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Optimal Logical Structure of Safety Monitoring Systems with Two
Failure Modes'

Takehisa Koubpa*, Koichi INOUE*,

Hiromitsu KuMAMOTO** and Isao TAKAMI***

The optimal logical structure is developed for safety monitoring systems, which have two types of contradictory

failures; a failed-dangerous failure and a failed-safe failure. The optimal structure that minimizes an expected

damage caused by two types of contradictory failures is analytically shown to be kx-out-of-n:G system among all

coherent structures composed of n identical components. A simple formula to find the optimal k* is obtained. We

discuss how the optimal k* varies depending on two failure probabilities of sensor, the plant failure probability,

and damages caused by two types of contradictory failures of the safety monitoring system. Illustrative examples

are given.
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1. Introduction

The main object of the safety monitoring system such
as automatic fire alarm systems is to prevent accidents
and disasters by detecting the abnormality as early as
possible, issuing an alarm, and then taking appropriate
protective actions. The first requirement for the safety
monitoring system is to make alarms certainly in case of
abnormality.

Next, consider the case where the monitored system is
normal. In this case, a false alarm actuates unnecessary
protective actions to cause undesired effects such as the
plant shut-down or loss of operation. Further, if this kind
of situation occurs many times like a story of ”wolf and
boy” written by Aesop, the trust on alarms will be de-
creased and the function of safety monitoring systems will
be lost. In a modernized high-rise building, about 2000
- 3000 fire sensors are allocated, and too frequent occur-
rence of false alarms causes a serious problem. The simple

idea does not hold that a false alarm does not matter be-
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Table 1 Failed-dangerous rate and failed-safe rate

Failed-dangerous Failed-safe rate
Ttem rate (spurious-
(faults/year) faults/year)
Process. 0.15 0.21
connection
Diff. pltessure 0.14 0.31
transmitter
$1gnal line 0.007 0.03
interface
Pr(.essure 0.03 0.10
switch
Channel wiring
and relay to 0.02 0.02
logic
Totals 0.347 0.67

cause it is a kind of fail-safe. The second requirement for
the safety monitoring system is to issue alarms only in
case of the abnormality.

Consider the reliability of a sensor used in safety pro-
tective systems for process plants. Table 1 D shows the
failed-dangerous failure rate, failure rate of not issuing
an alarm under an abnormal system condition, and the
failed-safe rate, failure rate of issuing an alarm under a
normal system condition.

It is clearly shown in Table 1 that sensor reliability is
far below 0.999, and both failed-dangerous rate and failed-
safe rate are higher than expected. In this way, the safety
monitoring system composed of a single sensor has the
limitation in its reliability. Therefore, more than two sen-
sors must be combined to develop a more reliable safety
monitoring system. Further, both failed-safe failure and

failed-dangerous failure must be considered.
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In the design of safety monitoring systems such as auto-
matic fire-alarm systems, the following two types of failure
must be considered:

[1] failed-dangerous failure: failure to issue alarms in
case of emergency,

[2] failed-safe failure: to issue alarms in case of normal-

ity.
Inoue, Kohda, & Kumamoto ?) applied fault-tree analysis
to reliability evaluation of safety monitoring systems with
two types of failure, and obtained a systematic derivation
of fault trees for failed-dangerous and failed-safe failure,
and evaluated various types of logical structures based on
their qualitative and quantitative analyses.

Relay devices in electric circuits and valves also have
two types of contradictory failure shown above, and the
optimal redundancy allocation of these devices has been
studied. Moore & Shannon?® studied that of hammock
and bridge structures, Barlow, Hunter & Proschan ¥ stud-
ied that of series-parallel structures, Meisel %) studied that
of k-out-of-n:G systems. Nakagawa & Hattori® and
Phillips ) discussed mixed structure of series and parallel
redundancy. Kaufmann, Grochiko & Cruon ®) considered
that among all coherent systems composed of 3 compo-
nents. Phillips 9 proved that the optimal structure max-
imizing its reliability is among k-out-of-n:G systems con-
sidering all coherent structures, however he did not obtain
the optimal one explicitly.

