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Computation Method for Optimal Control Problem with Terminal

Constraints using Genetic Algorithm

Yuh Yamashita∗ and Masasuke Shima∗∗

In this paper, a new numerical computation method using the genetic algorithm for an optimal control prob-

lem with terminal constraints and singular arcs is proposed. The input functions are parameterized using spline

interpolation, which has devices that can represent discontinuous input functions. In order to treat the terminal

constraints properly, Lagrange multipliers that are contained in genetic information of chromosomes are intro-

duced. On the singular arcs, coefficients of inputs in the Hamiltonian vanish, so the coefficients on the arcs are

included in the extended performance index. The weighting coefficents of the extended performance index are

changed adaptively at every generation of the genetic algorithm. A simple example is solved using this method,

which verifies the efficiency of the genetic algorithm in the computation of optimal control.
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1. Introduction

In this paper, by using the genetic algorithm, GA, we

develop a new numerical method to solve the optimal con-

trol problem with terminal constraints, and especially in-

cluding singular arcs.

When the equations describing the plant and the inte-

grand of the performance index are affine with respect to

inputs, the Hamiltonian is also affine with respect to in-

puts, and thus the optimal inputs during a certain interval

of time when the coefficients of inputs in the Hamiltonian

are zero cannot be determined using the minimum prin-

ciple. Such a case is called singular case, and the optimal

control problems with the possibility of the appearance

of the optimal singular control have not been solved the-

oretically except in several particular cases. From the

point of view of the numerical solution, since the Hes-

sian matrix Huu(·) of the Hamiltonian with respect to

inputs becomes singular, all the numerical methods using

the regularity of the Hessian matrix cannot apply to the

singular optimal control problems. For examples of nu-

merical methods that are applicable to singular cases, we

can refer to studies 1)∼3) that require some a-priori in-

formation. Moreover, the ε-algorithm of Jacobson et al.,

and the ε-α(·)-algorithm4) that is an improved version of

the ε-algorithm can be applied to the singular control. In

the ε-α(·)-algorithm, a small term of quadratic form of

∗ Graduate School of Information Science,

Nara Institute of Science and Technology,

Takayama 8916-5, Ikoma, Nara 630-0101, JAPAN.
∗∗ Division of Systems and Information Engineering,

Graduate School of Engineering, Hokkaido University,

N13W8, Kita-ku, Sapporo 060-8628 JAPAN.

inputs is added to the Hamiltonian. This algorithm can

solve the optimal singular control problem by making the

coefficients of the added term tend toward zero. A similar

concept is adopted in the method using the convergence

control parameter (CCP) of Järmark 5) and the method

of Sakawa and Shindo 6), 7), which also uses CCP. More-

over, an ε-algorithm-like method is used in the method

of Chen and Huang 8). However, these numerical meth-

ods cannot guarantee that global solutions for problems

having multi-peaks can be obtained.

With the development of computers, the genetic algo-

rithm is often used for optimization problems in various

research areas. The GA is applied to control problems

also, for example, studies using the GA to help in the

learning of neural networks and studies using the GA for

optimization of control design. In this study, the GA is

used for obtaining the numerical solutions of optimal con-

trol problems with fixed control horizons and terminal

state constraints, which include problems having multi-

peaks. Seywald et al. 9) has obtained an optimal con-

trol sequence numerically via the GA also, but, in their

method, the time is discretized. Therefore, the problem in

their method is equivalent to the optimal control problem

for discrete-time systems.

In this paper, the data of the input encoded onto chro-

mosomes are not the input sequences themselves. In ad-

dition, the data are compressed by using the third spline

functions. For the problems with terminal state con-

straints, Lagrange multipliers with respect to the con-

straints are introduced, and are encoded onto the chro-

mosomes. To improve the convergence on the singular

arc, we add the functions of the coefficients of inputs in
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the Hamiltonian to the performance index. Moreover, the

functions of the terminal constraints are used in the ex-

tended performance index also, and their weighting co-

efficients are changed adaptively in every generation of

the GA. The effectiveness of this method is confirmed by

a simulation result for an example of an optimal control

problem for a stirred-tank reactor.

2. Problem statement

We address the optimal control problem of the following

system:

ẋ = f(x,u2) +

m1∑
j=1

gj(x)u1,j (1)

where x ∈ �n denotes a state vector, and u ≡ (u1, u2) ∈
�m1 × �m2 is an input vector. Moreover, it is assumed

that f(·) and gj(·) belong to the C2-class. We consider

the minimizing problem of the performance index

J1 ≡ K(x(t1)) +

∫ t1

t0

{
L0(x(τ), u2(τ))

+

m1∑
j=1

Lj(x(τ))u1,j(τ)

}
dτ (2)

under the constraints

x(t0) = x0 (3)

φ(x(t1)) ≡
col. (φ1(x(t1)), . . . , φs(x(t1))) = 0 (4)

u1,j min(x(t)) ≤ u1,j(t) ≤ u1,j max(x(t)),

j = 1, . . . ,m1; t ∈ [t0, t1] (5)

u2,j min(x(t)) ≤ u2,j(t) ≤ u2,j max(x(t)),

j = 1, . . . ,m2; t ∈ [t0, t1] (6)

for the system (1), where ui,j min(x), ui,j max(x) (i = 1, 2,

j = 1, . . . , mi), K(x), and Lj(x, u2) (j = 0, 1, . . . ,m1) are

C2 functions. The input vector u1 appears linearly in the

system equation and the performance index, and there is

no cross term between u1 and u2 in these equations.

