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  This paper considers rotation-invariant pattern recognition systems using artificial neural networks. First, five 
neural pattern recognition systems are described. Next, they are applied to a variably rotated coin recognition 
problem to show those effectiveness. A 500 Japanese yen coin and a 500 Korean won coin classified in this paper 
have the same shape, size, and thickness, and have a similar pattern. In relation to such a fact, there was the report 
on misclassification between those coins in a newspaper. 
  From the results of computer simulation for coin recognition, considerations on computational complexity in 
hardware implementation of those systems and on modeling of our brains are described. 
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1. Introduction 
 

Humans can recognize any pattern easily even if it is 
transformed by scale-change, translation, rotation, and 
noise. However it is difficult for digital computers to 
recognize such patterns. In this background, artificial 
neural networks, which are models emulating a biological 
neuron network, are actively used to perform pattern 
recognition. 
  Up to now, artificial neural network invariant to any 
transform such as rotation, translation, scale, and 
deformation, have been presented. Fukushima [1] 
proposed the Neocognitron which is a model of a visual 
system in brains and showed invariance to translation and 
deformation of input patterns. However, the limitation to 
rotation and scale. has been reported [2][3] and it has not 
been applied to gray scale images. Widrow [4] presented a 
multi-layered ADALINE network which is insensitive to 
translation and rotation by 90 degree of input patterns. 
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However rotational invariance by any degree has not 

been presented. Koch [5] proposed a similar method. The 
authors extended the Widrow’s system to be tolerant to 
noise [6]-[10] and presented systems to insensitive to 
rotation by any degree [11]-[15]. Reid [16] constructed the 
system insensitive to translation, rotation, and scale by 
using a higher order neural network in preprocessing. 
However, this causes a combinatorial explosion of an 
input pattern and is not practical. 
  There have been many pattern recognition systems 
insensitive to transform [17]-[20]. However a practical 
system invariant to rotation, translation, and scale in the 
same time has never been presented. Another approach to 
transform invariant pattern recognition is to utilize 
mathematical functions which can produce input signals 
insensitive to various transform. Then these signals are 
learned and recognized by classifiers as neural networks. 
This approach includes mathematical frameworks, such as 
Moment invariants [21]-[24], Fourier transform [25]-[27],  
and Hough transform [28]. Note that contour extraction is 
required for gray scale images before these mathematical 
transforms [19]. 
  On the one hand, there are a few practical systems 
emulating a visual system in brains. To clarify brain 
functions, it is important to construct systems modeling the 
visual system in engineering. This paper therefore tries to 
construct neural net based systems as long as possible. As 
a result, this can be a cue to clarify brain functions. 

［ ］
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  In this paper neural network systems are utilized to 
perform rotation-invariant pattern recognition and applied 
to rotated coin recognition problems. If the sizes of coins 
to be classified are different, their classification can be 
easily done. If the coins have the same size, they should be 
recognized by their image pattern. A Japanese 500 yen and 
a Korean 500 won coins to be classified in this paper are 
very similar in size, weight, color, and pattern structure. 
Therefore misclassification of those coins often happens at 
toll gate in highway. There is no problem if they have the 
same value. However 500 won has only the value of about 
80 yen in June 30 1992 [29] and this fact causes a social 
problem.  
  Gray scale images taken out of real coin classifiers in a 
bank are usually rotated by random degree in comparison 
to a standard image. In order to recognize such images, a 
pattern recognition architecture with rotational invariance 
is necessary. 
  Authors have considered different kinds of neural 
pattern recognition systems to recognize rotated coin 
images. These are effective for engineering problems but 
cause difficulty in computational complexity to implement 
a real hardware. In this paper therefore we introduce our 
work [6]-[15],[30]-[32] and the present systems which are 
easy to implement and have a fewer computation. 
Concretely speaking, size reduction of networks by a 
structural learning and decrease of computational 
complexity using a network with feedback connections 
are achieved. 
  The section 2 describes the architectures of rotation 
invariant systems. The sections 3 to 6 are devoted to show 
their definite structures. Finally the section 7 considers 
their systems by means of computer simulations. 
 