This paper obtains the logical structure that minimizes
the expected loss caused by failed-dangerous and failed-
safe failure of a safety monitoring system. It is proved that
the optimal structure among all coherent safety monitor-
ing systems composed of n identical sensors is kx-out-of-
n:G system™. A simple formula to obtain the optimal kx
is also given. Further, it is discussed how the optimal kx
changes depending on failed-dangerous or failed-safe fail-
ure probability of a sensor, failure probability of the plant
to be monitored, and the loss caused by failed-dangerous
and failed-safe failure of the safety monitoring system. Fi-
nally, both the optimal logical structure that maximizes
the normal operational probability of the safety monitor-
ing system and the optimal structure that minimizes the
construction cost plus the expected loss of the safety mon-
itoring system are also obtained.

Chapter 2 discusses failed-dangerous and failed-safe fail-
ure probabilities of the safety monitoring system, and

chapter 3 obtains the optimal logical structure.

2. Failed-Dangerous Failure Probability
Q15 & Failed-Safe Failure Probability

Q25

Define 0-1 variable x; expressing state of :-th sensor of

the safety monitoring system as:

1, if +-th sensor issues an alarm signal

0, otherwise

The state of a safety monitoring system composed of n
sensors is determined completely by the state of the sen-
sors. Thus, the state of the safety monitoring system is

represented as follows in terms of function ¢(z) of state

vector £ = (z1,%2, -+, Tn):
1, if the safety monitoring system
o(z) = issues an alarm (2)
0, otherwise

)
where function ¢(z) is called a structure function of the
safety monitoring system.

Let P; denote a minimal path set® of structure func-
tion ¢(z), and let K; denote a minimal cut set®. Using
minimal path sets and minimal cut sets, structure func-

tion ¢(z) is represented as follows:

P k
s@=T111= =111 = (3)

i=1jeP; j=liek;

where p and k denote number of minimal path sets and
minimal cut sets, respectively, and ]_L z; =1 —Hi(l—azi).

The plant state monitored by the safety monitoring sys-
tem is either abnormal or normal. Let A denote an event
that the plant state is abnormal, and then A denotes the
opposite event that the plant state is normal. The overall
states composed of the plant state and the safety moni-
toring system are represented as:
1) ¢(z) =1and A
2) ¢(z) =1 and A
3) ¢(z) =0and A
4) ¢(x) =0 and A
States 1) and 4) shows normal operations of the safety
monitoring system. These states mean that the safety
monitoring system issues an alarm in case of the plant
abnormality and does not in case of the plant normal-
ity. State 2) indicates that the safety monitoring system
issues an alarm when the plant is normal, and is called
failed-safe state of the safety monitoring system. State
3) shows that the safety monitoring system fails to issue

an alarm when the plant is abnormal, and corresponds

(1) safety monitoring system which issues a system alarm if
more than kx of n sensors issue alarm signals

(2) See Appendix A.
(3) See Appendix A.
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to the failed-dangerous state of the safety monitoring sys-
tem. Failure of the safety monitoring system at states 2)
and 3) are failed-safe failure and failed-dangerous failure,
respectively. The loss is caused in the overall system at
states 2) and 3).

Similarly to the case of the safety monitoring system,
the overall states composed of i-th sensor state and the
plant state are represented as:

1) z; =1and A

2’) z; =1 and A

3) z; =0and A

4’) z; = 0 and A

States 1’) and 4’) indicate the normal operation of i-th
sensor, state 2’) indicates its failed-safe state and state
3’) indicates its failed-dangerous state. Failures of i-th
sensor at states 2’) and 3’) are called its failed-dangerous
and failed-safe failure, respectively.

Let binary variable y; denote the state of i-th sensor

under the abnormal condition of the plant as follows:

1, ifa=0lA @
Y=Y 0, itai=1]A

where B | A denotes the occurrence of event B under the
occurrence of event A.

Let binary function qS'(g) of sensor state vector y =
(y1,Y2," -, yn) denote the state of the safety monitoring
system under the abnormal condition of the plant as fol-

lows:

(5)

[ ite@=oa
P70, it g@) =14

The safety monitoring system gets failed-dangerous if
all the sensors get failed-dangerous at least for one mini-
mal cut set of structure function ¢(z). Thus, binary func-

tion ¢'(y) can be represented as:

k k

S@O=T[1[v=1-TI T -v) (6)

j=1i€K; j=1i€K;

Binary function ¢'(£) is equal to the dual structure func-

tion *® of (y), " (y) =1 —#(1 —y). Here, subscript D

means "dual”, and 1 —y = (1 —y1,1 —y2,--+,1 —yn).
Next, let binary variable z; denote the state of i-th sen-

sor under the normal condition of the plant as follows:

1, if m;=1]A
zZ; = _ (7)
0, if z;=0] A

Let binary function ¢''(z) of sensor state vector z =
(21,22, -+, 2zn) denote the state of the safety monitoring

system under the normal condition of the plant as follows:
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" _ 1, if (b(&):llK
Mg):{o, it g() =0 |4 «

The safety monitoring system gets failed-safe if all the
sensors get failed-safe at least for one minimal path set of
structure function ¢(z). Thus, binary function ¢''(2) can

be represented as:
P
o' =111] = 9)
i=1j€P;

Binary function ¢"(g) is equal to the structure function
¢(2).

Reliability function h(p) of the safety monitoring sys-
tem, failed-dangerous failure probability ¢i1; and failed-

safe failure probability ¢2; of i-th sensor are defined as

follows:
h(p) = Pr{¢(z) = 1} (10)
qui = Pr{y; =1} = Pr{z; = 0| A} (11)
q2i = Pr{z; = 1} = Pr{z; = 1| A} (12)

,Pn), pi = Pr{z; = 1}, Pr{A}
denotes the occurrence probability of event A and Pr

{B | A} denotes the conditional probability of the oc-

where p = (p1,p2,-

currence of event B under the occurrence of event A.
Similarly, failed-dangerous failure probability Q15 and
failed-safe failure probability Q25 of of the safety moni-

toring system are defined as follows:
Qus =Pr{d/(y) = 1} =Pr{d(@) =0 | A} (13)
Qos =Pr{¢"(x) =1} =Pr{s(e) = 1| A} (19)

Substituting eq. (6) into eq. (13) and eq. (9) into eq.
(14), and using q1; and g2; defined as eqgs. (11) & (12),

Q1s and Q25 can be represented as follows:
Qis =1-h(l —q1) (15)
Q2s = h(q2) (16)

where 1 —q1 = (1 —qi1,1 — qi2,--+,1 — qin) and g2 =
(21, G22,"++, G2n)-

For the following discussion, these assumptions are
made:

Assumption 1. Failure of each sensor occurs statis-
tically independently.

Assumption 2. The sum of failed-dangerous failure
probability and failed-safe failure probability of each sen-
sor is less than 1. That is, q1; 4+ g2; < 1 for any «.

Assumption 3. The safety monitoring system is co-

herent®.

(4) See Appendix A.
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Assumption 4. Logic circuits combining sensor in-
puts to make an alarm are perfect. In other words, logic

circuits do not fail during the mission.
3. Optimal System

Consider the optimal logical structure of the safety
monitoring system composed of n identical sensors.

The failed-dangerous failure of the safety monitoring
system causes loss to the plant under its abnormal condi-
tion, while the failed-safe failure causes loss to the plant
under its normal condition. Let P denote the occurrence
probability of an abnormality at the plant monitored by
the safety monitoring system, let Cis denote loss caused
by the failed-dangerous failure of the safety monitoring
system, and let C2s denote loss caused by the failed-safe
failure. The expected loss, Is, caused by two types of
contradictory failure of the safety monitoring system can

be represented as:
Is = C1sPQis + Cas(1 — P)Q2s )

The following theorem holds for the safety monitoring sys-
tem composed of n identical sensors that minimizes the
expected loss caused by two types of failure.

Theorem 1. Let g1 and ¢2 denote failed-dangerous
failure probability and failed-safe failure probability of a
sensor. Among all the safety monitoring systems with
coherent structure composed of n identical sensors, the
optima system that minimizes the expected loss, Is rep-
resented as eq. (17), caused by two types of failure is
kx-out-of-n:G system. The optimal k*x can be determined
as:

1) kx = n, if Clsp(l — q1)n S 025(1 - P)qzn
2) kx = 1, if Clsp(l — ql)qln—l
> Cs(1— P)ga(l — q2)" "

Cas(1=P) 1-qo

In g + nln -

In 1-q1 1—q2
q1 a2

3) kx=

, otherwise

Here, [z] denotes a minimal integer greater than z. If z is
an integer, [z] is equal to either z or x+1. That is, (z+1)-
out-of-n:G system and z-out-of-n:G system has the same
minimal value Is. Ina denotes a natural logarithm of a.
Proof. For a coherent safety monitoring system com-
posed of n identical sensors, its reliability function A can

be expressed as: '*)

h=3 Ap'(t—p) (18)

where p = Pr{z; = 1} and A; denotes the number of
cases such that the system issues an alarm with ¢ sensor

alarms. Since the number of ways in selecting i items from

No.1 January 2001

n n
,0<A; <

7 7

3, A, =1 and Ap = 0.

