a satellite-fixed frame. For the inertial

frame, the attitude variation is proportional to the area surrounded by the hand trajectory and the origin. For

the satellite-fixed frame, after the coordinate system is transformed, the attitude variation is also proportional to

the area surrounded by the hand trajectory and the origin. In both cases, the hand trajectory that minimizes the

attitude variation is approximated by a hyperbola. Numerical simulation is executed to examine these results.
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1. Introduction

The subject of this paper is an artificial satellite with

manipulator arms, which is effectively a space robot. A

space robot differs from a robot fixed on the ground be-

cause its satellite body is moved by the motion of its ma-

nipulator arm. In this paper we consider the approach of

setting the hand trajectory to reduce the attitude distur-

bance of the satellite as a measure to decrease the satellite

attitude variation caused by the arm motion.

Arm motion trajectory has already been studied with

satellite attitude variation taken into consideration 1)∼6).

Vafa et al. proposed a method to obtain the arm motion

trajectory from a disturbance map (DM), which shows

the directions in which the satellite attitude disturbance

is minimized or maximized in the arm joint space 1). This

method was extended to Enhanced DM, a method that

shows the disturbance 0 curve and the size of maximum

disturbance. Enhanced DM was used to obtain the fuel’s

minimum trajectory 2). Yamada et al. obtained the hand

trajectory from an optimum control problem by simpli-

fying a space robot model 3). Nakamura et al. proposed

a trajectory generating method, so called Bi-Directional

approach, to obtain the satellite’s final attitude and the

arm’s final joint angle simultaneously 4). In addition,

Nenchev et al. defined a matrix that expresses a map-

ping to the hand velocity, without influencing the satel-

lite attitude variation, as a Fixed-Attitude-Restricted Ja-

cobian Matrix. They proposed obtaining the hand tra-
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jectory from a singular value decomposition of this ma-

trix 5). In the meantime, although it is slightly different

from the case to obtain the arm trajectory, Vafa et al. 1)

and Longman 6) proposed controlling the satellite attitude

by repeating small periodic motions of arm joint angles.

All of these methods emphasize the trajectory design

method and/or the satellite attitude control method, and

by designing the arm trajectory in such a way, they in-

tend to reduce the satellite attitude variation or control

the satellite attitude as desired. However, the trajectory

obtained by such techniques cannot be approximated as

a simple curve. Therefore, it might be difficult to grasp

the physical relationship between the arm trajectory and

the satellite attitude variation from the results. On the

other hand, in order to design the arm trajectory for a

space robot, it is important to intuitively understand the

relationship between the arm trajectory and the satellite

attitude variation.

In this paper, we conduct more basic study on the rela-

tionship between satellite attitude variation and arm mo-

tion trajectory by using a simplified space robot model.

First, the differential relationship between the arm tra-

jectory and the attitude variation derived from the mo-

mentum/angular momentum conservation law is shown

in an integrated form. Then, the hand trajectory, which

decreases the square integration of the satellite attitude

variation along the trajectory, is given in a simple curve.

These results describe a simple relationship between arm

trajectory and satellite attitude variation, and they are

useful in understanding the basic properties of the space

robot. At the same time, when the arm’s payload mass
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is greater than the mass of the arm, these results hold

approximately. Therefore, they are useful as the first ap-

proximation for designing the optimum hand motion tra-

jectory.

In this paper we assume that the motion of the space

robot is restricted in a plane and that no external forces

are exerted on the space robot during the arm motion;

furthermore, we assume that its momentum and angular

momentum are conserved at 0. Based on these assump-

tions, we derive in Section 2 the satellite attitude varia-

tion when the arm moves from one point to another in

the inertial coordinates system (inertial frame). The next

step is to simplify the model while assuming that only

the hand mass is dominant over other parts of the arm

and to derive the hand trajectory that reduces the satel-

lite attitude variation analytically. In Section 3, a similar

study is performed on the case where the hand moves

from one point to another in the satellite-fixed coordi-

nates system (satellite-fixed frame) instead of the inertial

frame. When the arm is used to capture a floating object

in space, it is necessary to move the hand in the inertial

frame. Conversely, for insertion/removal of the module

attached to the satellite, it is necessary to move the hand

in the satellite-fixed frame. Therefore, for a space robot,

there are two task frames that basically differ from each

other. In this paper, we study the differences between

these two frames from the point of the satellite attitude

variation. In Section 4, a feasibility study of the obtained

trajectories for a manipulator arm is described. Finally, in

Section 5, numerical examples of these results are shown.