2. Architectures of rotation-invariant 
neural pattern recognition systems 

 
It is possible in principle to construct a system insensitive 
to translation, rotation, scale by designing an appropriate 
method for each of them. In image data processing (e.g. 
256×256 pixels), however, it is impossible to perform 
computer simulations of such a system because the system 
with a preprocessing part becomes huge [20]. On the one 
hand, location and extraction of the center of images taken 
out of an image scanner are easy to be done. Furthermore, 
image data treated in this paper are taken in from the 
automatic coin classification machine and no change in 
size. In this paper therefore methods to form rotation 

invariant pattern recognition systems by using neural 
networks are described. 
 Neural network based rotation invariant systems include 
the following methods: 
(A) Preprocessing (mathematical transform) + BP  

[12][26]                ・・・Transform model 
(B) Preprocessing (neural net) + BP [11]-[15] 
                                ・・・Slab model 
(C) Preprocessing (edge detective neural net) + BP with 

 link weight [30]-[32]     ・・・Edge detection model 
 (D) BP with link weight [33][34]        ・・・BP model 
(E) BP with feedback connections 

 ・・・ Feedback model 
where BP means the error back-propagation method [33]. 
The Fourier transform is utilized as a mathematical 
transform in (A). An improved slab architecture proposed 
by Widrow is used as a preprocessing. The preprocessor in 
(C) extracts edge features of coin images. This can be 
regarded as a procedure of feature detection performed in 
the visual field of brains [35]-[39]. The BP with link 
weight in (C) and (D) has a structure of link weight which 
can be insensitive to rotation of input patterns and cannot 
change output values of its network.. The methods of (A) 
to (D) require relatively many computations. Therefore 
they need a kind of technique to reduce it. The section 6 
presents a method to reduce a computational complexity 
for the transform model (A). The method of (E) is different 
approach from the others and tries to learn and recognize 
rotated coin images using a network with feedback 
connections. This network achieves reduction of 
computational quantity by using a simple architecture 
without any preprocessor. 
  (B) and (C) in the above mentioned systems finally aim 
at modeling brain functions. (A) is a system for the 
purpose of application to real machines in an engineering 
point of view. (E) is a system trying to achieve both. 
  This paper considers the methods of (A), (B), (C), and 
(E) and compares their effectiveness through computer 
simulations for coin recognition. Simulation results on the 
method (D) are described without explaining its detail. 
  The sections 3 and 4 describe the slab model and the 
edge detection model, respectively. The sections 5 and 6 
present a recognition method using the feedback model 
and a method to reduce computational complexity using 
the transform model. 
 

3. Rotation invariant systems with a slab 
architecture 
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3.1  Rotation-invariant pattern recognition systems 
   A pattern recognition system considered in this section 
is illustrated in Fig.1. The system consists of two parts, a 
fixed preprocessing network (Box of slabs) and a trainable 
a-CONE network, as shown in [4][6]-[10]. The 
conventional system is insensitive to rotation only by 90 
degree but the present systems can be invariant to rotation 
by any degree.. 
3.2 A structure of the preprocessor 

As shown in Fig.1, the preprocessor (Box of slabs) is 
composed of many slabs. Each slab includes many neuron 
and one majority vote taker. The circles labeled “N” in the 
preprocessor indicate the sigmoid neuron units and “M” is 
the majority vote taker. The majority in this paper, 
however, produces an analog output value, which is 
different from the conventional system [4]. The sigmoid 
voting can be invariant to change of input signals and 
noise tolerant. This sigmoid neuron unit has input 
connections with the same value. 

Each slab in the preprocessor produces a single output, 
which is an input signal to the trainable multi-layered 
a-CONE neural network.. Therefore the number of 
input units in the a-CONE network is the same as the 
number of slabs in the preprocessor. The problem is 
how to determine weights of each neuron unit in order 
to obtain rotation invariant slab outputs. The rotational 
system with many slabs. Invariance by 90 degree has 

 

 
Fig.1 A rotation invariant neural pattern recognition 

 

been already proposed by Widrow. This paper extends the 
Widrow’s system to be invariant to rotation by any 
degree.. 

In implementing it, there are two ways in 
arrangement of neural weights of slabs, namely 
2-dimensional grid and circular arrangements.  The 
square array (grid arrangement) would be better to extend 
the conventional system [6]-[10] and to treat translation. 
However the circular arrangement of neural weights is 
better to consider only the rotational invariance and 
achieve high recognition accuracy. In this paper both 
arrangements are examined and compared by means of 
computer simulation. 

The architecture of a preprocessor insensitive to 
rotation by 90 degree is briefly described on the basis of 

 
(a) The structure to produce 90 degrees rotation-invariant 

output. 