Since Q15 and Qs are represented in terms of ¢; and g2

n items is . From Assumption

as egs. (15) & (16), Is can be represented as follows using
eq. (18):

Is =CisP — ZAi{Clsp(l - ql)iqln_i

=0

— Cas(1 = P)g2' (1 — ¢2)" '} (19)

Examining whether CisP(1 — ql)iqln_i — Cas(1 —
P)g>'(1 — g2)™ ™" > 0, the following properties hold from
Assumption 2: q1 +¢g2 < 1.

DI CisP(1—q1)" < Cas(1-P)g2", Crs P(1—q1) 1" ' =
Cas(1 — P)qzi(l — qz)"_i <0 for 7 <n.

2) If CisP(1 — q)i"™" > Cas(l = P)g2(1 — ¢2)" 7',
CisP(1—q1)'q1" ' =Cas(1=P)g2" (1—2)" " > 0 for i >
1.

3) Otherwise, k exists such that 0 < k < n & CisP(1 —
05" = Cas(1 = P)gz’(1 = g)"~" = 0, and for i > ,
CisP(1—q1)'q1" ™" — Cas(1 — P)g2* (1 — q2)" " > 0.

To summarize the above discussion, the following inequal-

ity holds:

Is > CisP — Z Af{CisP(1—q)'q" "

i=k*

—Chs(1 — P)qzi(l - q2)n7i} (20)
In eq. (20), the equality holds if A; =0 for 7 < k*.

Since 0 < A; < , the following inequality holds.

2

CisP =Y A{CisP1—q) g™
i=k*

— Cas(1 — P)‘Izi(l - q2)n_i}

> CisP — Z {C1sP(1 — q1)iq1n_i
i=h*
— Cas(1—P)g2'(1—q2)" '} (21)

The equality in eq. (21) holds if A; = for 1 > k*.

Thus, if A; = fort > k™ and A; = 0 for i < k™,

7
the safety monitoring system takes the minimal of /s, and
has the following reliability function:
- n
h=2

i=k* v

p(L—p)" (22)

That is, the optimal reliability function reduces to be that

of k*-out-of-n:G system.
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Table 2 Optimal structures of example 1

n | Optimal structure Is

2 1-out-of-2:G 19.600
3 2-out-of-3:G 9.770
4 3-out-of-4:G 5.188
5 3-out-of-5:G 1.926

Example 1. Assume that Cis, Cas, P, g1, and g2

take the following values:
Cis =1x10% Chs =1x10% P=0.1
q1 = 0.05, g2 = 0.10

In this case, the optimal system can be obtained as shown
in Table 2 according to Theorem 1. As n increases, the
expected loss Is decreases.

Consider how the optimal k™ varies depending on the

value of ¢1, g2, P, or Cls/Czs. Define k as:

Cys(1—P) 1—qo
In 225"~ 4+ nln =22
CisP + q1

kx =

1—qg1 1—g2 (23)
a1 a2

In

Understanding how k changes depending on each param-
eter, the change of the optimal value k™ can be also un-

derstood. Partial derivatives of k& with respect to each

parameter; q1, g2, P, or giz gives:
%ln (1_(]1)(1_(]2) — k _n_k (24)
Oq 9142 1—q1 Q1
Ok 1 A-q)(—g) _k _n-k (25)
0q2 q1q2 2 1-q
ok 1
aP _P(l _ P) In (1—g1)(1—gq2) (26)
9192
ok 1
o c (1-g1)(1—g2) (
0(23) (&) m g

Eqgs. (24) & (25) show that k& does not increase monotoni-
cally as ¢ or g2 increases. That is, The variation of k£ with
respect to q1 or g2 depends on the other parameters. How-
ever, if ¢ or g» is sufficiently smaller than 1, 8k/8q; < 0
or 8k/8qz > 0. Thus, since failed-dangerous failure and
failed-safe failure probabilities of sensors used in practical
situations are sufficiently smaller than 1, the optimal k*
approaches to 1 as the failed-dangerous failure increases,
and the optimal k* approaches n as the failed-safe failure
probability increases.