2. Inertial Task Coordinates

2. 1 Modeling

We first consider the case where the hand task coordi-

nates is an inertial frame. It is assumed that the space

robot moves in a plane and that the momentum and the

angular momentum during the arm motion are conserved

at 0. Consider the case where the space robot has a ma-

nipulator with n degrees of freedom, the satellite is defined

as body 0, and the arm links are specified as body 1 to

body n in order from the satellite side. The origin O in

the inertial frame is the CM (center of mass) of the en-

tire space robot, and the following symbols are defined for

each body:

mi : mass of body i

ii : moment of inertia around the CM of body i

mc : total mass of the space robot

xi, yi : position of the CM of body i in the inertial

frame

θi : rotation angle of body i in the inertial frame

mm : total mass of the arm

xm, ym : position of the CM of the arm in the inertial

frame

Since the origin of the inertial frame is the CM of the

space robot, the following relations hold by integrating

the momentum conservation law.
n∑

i=0

mixi = 0,

n∑
i=0

miyi = 0 (1)

In the mean time, since the angular momentum about the

origin of the inertial frame is conserved at 0, the following

relation holds
n∑

i=0

{iiθ̇i +mi(xiẏi − yiẋi)} = 0 (2)

where ˙ expresses the time differentiation. Eliminating x0

and y0 from (1) and (2), we obtain

i0θ̇0 +
m2

m

m0
(xmẏm − ymẋm)

+

n∑
i=1

{iiθ̇i +mi(xiẏi − yiẋi)} = 0 (3)

2. 2 Satellite Attitude Variation

From (3), dθ0 is expressed by the following differential

form.

dθ0 = − m2
m

i0m0
(xmdym − ymdxm)

−
n∑

i=1

{
ii
i0
dθi +

mi

i0
(xidyi − yidxi)

}
(4)

It is a property of the system, whose angular momentum

is conserved at 0, that time can be omitted by regarding

it as an auxiliary variable. In such a system, the satel-

lite attitude variation depends only on the arm’s spatial

trajectory and does not depend on the arm’s time trajec-

tory. Therefore, only the spatial trajectory of the hand is

considered in the following study.

Consider that the hand moves from A to B, as shown

in Fig. 1. If the satellite attitude variation is specified as

∆θ0, ∆θ0 can be expressed as the sum of the influence of

the movement of the arm’s CM and that of each link’s CM

from (4). Then, if we look at the first term of the right

side of (4) for instance, this influence can be expressed as

follows. As the hand moves from A to B, the CM of the

arm also moves from C to D. Consider the case where the

CM of the arm moves on the line from D→ O (the origin)

→ C. The first term of the right side does not contribute

to the satellite attitude variation because xmdym−ymdxm

becomes 0 onD → O and O → C. Therefore, the attitude

variation when the CM of the arm moves from C → D

is equal to that when the center of the arm’s mass moves
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Fig. 1 Motion of a space robot

along the loop (i.e. C → D → O → C). The attitude

variation along the loop is expressed as follows by Stokes’

theorem

− m2
m

i0m0

∫
∂cm

(xmdym − ymdxm)

= −2m2
m

i0m0

∫
cm

dxm ∧ dym = −2m2
m

i0m0
S(cm) (5)

where ∧ is the exterior product, cm is the domain sur-

rounded by C → D → O → C (fan-shaped domain

OCD), ∂cm is its boundary, and S(cm) is its area. That

is, the contribution of the first term of the right side to

the satellite attitude variation is in proportion to the cm

area. This area has direction, and its positive direction is

when the CM of the arm moves counterclockwise around

the cm.

We will apply this to each link when the hand moves

from A to B. Defining ci as the domain surrounded by the

motion trajectory of the CM of link i, the line connecting

the starting point to the origin, and the line connecting

the end point to the origin, we can express the satellite

attitude variation ∆θ0 as follows

∆θ0 = −2m2
m

i0m0
S(cm) −

n∑
i=1

(
ii
i0

∆θi +
2mi

i0
S(ci)

)
(6)

where ∆θi is the attitude variation of link i. That is, the

satellite attitude variation can be expressed as the linear

combination of the attitude variation of each link and the

area of the domain surrounded by the CM of each link

and that surrounded by the CM of the arm.