 
(b) Relationship between weight matrices 

Fig.2 One slab with 90 degrees rotational invariance. 
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the reference [6]-[10]. Fig.2 (a) illustrates a slab structure 
achieving rotational invariance by 90 degree. Four neurons 
have weights with grid arrangement and the number of the 
weights is the same as the number of pixels on a retina. 
Pattern pixels on the retina are weighted by connection 
weights to compute the sum. It is passed through a 
nonlinear function to produce an output value of one of 
four neurons.  
   First, a weight matrix W of the neuron 1 is determined 
by random numbers. Next, the weight matrix W is rotated 
by 90 degrees, which is the weights R90(W) of the neuron 
2. In the same way, 180 degrees rotated weights R180(W) 
and 270 degrees rotated weights R270(W) are formed, 
which are the weight matrices of the neurons 3 and 4, 
respectively. Relationship between the weights W and the 
others is illustrated in Fig2 (b). The figure shows the 
relation of 3 ×3 matrix case. They are the same except 
rotated by 90 to 270 degrees rotated. 
  A pattern on the retina is fed to every neuron of the slab. 
Each pixel of the pattern is weighted by a corresponding 
weight of a neuron unit in the slabs. The sum is the net 
input signal to the neuron and the neuron output is the 
output value of one of the neurons 1 to 4. Their outputs are 
weighted equally and are insensitive to every 90 degrees 
rotation because its rotation changes only the roles of the 
neurons 1 to 4. In the following, another rotation invariant 
preprocessor is described. 
3.3 Square array of weights 
  Suppose that an input pattern has k×k pixels in a 
square array (grid) and slabs are constructed to be 
insensitive to rotation by every 30 degrees. Each neuron 
unit (labeled “N” in Fig.1) on slabs in the preprocessor has 
a k×k weight matrix. Fig.3 illustrates the right upper part 
(1/4) of a weight matrix of a neuron unit in k=12. In this 
case each weight is represented as a square. In Fig.3, 
W1(i1,j1) is the element of the ith row and jth column in the 
weight matrix W1.   

First, a 2-dimensional weight matrix W1 with k×k is 
determined by random numbers. Next, the weight matrix 
R30(W1) rotated by 30 degrees is determined. In Fig.3, the 
square bounded by a dotted line is the 30 degrees rotated 
W1(i1,j1). In this case, the centers of each square of W1 and 
R30(W1) do not have one-to-one correspondence. The 
conventional system cannot cause such a problem because 
it achieved only 90 degrees rotational invariance and the 
centers of each square of W1 and R30(W1) have one-to-one 
correspondence. In this paper such a point can be resolved 
as the following. 

In making R30(W1), not only the center of W1(i1,j1) but also 
many representative points, which are given in the square, 
are rotated by 30 degrees. In Fig.3, 25 representative 
points in the square of W1(i1,j1) are illustrated. Each 
representative point is regarded as having 1/25 of the 
W1(i1,j1) value. After rotation, the weight value of W1(i1,j1) 
is assigned to R30(W1) (i2,j2) according to how many 
representative points of (i1,j1) are included in (i2,j2). Note 
that initial values of R30(W1) are set as 0. For instance, 
Fig.3 shows that 19 representative points are included in 
the (i2,j2) element when 25 points are rotated by 30 degrees. 
In this case, 19/25 of the value of W1(i1,j1) is added to 
R30(W1) (i2,j2). The other points of the (i1,j1) element are 
also assigned to their corresponding element according to 
the number of points included in each one after rotation. 
This procedure is performed for every weight of W1. 
Weights which are not included in every element of 
R30(W1) are ignored.  
  In the same way, R60(W1), R90(W1), ・・・, R330(W1) are 
constructed in order. As a result, the following weight 
matrices are produced:  
   W1 , R30(W1) , R60(W1),・・, R330(W1). 

Provided that these weights are assigned to neuron units 
“N” on slabs in Fig.1, slab outputs can be insensitive to 
every 30 degrees rotation of an input pattern. For the other 

 
Fig.3 Rotation of weight matrix with square array of 

weights. Nineteen representative points of W1(i1,j1) are 
included in (i1,j1) element after rotation by 30 degrees. 
In this case, 19/25 times weight value of W1(i1,j1) is 
added to R30(W1) (i2,j2). 
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slabs in the preprocessor rotation invariant outputs can be 
yielded by doing the same procedure using different 
weight sets Wi ,i=1,2,・・・,L. 
3.4 Circular array of weights 
  A pattern recognition system considered here is the 
same as the system in Fig.1 except the weight 
arrangement of the neurons on slabs in the preprocessor. 
Therefore the problem is how to determine weights of 
neuron units in order to achieve rotational invariance 
similar to the square array. In this section the shape of a 
retina and input images in a preprocessor are circular. 
  30 degrees rotational invariance is considered here. 
Fig.4 shows the weight matrix (Retina) of a neuron unit in 
the r-θ coordinate system. It is divided into 12 equal 
segments along circumference direction and into 4 along 
radius direction. However its center element is not divided 
as shown in Fig.4. First, a weight matrix W1 is determined 
by random numbers. Next, its 30 degrees rotated weights 
R30(W1) is yielded from W1.  
Similarly, R60(W1), ・・・, R330(W1) are computed in order. 
As a result, the following weight matrices are obtained: 
   W1 , R30(W1) , R60(W1),・・, R330(W1) 
 

 

Fig.4  Rotation by 30 degrees for circular array of 
weights. The numbers denote the order of the weights. 