Ineq. (26), since 0 < P < 1and g1+g2 < 1, 8k/OP < 0.
That is, k decreases as P increases. Thus, the optimal k*
approaches 1 as the abnormality occurrence probability
gets larger, which means that the system become more
resistive to the failed-dangerous failure.

In eq. (27), since Cis > 0, C2s > 0 and ¢1 + g2 < 1,
0k/0(C1s/C2s) < 0. That is, k decreases as Cis5/Cas

increases. Thus, the optimal k* approaches 1 mak-
ing the safety monitoring system more resistive to the
failed-dangerous failure as the loss caused by the failed-
dangerous failure gets larger. On the contrary, as the loss
caused by the failed-safe failure gets larger, the optimal k*
approaches n making the safety monitoring system more
resistive to the failed-safe failure.

These results show that the property of the optimal
k™ is consistent with the property of k-out-of-n:G system
that as k approaches n, the failed-dangerous failure prob-
ability gets larger while the failed-safe failure probability
gets smaller.

Theorem 1 shows that whatever value parameters Ci s,
Css, and P of the expected loss may take, that is, what-
ever the ratio of Q1S to Q2S5 may be, the optimal system
is k™ -out-of-n:G system. This is the more explicit expres-
sion of Phillips’s result ).

Reliability of the safety monitoring system can be de-
fined as:

R=1-PQis—(1—P)Qss (28)
This represents the probability of normal operation of
the safety monitoring system without failed-dangerous
and failed-safe failure. The optimal system that maxi-
mizes the reliability among all the coherent safety moni-
toring systems can be obtained from Theorem 1 by setting
Cis = Chs = 1.

It is clear from Theorem 1 that the expected loss caused
by two types of failure decreases monotonically as the
number of sensors increases. On the other hand, the con-
struction cost of a safety monitoring system gets higher as
the number of sensors increases. Therefore, the expected
loss Is must be balanced with the system construction
cost. Now, consider the objective function I's’ which sums
the expected loss Is and the construction cost of the safety

monitoring system.
Is' = C1sPQis + Cas(1 — P)Q2s + csm (29)

where ¢, denotes the cost of a sensor. The optimal sys-
tem that minimizes objective function Is' can be obtained
by determining only the number of sensors, n, using the
result of Theorem 1.

Example 2. Assume that Cis, Cas, P, q1, g2, and ¢,

take the following values:
Cis =1x10% Chs =1x10%, P=0.1
g1 = 0.05, go = 0.15, ¢, = 10
Under this condition, Table 3 shows the searching pro-

cess of the optimal system that minimizes Is'. The opti-

mal system is 2-out-of-3:G system with Is' = 42.717
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Table 3 Searching process of example 2

Optimal structure Is I’
1-out-of-1:G 63.500 73.500
1-out-of-2:G 27.475 47.475
2-out-of-3:G 12.717 42.717*
2-out-of-4:G 10.388 50.388
3-out-of-5:G 3.553 53.553

TR W N B

* Optimal solution of example 2

4. Conclusions

This paper proves analytically that the optimal log-
ical structure that minimizes the expected loss caused
by failed-dangerous and failed-safe failure is k*-out-of-
n:G system among all coherent safety monitoring systems
composed of n identical sensors. Further, a simple formula
that determines the optimal £* is given, and how the opti-
mal k* changes depending on parameters is investigated.

Though this paper discussed on the safety monitoring
system composed of identical sensors with the same type,
various types of sensors are used in practical situations.
Thus, the problem to determine the optimal logical struc-
ture for the safety monitoring system composed of various
types of sensors will be our future problem.

Lastly, we would deeply appreciate Dr. Yoichi Ogawara
and Mr. Etsushi Sakino, Takasago Laboratory, Mitsubishi
Heavy Industry, Ltd., for their helpful discussion and sug-

gestions.
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Appendix A.

1. The safety monitoring system is coherent if its struc-
ture function ¢(z) satisfies the following conditions:

(1) Each sensor is relevant to ¢(z).

(2) Function ¢(z) is non-decreasing with respect to each
variable z;.