2. 3 When Arm Mass is Concentrated at the

Hand

Equations (4) and (6) show the relationship between

the arm motion and the satellite attitude variation for the

space robot during a planar motion. However, it is not

easy to determine the hand trajectory from these equa-

tions. We studied in detail the hand trajectory and the

satellite attitude variation while considering that the arm

mass is concentrated at the hand. Although the arm mass

is not actually centered on the hand, when the arm takes

hold of a large-mass payload, it can be regarded as an

approximation of the case. When the hand mass is desig-

nated as m1 and its position as (x1, y1), and if the other

arm mass is ignored, (4) becomes as follows.

dθ0 = −µ(x1dy1 − y1dx1), µ =
m1mc

i0m0
(7)

Then, the plane where the hand moves is converted to the

following plane (x, y):

x =
√
µx1, y =

√
µy1 (8)

Substitution of (8) into (7) yields

dθ0 = −(xdy − ydx) (9)

If the same discussion is tried on (9) as in the previous

clause, the satellite attitude variation in this case equals

−2 times the area of the domain (with direction) sur-

rounded by the hand motion trajectory on the (x, y)-plane

and the origin. Therefore, if this domain is defined as c,

it holds

∆θ0 = −2S(c) (10)

Furthermore, if the hand moves from A to B in the

(x, y)-plane as shown in Fig. 2, the area of the domain

surrounded by the hand motion trajectory and line AB

should be closer to the area of �OAB in order to decrease

the final attitude variation of the satellite. If the length

of the hand trajectory is restricted, the desirable trajec-

tory would be the one that surrounds a domain with the

maximum possible area, and the problem to obtain the

trajectory would be reduced to an isoperimetric problem.

Therefore, under the condition of the constant trajectory

length, the arc of a circle, which goes through the start-

ing point and the end point, is considered a candidate

trajectory to decrease the final attitude variation of the

satellite.

If we consider the case where the satellite attitude is

controlled during the arm motion, it is desirable to have

a trajectory that can decrease the satellite attitude vari-

ation as much as possible during the arm motion. This

trajectory can be obtained by A → O → B in Fig. 2,

although it is not a realistic trajectory. Thus, we con-

sider minimizing the following integration, which takes
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Fig. 2 Hand trajectory in (x, y)-plane

the length of trajectory into consideration∫ B

A

ds, ds2 = dx2 + dy2 + a2dθ20 (11)

where a is an arbitrary parameter, and dθ0 is given by

(9). In the case of a = 0, the straight line from A to B

obviously becomes a solution. Since ds2 in (11) is posi-

tive, it becomes a Riemannian metric. Consequently, the

trajectory from A to B can be obtained as a geodesic on

the manifold with this metric.

If the independent variable is specified as xi and the

Riemannian metric is specified as

ds2 =
∑
i,j

gijdx
idxj (12)

the geodesic equation is generally obtained as follows 7)

d2xi

ds2
+

∑
k,l,m

1

2
gim

(
∂gmk

∂xl
+
∂gml

∂xk
− ∂gkl

∂xm

)
dxk

ds

dxl

ds

= 0 (13)

where gim is a tensor that satisfies
∑

m
gimgmj = δi

j (unit

tensor). If (9) and (11) are substituted into (13) and the

polar coordinates (r, φ) are applied as the independent

variables instead of (x, y), the geodesic equation becomes

as follows.

d2r

ds2
− r(1 + 2a2r2)

(
dφ

ds

)2

= 0 (14)

d2φ

ds2
+

2(1 + 2a2r2)

r(1 + a2r2)

dφ

ds

dr

ds
= 0 (15)

Meanwhile, the metric expression in the polar coordinates

becomes as follows.

ds2 = dr2 + r2(1 + a2r2)dφ2 (16)

The following relation is obtained from (15).

r2(1 + a2r2)
dφ

ds
= γ = constant (17)

Therefore, combining the above and the expression (16)

produces an equation as follows.