 
Provided that these weights are assigned to neuron units 

“N”, slab outputs can be insensitive to every 30 degrees 
rotation of an input pattern. For the other slabs in the 
preprocessor rotation invariant outputs can be produced by 
doing the same procedure using different weight sets 
Wi ,i=1,2,・・・,L. 
3.5 Trainable multi-layered network 
  A training layer has a multi-layered structure and 
performs a supervised training to classify signals from a  
preprocessing. Usually the back-propagation (BP) method 
is used in such a case. In this paper a multi-layered 
network with a-CONEs (“CN” in Fig.1) is utilized to 
achieve fast training. 
 

4. Rotation invariant system with an edge 
   detection structure 

 
The system considered in this section is illustrated in 

Fig.5. It consists of a preprocessor (Feature Extraction 
Network) and a training layer (Trainable a-CONE 
Network). The preprocessor in this system is different 
from the former one [6]-[15], extracts edge features of an 
input pattern, and activates orientation specificity cells 
corresponding to edge directions. The activation pattern is 
an input signal to an input layer, which is composed of a 
set of orientation specificity cells. However this pattern is 
not insensitive to rotation. The rotational insensitivity is 
realized in the training layer. 

4.1 Architecture of the preprocessing layer 
  The architecture of the preprocessor is illustrated in 
Fig..6. It consists of the edge detection layer and 
3-dimensional structure of the orientation specificity cells. 
In Fig.6, Orientation specificity cells are illustrated as the 
OSC-layer on a plane.  The square labeled “EN” 
indicates an edge detection network. Each EN handles a 
apart of an input pattern and computes edge intensity. in its 
area. Some edges with high intensity are detected and 
produced as outputs. In Fig.6, right and left direction and 
up and down direction on the edge detection- and the 
OSC-layers correspond to radial and circumference 
directions, respectively.  
  The orientation specificity cells are regularly arranged 
on the OSC-layer, which is a set of many cells. The 
OSC-layer consists of many planes, each of which 
includes cells selectively responding to an edge with the 
same direction. The number of cells on each plane in the 
OSC-layer is the same as the number of EN. Each cell on 
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Fig.5  Rotation invariant neural network with an edge 
detection network. 
 
the plane receives a signal only from corresponding EN. 
The number of planes depends on the number of divisions 
of a pattern on the retina along circumference direction. In 
Fig.6, the circumference is divided into eight and then the 
number of planes in the OSC-layer is eight. Selectively 
corresponding edge direction is different by 360/8=45 ﾟ in  
neighboring planes. 
  Each EN yields edge directions with high intensity and 
activates cells at corresponding locations on planes nearest 
to their directions. In this paper the Sobel operator with 
size of 3x3 is used in edge detection but detail explanation 
omitted. 
4.1 Structure of trainable network 
  An activity pattern on the OSC-layer is an input pattern 
to a trainable network. The trainable network is a 
multi-layered a-CONE network and the BP algorithm is 
used. In this case training with a binding condition is 
carried out by the BP algorithm with weight link similar to 
the reference [33][34]. 
  When an input pattern is rotated, edge features to be 
activated are shifted on location to the circumference 
direction on a plane in the OSC-layer. Furthermore, edge 
direction of the input pattern is also rotated in this case. 
Therefore the plane of an orientation specificity cell to be 
activated varies corresponding to rotated degree. 

The trainable layer has a three-layered structure and its 
hidden layer composed of a set of planes as shown in 

 

 
Fig.6  Feature extraction network. Each “EN” produce 
an edge direction and intensity. 
   
Fig.5. Each plane in the hidden layer includes sigmoid 
neuron units whose number is the same as the division 
number of a pattern on the retina. Each neuron on the 
plane possesses the same weights and a different receptive 
field. A different plane has different weights. Let weights 
on the ith plane Wi,k,m m=1～NTH, k=1～NR, i=1～NS, 
where NTH, NR are the number of divided elements along 
circumference and radial directions on the retina, 
respectively, and NS is the number of planes in the hidden 
layer. In this case each plane in the hidden layer includes 
NTH neurons. The subscript k and m are used to indicate 
weights to cells on each plane in the input layer. That is, 
the input layer has NTH planes, each of which possesses 
an activity pattern on orientation specificity cells with size 
of NR×NTH Let an activity pattern in the input layer be 
Sjj,k,mm  mm=1～NTH, k=1～NR, jj=1～NTH, where jj 
indicates plane numbers. 
  The sum Net(L) of NTH neurons on ith plane are given 
by the following algorithm: 
  For L=1 to NTH 
  For k=1 to NR 
  For m=1 to NTH 
   mm=m+(L- 1) 
   if (mm>NTH) THEN mm=mm- NTH 
   Net(L)=Net(L)+Wi,k,m×SL,k,mm 
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  NEXT 
where Wi,k,m is weights connecting the first neuron on thr 
ith plane in the hidden layer to the first plane in the input 
blayer. Then the second neuron on the ith plane in the 
hidden layer connects the same weights Wi,k,m to the 
second plane in the input layer and their weights are 
shifted one on the index m. Similarly, the third neuron 
connects Wi,k,m to the second plane in the input layer and 
their weights are shifted two on the index m. This shift on 
m corresponds to rotation of edge features yielded by 
rotation of an input pattern. This system is different in this 
shift procedure from methods by the reference [33][34]. 
  Network weights are trained by the BP-type algorithm. 
The quantity of weight change △Wi,k,m is then computed 
as average over all neurons on the ith plane in the hidden 
layer and is given by 