Condition (1) means that the system has no sensors ir-
relevant to issuing alarms, in other words, unnecessary
and meaningless sensors, and is self-evident. Condition
(2) represents a natural requirement that the issue of an
alarm signal in some sensor (represented as z; changing
from 0 to 1 for some 7) cannot prevent the safety monitor-
ing from issuing an alarm (represented as ¢(z) changing
from 1 to 0). Any ordinary logical structure composed of
only AND and OR logical gates is a coherent structure.
2. For a vector  such that ¢(z) = 1, a path set is defined
as C1(z) = {¢ | z; = 1} and vector z is called a path vec-
tor. If z, is a path vector and ¢(y) = 0 for any y such that
y <z,, z, is a minimal path vector. In this case, the cor-
responding path set Cy (gp) is called a minimal path set.
On the contrary, for a vector z such that ¢(z) = 0, a cut
set is defined as Co(z) = {7 | z; = 0} and vector z is called
a cut vector. If z_ is a cut vector and ¢(z) =1 for any z
such that z > z_, z_ is a minimal cut vector. In this case,
the corresponding cut set Co(z,) is called a minimal cut
set. To summarize the above discussion simply, a minimal
path set is a minimal combination of sensors whose alarm
signals can make the safety monitoring system issue an
alarm, a minimal cut set is a minimal combination of sen-
sors whose failure to issue alarm signals can prevent the

safety monitoring system from issuing an alarm.

Takehisa Koupa (Member)

He received his B.Eng, M.Eng. Dr.Eng.
degrees all in Precision Mechanics from Ky-
oto University in 1978, 1980, and 1983, re-
spectively. Prior to joining Kyoto University
in 1988, he worked with National Mechanical
Engineering Laboratory, Japan, from 1983 to
1988. He is now an Associate Professor in the
Department of Aeronautics and Astronautics,
Kyoto University. Since 1999, he has been an
Associate Editor of IEEE Transactions on Re-
liability. His interests lie in the systems safety
and reliability, risk analysis, systems analysis,
and so on.



T.SICE VolE-1

Koichi INouE (Member)

Dr. Inoue received his B.Eng., M.Eng. and
Dr.Eng. degrees all in Applied Mathematics
and Physics from Kyoto University in 1963,
1965 and 1968, respectively. Dr. Inoue served
from 1969 to 1986 as an Associate Professor to

the Department of Precision Mechanics, Kyoto
University, Kyoto, and since 1986 he has been
a Professor with the Department of Aeronau-
tics & Astronautics, Kyoto University, where
he has taught, performed and directed research
on Control and Systems Engineering as well
as Reliability and Safety Engineering. He is
presently the Vice-President of Technical Oper-
ations, IEEE Reliability Society and the Pres-
ident of Human Interface Society. He received
Outstanding Paper Awards five times from the
Society of Instrument and Control Engineers
(3 times), the Institute of Systems, Control
and Information Engineers and Japan Society
for Safety Engineering for his contributions in
control and systems engineering. He is a recip-
ient of the IEEE Third Millennium Medal. His
fields of interest include systems reliability and
safety, system optimization, risk analysis, hu-
man interface, neural networks, and UAV con-
trol.

Hiromitsu KumamoTo (Member)

He received B.S., M.S., and Dr. Eng. De-
grees from Kyoto University in 1969, 71, and
76, respectively. He is now a professor of
Dept. of Systems Science, Graduate School

‘ . of Informatics, Kyoto University. He coau-
thored with Prof. Henley at University of
Houston four books: Reliability Engineering
and Risk Assessment (Prentice-Hall, 1981),
Designing for Reliability and Safety Control
(Prentice-Hall, 1986), Probabilistic Risk As-
sessment (IEEE Press, 1992; reprinted version
of the 1981 book), Probabilistic Risk Assess-
ment and Management for Scientists and Engi-
neers (IEEE Press, 1996). His current research
fields include human-machine problems in in-
telligent transport systems. He is a member of
IEEE.

Isao Takami (Member)

He received the B.S., M.S., and Dr.Eng. de-
grees in applied mathematics and physics from
Kyoto University in 1972, 1974, and 1986. He
has belonged to Mitsubishi Heavy Industries,
V' Ltd. His research interest includes safety and
reliability of large scaled plants. He is a mem-
ber of ISCIE, HIS, and SICE.

Rewrited from T.SICE, Vol.17, No.9, 908/913 (1981)

No.1 January 2001

19