∣∣∣dr
ds

∣∣∣ =

√
1 − γ2

r2(1 + a2r2)
(18)

Or, by eliminating ds from those relations, the following

relation is obtained∣∣∣∣ drdφ
∣∣∣∣ =

r

γ

√
(1 + a2r2) {r2(1 + a2r2) − γ2} (19)

d2r

dφ2
=
r(1 + 2a2r2)(−γ2 + 2r2 + 2a2r4)

γ2
(20)

Although the hand trajectory cannot be derived as an el-

ementary function from these equations, it is possible to

understand the trajectory property to some extent. For

instance, since dφ/ds is a fixed sign, either of the hand

motion φ, or the satellite attitude variation θ0 shows a

monotonous increase while the other shows a monotonous

decrease. Moreover, if the curvature is specified as κ, it

becomes as follows.

κ = − 2a2(1 + a2r2)|γ|
{(1 + a2r2)2 − a2γ2}3/2

< 0 (21)

Therefore, the trajectory resides inside �OAB. From this

result and the meaning of a, it is understood that as a in-

creases, the trajectory becomes asymptotically A→ O →
B.

Now, we try to approximate the trajectory by using a

simple curve with such a property. As the 6th power term

(the highest power term) and the 4th power term of r in

the square root of (19) are both positive, it is assumed

that there is no large difference in solution behavior even

though the 6th power term is omitted. In this case, this

differential equation can be solved as follows

r2 =
2γ2

1 − a2γ2 +
√

1 + 6a2γ2 + a4γ4 cos{2(φ − φ0)}
(22)

where φ0 is constant and γ and φ0 are determined by

the starting point and end point of the hand trajectory.

Equation (22) is a hyperbola equation. When a is 0, it be-

comes a straight line as a special case, and as a increases,

r at φ = φ0 approaches 0. This means that the trajectory

changes from A → B to A → O → B. Therefore, the

approximation of the hyperbola in (22) can express qual-

itatively the trajectory minimizing integration (11). This

is confirmed by the numerical example given later.
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3. Satellite-Fixed Task Coordinates

3. 1 Modeling

In this section, we study the case where the hand moves

in the satellite-fixed frame, assuming that, for instance,

the manipulator hand attaches a payload to the satellite.

The origin of the satellite-fixed frame is the CM of the

satellite, and the following symbols are defined in addi-

tion to those used in Section 2:

xbi, ybi : CM position of body i in the satellite-fixed

frame

θbi : rotation angle of body i in the satellite-fixed

frame

xbc, ybc : CM position of the space robot in satellite-fixed

frame

ui, vi : CM velocity of body i (in the inertial frame)

expressed in the satellite-fixed frame

As it is based on the assumption that the momentum and

the angular momentum of the space robot are conserved

at 0, the angular momentum about the CM of the satellite

also becomes 0. Therefore, the following equation holds

i0θ̇0 +

n∑
i=1

{ii(θ̇0 + θ̇bi) +mi(xbivi − ybiui)} = 0 (23)

where θ0 is the rotation angle of the satellite in the in-

ertial frame. The following equations also hold based on

the momentum conservation.
n∑

i=0

miui = 0,

n∑
i=0

mivi = 0 (24)

On the other hand, ui and vi (i ≥ 1) are expressed as

follows.

ui = u0 + ẋbi − θ̇0ybi

vi = v0 + ẏbi + θ̇0xbi

(25)

Using (24) and (25), u0 and v0 become as follows.

u0 = −ẋbc + ybc θ̇0

v0 = −ẏbc − xbcθ̇0
(26)

Substituting (25) and (26) into (23) and eliminating ui

and vi, we obtain

icθ̇0 −mc(xbcẏbc − ybcẋbc)

+

n∑
i=1

{iiθ̇bi +mi(xbiẏbi − ybiẋbi)} = 0 (27)

ic = i0 +

n∑
i=1

{ii +mi(x
2
bi + y2

bi)} −mc(x
2
bc + y2

bc)

The symbol ic is the moment of inertia of the space robot

about its CM. Equation (27) is the basic equation in this

case.

Equation (27) is associated with (3) in Section 2 except

that the sign of the 2nd term in the right side is reversed.

That is, in (3), the movement of the CM of the arm ro-

tates the satellite in the same direction as that of each

link of the arm. On the other hand, in (27), the move-

ment of the CM of the space robot in the satellite-fixed

frame rotates the satellite in the reverse direction to that

of each link of the arm. Therefore, when the hand moves

in the satellite-fixed frame, it is expected that the satellite

attitude variation becomes relatively smaller. In the next

step, we consider this in detail concerning the case where

the arm mass is concentrated at the hand.