D Wi,k,m

NTH

L=1

(DWii,k,m )L / NTH.

 
As to weights connecting a hidden layer to an output layer, 
weights Wn,i connecting neurons on the ith plane in the 
hidden layer to the nth output unit are restricted to be the 
same on the neurons. Therefore the number of weights in 
each output neuron is the same as that of planes in the 
hidden layer. In the same way as mentioned above the 
quantity of weight change is given by 

D Wn,i

NTH

L=1

(DWi
n,i )L / NTH.

 
  By using the above mentioned training algorithm with 
restriction, rotational invariance can be achieved. After 
training, if a rotated training pattern is given to the retina, 
edge features yielded in the preprocessor vary according to 
its rotation angle. However role of neurons on each plane 
in the hidden layer are interchanged and those output 
responses are maintained to be the same.. 
 

5. Recognition by networks with feedback 
connections 

 
5.1 Network with feedback connections 
  Recently, researches on architectures of multi-layered 
networks with feedback connections have been actively 
done [41]-[47]. This is very important not only in 
engineering applications but also in elucidation of 
information processing mechanisms in brains and nerve 
systems. 
  Elman [43] and Jordan [44] presented simple recurrent 

networks with feedback connections, in which outputs in 
hidden and output units are fed to its input layer. It is 
shown that they can be trained by the BP algorithm for 
various problems. These networks fix their feedback 
connection weights and their training algorithm is called 
the direct BP method. Furthermore fully-connected 
recurrent networks are also proposed. However they have 
disadvantages in learning time and memory capacity 
[45][46]. Therefore in order to reduce computational 
complexity necessary for pattern classification, a coin 
image recognition method using a simple network 
structure is considered, which can be trained by the direct 
BP method [48]. 
5.2 Coin image recognition method 
  The network structure utilized in this paper is illustrated 
in Fig.7. The Elman network copies output values in a 
hidden layer to a context layer and the values of the 
context layer are regarded as input signals at the next time 
index. Therefore the usual BP method can be applied 
directly [49][50]. 
  First a coin image is changed into one in the circular 
coordinate system in order to learn and recognize it with a 
recurrent network. Next, the transformed image is fed to 
the network in turn and the network tries to predict the 
next image value. A preprocessing procedure to extract 
image features cannot be performed. Such image features 
are learned directly by the recurrent network. 

First, circular one dimensional data are extracted from 
coin images, as shown in Fig.8.This data is regarded as a 
time series data and trained by the Elman network. Then 
recognition accuracy for such one dimensional data is not 
very good. Therefore as shown in Fig.8, its radial direction 
is divided into M segments and such two dimensional data 
are used for simulations. For simplicity it is described as 
one dimensional data in the following. 

  
Fig.7  Simple recurrent (Elman) network. 
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Fig.8  Simple recurrent (Elman) network. 
 

Fig.7 illustrates a network structure for one 
dimensional data. 
  There are four patterns to be classified because an 
obverse and a reverse sides are recognized. A single output 
unit is necessary for each pattern. Therefore its network 
possesses an input and four output units in case of no time 
delay. In other words, an input signal at time t is fed to the 
network and a signal at time (t+1) is predicted. The signal 
at time (t+1) is its teacher signal. An output unit 
corresponding to each pattern learns only a single pattern 
independently. A hidden and a context layers are 
commonly trained. In training, the learning policy of an 
output unit to learn another coin except the present input 
pattern is given by: 
 (I) learn nothing. 
 (II) learn to produce bigger error 
 (III)learn zero or random numbers 
This paper adopts the method (I) for simple learning and 
no learning is done for signals which have no relation to 
the output unit. For instance, a unit to learn the obverse 
side of 500 won coin is the output unit labeled “500 
won-Head” and the other units cannot learn anything. 
  An initial value of coin data is random because 

randomly rotated coins are taken in. Therefore in order to 
reduce initial dependence the same coin data are given to 
the network several times and weight change is done for 
the second or later. 
 After training the network by training samples, test 
samples are fed to the network and the output error of each 
output unit is computed as 

,
2

1
)( mmj ode

NTH

m
−= ∑

=
 

where dm is a target signal, om is a real output value, NTH 
is a division number along the circumference, and j is the 
number of a output unit in Fig.7. Teacher signals in 
classification are common in four output units and are 
signals at the next time (t+1) if the present time is indicated 
by t. An output unit whose prediction error ej is minimum 
on input data is a class to be recognized. It is given by  

jek
j

minarg=  

where k indicates a class. If k=2, the result shows its class 
is the reverse side of 500 won coin. 
 