3. 2 When Arm Mass is Concentrated at the

Hand

Because ic, the coefficient of θ̇0, is not constant in (27),

it is difficult to handle this case. We will assume here

that the arm mass is concentrated at the hand as in 2.3.

The arm mass is specified as m1 and the arm position is

specified as (xb1, yb1), while ignoring the arm mass of any

other part except the hand. Then, (27) becomes{
i0 +

m0m1

mc
(x2

b1 + y2
b1)

}
θ̇0

+
m0m1

mc
(xb1ẏb1 − yb1ẋb1) = 0 (28)

From this, dθ0 is obtained as follows.

dθ0 = −µb(xb1dyb1 − yb1dxb1)

1 + µb(x2
b1 + y2

b1)
, µb =

m0m1

i0mc
(29)

The next step is to convert the hand motion plane to

(xd, yd) through (xb, yb) as follows.

xb =
√
µbxb1, yb =

√
µbyb1 (30)

xd =
xb√

1 + x2
b + y2

b

, yd =
yb√

1 + x2
b + y2

b

(31)

If xd and yd in (31) are used, (29) becomes as follows.

dθ0 = −(xddyd − yddxd) (32)

Therefore, the attitude variation in this case equals −2

times the area of the domain cd surrounded by the hand

trajectory and the origin in the (xd, yd)-plane as is the

case in 2.3.

∆θ0 = −2S(cd) (33)

If this area is smaller, the final satellite attitude variation

can be reduced. Changing (xb, yb) and (xd, yd) into polar

coordinates (rb, φb) and (rd, φd), respectively, we obtain

the following relation from (31)

rd =
rb√

1 + r2b
, φd = φb (34)

Namely, when the hand trajectory in the inertial frame

is the same as in the satellite-fixed frame, the attitude

variation is smaller in the satellite-fixed frame. Also, the
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hand motion in the (xd, yd)-plane is limited to the in-

side of a circle with a radius of 1. Therefore, if the hand

moves at an angle of ψ in the (xb, yb)-plane monotonously,

the absolute value |S(cd)| representing the area of the do-

main cd in the (xd, yd)-plane is smaller than ψ/2 and thus

|∆θ0| < ψ. That is, there exists a maximum value of the

attitude variation in this case. When |∆θ0| gets closer

to ψ, the hand has an extremely large moment of iner-

tia about the CM of the satellite. When trying to rotate

the hand against the satellite, the satellite rotates against

the inertial frame, with the hand itself not rotating in the

inertial frame but only at a certain angle ψ against the

satellite.

As in Section 2, here we investigated the trajectory that

reduces the satellite attitude variation during hand mo-

tion. Assuming that the hand moves from A to B in

the (xb, yb)-plane, we will obtain the trajectory that min-

imizes the following integration in consideration of the

length of the trajectory∫ B

A

ds, ds2 = dx2
b + dy2

b + a2dθ20 (35)

where a is an arbitrary parameter. When polar coordi-

nates (rb, φb) are applied, the Riemannian metric of (35)

becomes as follows

ds2 = dr2b + r2b

{
1 +

a2r2b
(1 + r2b)

2

}
dφ2

b (36)

As in Section 2, the geodesic equation is derived corre-

sponding to (17) as

r2b{(1 + r2b)
2 + a2r2b}

(1 + r2b)
2

dφb

ds
= γb = constant (37)

Using this relation, the hand trajectory in this case is

given as follows.∣∣∣∣ drd

dφd

∣∣∣∣ =
rd

γb

√
(1 − r2d)α{r2dα− γ2

b (1 − r2d)} (38)

α = 1 + a2r2d(1 − r2d)

where (rb, φb) are converted into (rd, φd) using (34). To

obtain an approximate solution of (38), we omit the 6th

power or the higher terms of rd in the square root of (38)

by using rd < 1. Then, (38) can be integrated and the

following solution is obtained for rb

r2b =
2γ2

b

1− a2γ2
b +

√
1 + 6a2γ2

b + 8a2γ4
b + a4γ4

b

∗

∗
cos{2(φb − φb0)} (39)

where φb0 is a constant. This is almost the same as (22),

and a hyperbola also becomes an approximate solution.

4. Realization of Trajectory by the Arm

In the previous sections, we derived the hand trajec-

tories to reduce the satellite attitude variation under the

approximation where the arm mass is concentrated at the

hand. In this section, we briefly study the possibility of

realizing these trajectories by the actual arm joint move-

ment. We considered how to realize the hand trajectory

by an arm of two degrees of freedom as shown in Fig. 3.

The joint angles of the arm are specified as q1 and q2,

the link lengths are specified as l1 and l2, and the posi-

tion of the arm’s fixed point in the satellite-fixed frame

is specified as (a1, a2). If the hand task coordinates are

the inertial frame with the origin at the CM of the space

robot, the hand coordinates (x1, y1) are shown as below.

For simplicity, the hand mass is specified as m1 and the

arm mass except for the hand can be ignored, as in the

previous sections, and the axes of the inertial frame and

the satellite-fixed frame are the same when the satellite

attitude angle θ0 is 0.

x1 = ν{a1 cos θ0 − a2 sin θ0 + l1 cos(θ0 + q1)

+ l2 cos(θ0 + q1 + q2)}
y1 = ν{a1 sin θ0 + a2 cos θ0 + l1 sin(θ0 + q1)

+ l2 sin(θ0 + q1 + q2)} (40)

where ν = m0/(m0 + m1). Taking the time derivative

of the above equation and eliminating θ̇0 by the angular

momentum conservation, we obtain[
ẋ1

ẏ1

]
= J

[
q̇1

q̇2

]
(41)

where J is the generalized Jacobian matrix 5), 8). In order

to realize the trajectory from this relation, det J �= 0 is

necessary. In this case, det J is obtained as follows.

detJ =
ν2i0l1l2 sin q2

ic
(42)

where ic is the moment of inertia of the space robot about

its CM. In case of sin q2 �= 0, the trajectory can be realized

if the joint angle limitation is ignored.

On the other hand, if the hand task coordinates are the

satellite-fixed frame, the hand coordinates (xb1, yb1) are

expressed as follows.

xb1 = a1 + l1 cos q1 + l2 cos(q1 + q2)

yb1 = a2 + l1 sin q1 + l2 sin(q1 + q2) (43)

The following relation is obtained corresponding to (41)[
ẋb1

ẏb1

]
= Jb

[
q̇1

q̇2

]
(44)

where Jb is the normal Jacobian matrix used for a ground
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Fig. 3 A space robot with a manipulator of two degrees of

freedom

manipulator. In this case, detJb becomes as follows

det Jb = l1l2 sin q2 (45)

Therefore, as long as sin q2 �= 0, the trajectory can also

be realized.

Equations (42) and (45) show the manipulatability of

each point on the trajectory, and the degree to which the

trajectory can be realized can be evaluated quantitatively

by these values 5), 8), 9). From (42), if the hand task coor-

dinates are placed in the inertial frame, as the hand mass

increases, the manipulability decreases, while from (45), if

the hand task coordinates are placed in the satellite-fixed

frame, the manipulability is not influenced by the mass

property. This is because the hand trajectory is designed

against the satellite in the latter case.

It is difficult to obtain the trajectory while taking ma-

nipulability into consideration. However, it is easy to

evaluate the obtained trajectory using the manipulabil-

ity measures. From this point of view, we consider the

feasibility of the trajectory quantitatively in Section 5.

5. Numerical Results

In this section, the trajectories obtained in Sections 2

and 3 are calculated using a space robot model. De-

fine symbols as follows: satellite mass is m0, moment

of inertia of the satellite about its CM is i0 and hand

mass is m1. Specifications of the space robot model are:

m0 = 1000 [kg], m1 = 200 [kg] and i0 = 1000 [kgm2]. The

arm mass is ignored in comparison with the hand mass.

Also, in Fig. 3, it is specified as: l1 = l2 = 2 [m] and

a1 = a2 = 1 [m]. We consider here the case to move the

hand from A′ =(4, 0)[m] to B′ =(2, 3)[m] in the satellite-

fixed frame. Correspondingly, if task coordinates are the

inertial frame, the hand is moved from A =(10/3, 0)[m]

to B =(5/3, 2.5)[m]. When the directions of the satellite-

Fig. 4 Hand trajectories in the inertial frame (upper) and at-

titude variations of the satellite (lower) when the tra-

jectories are given in the inertial frame (solid line · · ·
solutions to minimize (11), dotted line · · · hyperbola

approximations)

fixed frame and the inertial frame are the same, positions

A and B coincide with those of A′ and B′, respectively.