6. Reduction of computational complexity 
of transform model 

 
  In this paper Fourier transform is adopted as a feature 
extraction method of images in Transform model as 
shown in Fig.9. When the discrete Fourier Transform is 
applied to circular coin images, first coin images are 
divided into a round shape and its circumference is divided 
into equal segments as the polar coordinate system. As 
coin images used in this paper are the same size, its radius 
is divided into equal length which is different from the 
complex-log mapping [25][26]. Next, circular coin images 
are changed into two-dimensional images in the Cartesian 
coordinate system. Then the discrete Fourier transform is 
applied to these images. In this case, as well  known, 
amplitude spectra after transform are invariant to shift 
along each axis in Cartesian coordinate system. Therefore 
each amplitude spectrum is invariant to rotation of coins. 
  However the above mentioned method, which uses two 
dimensional Fourier transform as a preprocessor and its 
amplitude spectra are input signals to a network, the 
number of input units becomes huge. For instance, 
suppose that the number of divisions along its radius and 
circumference direction is 32. In this case the number of 



 
 

J.SICE  Vol.E-1  No.1  2001 

  

179 

 
Fig.9  Neural network with Fourier transform followed 

by a three-layered neteork. 
 
amplitude spectra yielded by the discrete Fourier 
transform is 32×32 =1,024. If the number of hidden units 
is 50, the total number of connecting weights is 51,400 
and an issue on hardware implementation is caused. 
  In this paper we consider to decrease the number of 
connection weights in order to reduce computational 
complexity. For this purpose a structural learning method 
with forgetting of weight [51] is introduced in network 
learning. This learning method uses as a criterion function 
the following, in which an output error function J in the 
BP algorithm and sum of absolute values of connection 
weights are added: 

∑∑

∑
+−=

+=

ji
ij

i
ii

ji
ijf

wod

wJJ

,

2

,

||')(

||'

ε

ε
 

where oi is an output value of the ith unit and di is its 
teacher signal. Then the quantity of weight change △wij’ 
is given as 

)εsgn(η' ijij
ij

f
ij ww

w
J

w −∆=
∂
∂

−=∆  

where △wij is the quantity by the BP learning and ε is 
a forgetting factor at every iteration. The above equation 
means a weight value is decreased by a constant εper 
iteration cycle. Ishilawa showed that this learning method 
could find regularities included in training data and an 
obvious network structure emerged [51]. In this paper, we 

try to reduce a network size by using this structural 
learning method. 
 

7. Applications to coin recognition 
 
7.1 Teacher pattern in training 
  In classification of 500 yen and 500 won coins are 
classified and also its reverse and obverse sides of each 
coin are recognized. Therefore the number of output units 
in trainable network for the method (A)～(D) mentioned 
in the section 2 is four. Teacher signals are given as 
  500 won, obverse side: (1,0,0,0) 
  500 won, reverse side (0,1,0,0) 
  500 yen ,obverse side (0,0,1,0) 
  500 yen, reverse side (0,0,0,1). 
In this case, the number of pattern used for training is one, 
then it is linearly separable and a network without its 
hidden layer is desirable. However there is variance in 
gray scale level in every kind and many training samples 
are used for four kind. A three-layered network with a 
hidden layer is used for learning. The method (E) has four 
output units and a teacher signal at time t is an input signal 
at time (t+1) of time series data used for learning. The 
supervised learning BP method is used and the neuron 
model a-CONE (See appendix). 
7.2 Normalization of coin images 
  As shown in Fig.10, the diameter of coin size is 27mm. 
The 32mm square including coins is taken in as 256×256 
dots and 256 gray scale levels. A preprocessing procedure 
extracts a coin part from this image and detects its coin 
center.. Coin extraction by using neural networks could be 
done [53] but omitted in this paper. 
  The extracted coin consists of 200× 200 dots 
(radius=100 dots). This is transformed an image suitable 
for each system. For the slab model with square array of 
weights and the edge detection model, coin images are 
transformed as follows. Coin image data are normalized  
as 0 to 1 value by averaging 5×5 dots and yielding a pixel 
with the value of the average. Such a pattern is an input 
pattern to the retina. This procedure is necessary to reduce 
computational complexity and to detect precise edge 
features. As a result, input patterns consists of 40×40 
pixels.  
  Next, input patterns for the slab model with circular 
array of weights are required to be transformed into 
circular images. Therefore the shape of its retina is circular. 
Suppose that the retina is divided into 4 and 12 along its 
radius and circumference, respectively, in the same way as 
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(a) Obverse model 