Figure 4 shows the exact trajectory that minimizes

(11) in case of the inertial frame (solid line) and its ap-

proximation by a hyperbola (dotted line). The upper part

of Fig. 4 shows the trajectory in the inertial frame, and

the lower part shows the relation between the length of

the trajectory and the satellite attitude variation when

the trajectory length is normalized to 1. Exact solutions

show the cases of a = 0,0.5, 1.0, 1.5, 2.0 in (11). In the

hyperbola approximation, the values of a in (22) are cho-

sen to match the minimum of r with the exact solutions.

Also, Fig. 5 shows the exact trajectory that minimizes

(35) in the case of a satellite-fixed frame (solid line) and its

approximation by a hyperbola (dotted line). The upper

part of the figure shows the trajectory in the satellite-fixed

frame, and the lower part shows the relationship between

the length of the trajectory and the satellite attitude vari-

ation when the trajectory length is normalized to 1. Ex-

act solutions show the cases of a = 0, 1.0, 2.0, 3.0, 4.0 in

(35). In the hyperbola approximation, the values of a

in (39) are chosen to match the minimum of r with the

exact solutions. Table 1 shows the correspondence of a

between the exact solutions and the approximate ones in

Fig. 4 and Fig. 5. As shown in Table 1, if the minimum

values of r are matched, there is a considerable gap of
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Fig. 5 Hand trajectories in the satellite-fixed frame (upper)

and attitude variations of the satellite (lower) when

the trajectories are given in the satellite-fixed frame

(solid line · · · solutions to minimize (35), dotted line

· · · hyperbola approximations)

Table 1 Correspondence of the values of a between exact so-

lutions and approximate solutions

a

Inertial Exact 0 0.5 1 1.5 2

frame Approx. 0 0.612 1.36 2.15 2.97

Satellite-fixed Exact 0 1 2 3 4

frame Approx. 0 0.138 0.320 0.827 3.15

a between the exact solutions and the approximate ones.

Therefore, the hyperbolas are not accurate approxima-

tions quantitatively, but are good approximations quali-

tatively as shown in Fig. 4 and Fig. 5. In both cases, as

a increases, the trajectories curve toward the origin and

the attitude variations are decreased. When Fig. 4 and

Fig. 5 are compared, the satellite attitude variation be-

comes considerably small in the case of the satellite-fixed

frame.

Figure 6 shows the result of realizing each trajectory

(exact solution) in Fig. 4 by the arm joints with no atti-

tude control of the satellite. The upper part shows the

manipulability of (42) at each point on the trajectory

when the length of the trajectory is normalized to 1 and

the lower part shows the satellite movement on the tra-

jectory of a = 1. The manipulability becomes 0 in the

vicinity of the end point of the trajectory in the case of

a = 0 and a = 0.5. This means that the hand cannot

reach the end point because the satellite attitude varia-

tion is too large. Also, as a increases, the trajectory gets

too close to the satellite, which decreases the manipula-

Fig. 6 Manipulability measures of the hand trajectories (up-

per) and the motion of the satellite in case of a = 1

(lower) when the trajectories are given in the inertial

frame

bility. Consequently, the order of a = 1 is appropriate,

and the satellite movement in this case is shown in the

lower part of Fig. 6.

Furthermore, Fig. 7 shows the result of realizing each

trajectory (exact solution) in Fig. 5 by the arm joints in

the case of the satellite-fixed frame. The upper part shows

the manipulability of (45) and the lower shows the satel-

lite movement on the trajectory of a = 2 in the inertial

frame. The hand movement in the satellite-fixed frame

is shown in Fig. 5, while in the inertial frame, the hand

movement decreases considerably due to the satellite ro-

tation as shown in the lower part of Fig. 7. Since the

satellite rotation angle is in proportion to the area of the

fan-shaped domain surrounded by the hand trajectory in

the inertial frame and the CM of the space robot mass O

in both Fig. 6 and Fig. 7, the satellite attitude variation is

smaller in the case of the satellite-fixed frame.

6. Conclusions

We performed a basic study on the relationship between

hand motion trajectory and satellite attitude variation

with a planar space robot model whose momentum and

angular momentum are conserved at 0. The followings

gives a summary of our conclusions.

(1) When the hand task coordinates are the inertial

frame, the relationship (6) holds between the arm
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Fig. 7 Manipulability measures of the hand trajectories (up-

per) and the motion of the satellite in the case of a = 2

(lower) when the trajectories are given in the satellite-

fixed frame

motion trajectory and the satellite attitude varia-

tion. Especially, if the arm mass is concentrated

at the hand, attitude variation is in proportion to

the area of the domain surrounded by the hand tra-

jectory and the origin (CM of the space robot). A

hyperbolic trajectory is suitable for decreasing the

attitude variation during hand motion.

(2) When the hand task coordinates are the satellite-

fixed frame and the arm mass is concentrated at

the hand, the attitude variation is in proportion to

the area of the domain surrounded by the hand tra-

jectory and the origin (CM of the satellite) in the

(xd, yd)-plane of (31). Therefore, if the hand tra-

jectories are the same in the satellite-fixed frame

and in the inertial frame, the attitude variation in

the satellite-fixed frame becomes smaller than that

of the inertial frame. A hyperbolic trajectory is

also suitable for decreasing attitude variation during

hand motion.

References

1) Z. Vafa and S. Dubowsky: On the Dynamics of Space Ma-

nipulators Using the Virtual Manipulator, with Applica-

tions to Path Planning, The Journal of the Astronautical

Sciences, 38-4, 441/472 (1990)

2) S. Dubowsky and M. A. Torres: Path Planning for Space

Manipulators to Minimize Spacecraft Attitude Distur-

bances, Proc. IEEE International Conference on Robotics

and Automation, 2522/2528 (1991)

3) K. Yamada and K. Tsuchiya: Trajectory Planning for a

Space Manipulator, Proc. 5th Guidance and Control Con-

ference, 9/14 (1988) (in Japanese)

4) Y. Nakamura and R. Mukherjee: Nonholonomic Path

Planning of Space Robots via a Bidirectional Approach,

IEEE Trans. Robotics and Automation, RA-7-4, 500/514

(1991)

5) D. Nenchev, K. Yoshida and Y. Umetani: Analysis, De-

sign and Control of Free-Flying Space Robots Using Fixed-

Attitude-Restricted Jacobian Matrix, Robotics Research 5

(ed. H. Miura and S. Arimoto), 251/258, MIT Press (1990)

6) R. W. Longman: The Kinetics and Workspace of a

Satellite-Mounted Robot, The Journal of the Astronau-

tical Sciences, 38-4, 423/440 (1990)

7) T. Kihara: Geometry and Space, 69/75, University of

Tokyo Press (1983) (in Japanese)

8) Y. Umetani and K. Yoshida: Workspace and Manipulabil-

ity Analysis of Space Manipulator, Trans. of the Society of

Instrument and Control Engineers, 26-2, 188/195, (1990)

(in Japanese)

9) M. Uchiyama, K. Shimizu and K. Hakomori: Performance

Evaluation of Robotic Arms Using the Jacobian, Trans.

of the Society of Instrument and Control Engineers, 21-2,

190/196 (1985) (in Japanese)

Katsuhiko YAMADA (Member)

Received the B.S., M.S. and Ph.D. degrees

in mechanical engineering from University of

Tokyo, Tokyo, in 1978, 1980 and 1990, respec-

tively. Since 1980, he has worked in the Ad-

vanced Technology R & D Center of Mitsubishi

Electric Corporation. His current research in-

terests include dynamics analysis and control

of spacecraft.

Kazuo TSUCHIYA (Member)

Received the B.S., M.S. and Ph.D. degrees

in aeronautical engineering from Kyoto Uni-

versity, Kyoto, in 1966, 1968 and 1974, re-

spectively. From 1968 to 1990, he worked

in the Central Research Laboratory of Mit-

subishi Electric Corporation. From 1990 to

1996, he was a Professor in the Department of

Computer-Controlled Mechanical Systems at

Osaka University, Osaka. Since 1996, he has

been a Professor in Department of Aeronautics

and Astronautics at Kyoto University, Kyoto.

His current research interests include dynamics

analysis and control of mechanical systems and

neural networks.

Reprinted from Trans. of the SICE

Vol. 28 No. 3 374/382 1992