 
(b) Reverse side 

Fig.10  Coins with diameter of 27 millimeter. 
 
that of Fig.4. In this case the number of segment pixels is 
37 because the center is not divided along its 
circumference direction. Each neuron on a slab in the 
preprocessor also has 37 weights. Coin images are 
regarded as the same size as the retina and divided 
similarly. In this procedure, all pixel values included in 
each segment pixel which is the same shape as the circular 
array shown in Fig.4 are summed in gray scale and its sum 
is a gray scale value in each segment pixel. 37 circular 
segment pixels are produced in this case. 
  Next, input images for the feedback model are 
transformed into time series data as mentioned in section 5. 
In the transform model they are transformed into square 
array of data in the Cartesian coordinate system.  
  The above mentioned patterns are produced whose 
number is 50. A part of their samples is used for training 
and the rest is used as samples for test of recognition 
accuracy. Note that every image is taken in at random 
rotation and their gray scale values are also different. 
7.3 Coin recognition results and considerations 
  (1) Transform model 
  The case using 1,024 Fourier spectra was examined. 
The number of input units is 1,024 and the number of 
hidden units is 25. Fig.11 shows recognition accuracy after 
error convergence in the BP learning. If the number of 
training samples is 10, network size achieving 100 % 
recognition accuracy is described in Table 1. From Table 1, 
it is shown that 100 % accuracy can be carried out only by 
using 8 % of weights and 72 % of input signals. This fact 
can contribute to reduction of computational complexity 
and simplify hardware implementation. Note that if 

weights less than 0.6 in absolute value are set as 0, 
recognition accuracy gradually decreases. 
  A random search method was utilized to do the same 
structure learning [54]. As a result, recognition accuracy is 
the same as that of 10 training samples case. However the 
number of weights capable of being eliminated is 1/3 of 
that of the BP case and variance of weights is large. The 
random search method is poor in generalization ability 
compared with the BP. The combination of a gradient 
method and a random search method would be effective 
as a learning method for complicated problems.  
(2) Slab models 

Results obtained using the slab model with the square 
array of weights are shown in Fig.12. Results obtained 
using one with the circular array of weights are shown in 
Fig.13. From these results, it is shown the system with 
circular array of weights can achieve 100 % accuracy 
using smaller number of training samples. It would be due 
to bad extensible performance in the system with square 
array as it is a system which can be extended to be 
invariant to translation, rotation, and scale.  Both systems 
could not 100 % recognition accuracy only by using a 
single training sample because of variable gray scale 
values in coin images. The improvement on recognition 
accuracy has a bound even if the number of slabs in the 
preprocessor and as a result the number of input signals is 
increased. In these simulations, the number of slabs is 15 
to 25 and the number of segments along circumference  

 
Fig.11  Recognition results obtained using varying 

number of training samples for training with forgetting. 
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Table 1 Comparison of the number of weights and input 
signals. 
 

Network size after training(ε=10-6) 
Method original Random 

method 
BP method 

No. of input 
signals 

1,024 1,024 738 

No. of weights 25,700 17,793 2,076 
Value of weights 
eliminated 

0 |wij|≦0.2 |wij|≦0.6 

 
 

 
Fig.12  Recognition results obtained using varying 
number of training samples with square array of weights 
in the slab model. The number of slabs is 15. 
 
direction is 36 to 72 were appropriate. 
(3) Edge detection model 

Figure 14 shows relationship between the number of 
training samples and recognition accuracy and rotational 
invariance by every 20°(The circumference is divided 
into 18). Comparison result obtained using varying 
number (1 to 3) of edge features on a edge detection 
network in the preprocessor is illustrated. When the 
number of edge increases its result becomes better. Four 
more edge features could not improve accuracy. The 
suitable number of planes in the hidden layer is 12 to 16 to 
yield good results. 
 

 

Fig.13  Recognition results obtained using varying 
number of training samples with circular array of weights 
in the slab model.. The number of neuron units is 72. 
 

As shown in the figure, one sample training using a 
single one per class is only to perform 84 % accuracy and 
could not achieve 100 % accuracy. This is because the 
system could not learn delicate difference in edge feature 
between training and unknown samples. Such a fact 
would be due to variation in coin stain and in edge feature 
depending on a light condition for rotated coins on an coin 
classifying machine. 
(4) BP model 
For reference, the method in [34] is extended to be 
invariant to various rotation angles and is applied to the 
coin images used in this paper. This corresponds to the 
method (D) described in section 2. As a result of computer 
simulations, it is difficult the system diminishes training 
error using more than two samples per class. This fact 
shows that the BP algorithm could not converge the error 
for a simple feed-forward network by using the coin 
images, in order to achieve rotational invariance. 
Recognition accuracy obtained using one sample per class. 
 (5)Feedback model 

   Finally, simulation results for the feedback model 
are described. There are results obtained using M=4, 
described in section 5.2. We examined two cases: one is a 
case of 15×M input signals with time delay units and the 
other is a case of M inputs without time delay. The number 

 



 
 

J.SICE  Vol.E-1  No.1  2001 
 

182 

 
Fig.14  Recognition results obtained using varying 
number of training samples with the edge detection model.   
NS and NTH are set as 16 and 18, respectively. 
 
of hidden and context layers units is 16. The number of 
output units is 4×M. The number of segments along 
circumference in coins is 36. As shown in Fig.15, when 
the number of training samples is 20 per class, 100 % 
accuracy is achieved in case with time delay terms. 
  For reference, we examined a feed-forward network 
without feedback term. When the number of input and 
hidden units are 25×M and 50, respectively, about 95 % 
accuracy carried out in 20 training samples.  
(6)Considerations 
  As mentioned above, it is shown that each system is 
effective for engineering applications. Table 2 compares 
rough computational complexity of the systems. However 
it does not include the procedures of image transformation 
described in section 7.2. The methods (A) and (E) have 
advantages in computational complexity and memory 
capacity. Note that the method with the minimum variance 
of outputs is (A) using Fourier transform as a preprocessor. 
Therefore this method would be most suitable for 
hardware implementation. The edge detection model is a 
system considering to emulate brains. It is relatively good 
for coin recognition but its computational algorithm is 
complicated compared with (A). This fact is not very 
suitable for hardware implementation to real systems. In 
hardware implementation, it is important to reduce 
computational complexity and to decrease the number of 

 
Fig.15  Recognition results obtained using varying 
number of training samples with the feedback model. The 
number of hidden units is 16. 
 

Table 2 Comparison of the number of multiplications 

Multiplications 
H: Hundreds, T: Tens of thousands, M: Million 

Method Preprocessor Trainable network 
A T T 
B M H 
C T T 
D * M 
E * T 

 
input connections to neuron units in order to make 
small-sized systems. This would be a key to achieve 
hardware implementation of the transform model. 
  Problems awaiting to be solved are summarized in the 
viewpoint of modeling of brains as follows: 
・ For the edge detection model, a system considering 

not only edge directions but more complicated  
features. 

・ For the slab and the edge detection models, the 
extension to generalized systems capable of treating 
translation and scale. 

・ Evolution of network structure and design of 
advanced system using genetic algorithms. 

Then knowledge in psychology and physiology [35]-[38] 
should be considered. From the viewpoint of applications 
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to real machines, the following points are given: 
・ Verification of effectiveness in real hardware 

implementation using the transform model 
・ For the transform and the feedback models, design of 

recognition methods whose computational 
complexity is low and accuracy is high, and of reject 
procedures in case that coins could not be recognized. 

 
8. Conclusions 

 
   This paper designs rotation invariant neural pattern 
recognition systems with application to coin recognition. 
In this paper, several systems are considered and their 
effectiveness is compared by means of computer 
simulations. As a result of such considerations, a Fourier 
transform model is suitable for hardware implementation 
in the viewpoint of computational complexity. From the 
viewpoint of elucidation of brain functions, an edge 
detection and a slab models should be improved to 
consider knowledge in psychology and physiology and to 
extend them to more generalized systems. 
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Appendix 

 
  In this paper, the a-CONE (analog-Coupled Neuron) 
model shown in Fig.16 is used as a neuron model in a 
trainable multi-layered neural network. Neuron units in a 
training layer are a-CONEs. A learning method for 
a-CONE is called a CNR algorithm [9][10][15][40]. This 
learning algorithm is basically the same as that of the BP 
method, which is given as 

)1(αηδ)( −∆+=∆ kWxkW ijjiij       (A1) 

where Wij is the weight connecting the jth unit to ith unit,  
η is a step size, α is a momentum coefficient, and xj is 
an input signal to the jth unit. δi is a error estimation term, 
which is given in the same way as BP in the following. 
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where di is a teacher signal and Oi’ is the derivative of the 
ith unit which is given as 
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where fi, i=1,2 correspond to a sigmoid function shown in 
Fig.16 and ηi, i=1,2 are set as 1. By using this (A3) as a 
derivative, a state with nearly 0 derivative can be escaped 
and fast learning is carried out. The detail explanations are 
referred to [9][10][11][15][40]. 

 

 
Fig.16  A neuron model “analog output neuron 
(a-CONE)” 
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