We solve this problem by using the GA. An ad hoc way

to solve the problem is minimizing

J2 = J1 +
c

2
‖φ(x(t1))‖2 (7)

instead of J1, and expecting that the limit solution un-

der c → ∞ satisfies the terminal constraints. However,

by this method, it is difficult to keep the error of the ter-

minal constraints within a pre-specified tolerance with a

finite constant c, and the objective to minimize the orig-

inal performance index J1 may be unachievable. We can

employ another performance index9)

J ′
2 = J1 + c‖φ(x(t1))‖, (8)

but the result of this method is very sensitive with re-

spect to the value of parameter c, so that many trials

are necessary. In this paper, the performance index is

improved by using the co-state and Lagrange multipliers,

and a method of changing the weighting coefficients adap-

tively in every generation of the GA is proposed. In this

section, well-known necessary conditions of optimal con-

trol will be shown, and, in the next section, we propose

an extended performance index including the necessary

conditions.

By adding the conditions of constraints, the perfor-

mance index can be extended to

J3 ≡ J2 + 〈λ, φ(x(t1))〉

+

∫ t1

t0

〈
p(τ), f(x(τ), u2(τ))

+

m1∑
j=1

gj(x(τ))u1,j − ẋ

〉
dτ

+

∫ t1

t0

{〈µL1(τ), u1min(x(τ)) − u1(τ)〉 (9)

− 〈µH1(τ), u1 max(x(τ)) − u1(τ)〉} dτ

+

∫ t1

t0

{〈µL2(τ), u2min(x(τ)) − u2(τ)〉

− 〈µH2(τ), u2 max(x(τ)) − u2(τ)〉} dτ,

where p ≡ row (p1, . . . , pn) is the co-state vector, λ ≡ row(

λ1, . . . , λs) is a Lagrange multiplier vector correspond-

ing to the terminal state constraints, and µL1(t) ≡
row (µL1,1(t), . . . , µL1,m1 (t)), µH1(t) ≡ row (µH1,1(t), . . . ,

µH1,m1 (t)), µL2(t) ≡ row (µL2,1(t), . . . , µL2,m2 (t)), and

µH2(t) ≡ row (µH2,1(t), . . . , µH2,m2 (t)) are Lagrange mul-

tipliers corresponding to the lower bound of u1, the upper

bound of u1, the lower bound of u2, and the upper bound

of u2 respectively. To simplify the expression, we define

µ ≡ (µL1, µH1, µL2, µH2) (10)

h(x, u) ≡




u1min(x) − u1

u1 − u1max(x)

u2min(x) − u2

u2 − u2max(x)


 . (11)

The constraints for the inputs can be expressed as each

component of h(x, u) must be less than or equal to zero.

The input vector satisfying the condition is called an ad-

missible input. The Hamiltonian is defined as follows:

H(x,p, u) ≡ L0(x, u2) +

m1∑
j=1

Lj(x)u1,j

+

〈
p, f(x,u2) +

m1∑
j=1

gj(x)u1,j

〉
. (12)
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Then the conditions

ṗ = −∂H

∂x
− µ

∂h

∂x
(13)

p(t1) =
(

∂K

∂x
+ (cφ(x)T + λ)

∂φ

∂x

)∣∣∣
x=x(t1)

(14)

∂H

∂u
+ µ

∂h

∂u
= 0 (15)

〈µ, h(x, u)〉 = 0 (16)

µj ≥ 0, j = 1, . . . , 2(m1 + m2) (17)

must be fulfilled along the optimal solution. Moreover,

the minimum principle shows that

H(x∗, p∗, u∗) ≤ H(x∗, p∗, u) (18)

for all admissible input u, where u∗ denotes the optimal

input vector, x∗ the optimal state vector, and p∗ the cor-

responding optimal co-state vector. By picking up and

gathering the components of h(x, u) corresponding to the

active constraints at t, we can define a column vector

h̃t(x, u), such that

h̃t(x(t), u(t)) = 0. (19)

Let µ̃ denote a Lagrange multiplier vector of which com-

ponents correspond to h̃t(x, u), then the components of µ

excluded by µ̃ are zero at t. Note that the dimension of

h̃t(x, u) is not greater than m1 +m2. From equation (15),

µ̃ = −
[

∂ĥt

∂u

]+
∂H

∂u
(20)

is derived. The superscript + means that the matrix is a

generalized inverse matrix, but µ̃ is unique and indepen-

dent of the choice of the generalized inverse matrix.

Assume that the Hessian matrix

∂

∂u2

[
∂H

∂u2

]T

(21)

has full rank, then u2 minimizing the Hamiltonian is de-

termined uniquely. Conversely, the Hamiltonian is linear

with respect to u1 as follows:

H(x,p, u1, u2) = H0(x, p, u2) +

m1∑
j=1

Hj(x,p)u1,j .(22)

Therefore, if Hj(x, p) (j �= 0) is not zero, u1,j has a value

on the boundary of the input constraint. However, if

Hj(x, p) vanishes on an interval of time, the optimal in-

put cannot be determined by the minimum principle. The

optimal trajectory in such an interval is called a singular

arc. The optimal control problem with a singular arc has

not been solved analytically yet, except in several simple

cases. For both inputs, if the value of ui,j is not on the

boundary of the constraint in a period,

∂H

∂ui,j

∣∣∣∣
x=x∗ ,p=p∗,u=u∗

= 0 (23)

is satisfied for the period.

While the Lagrange multipliers µ’s for the input con-

straints can be obtained with equation (20), it is difficult

to solve the Lagrange multipliers λ’s for the terminal state

constraints explicitly. Hence, in this paper, the informa-

tion of λ is included in the genes in the GA, and the λ

satisfying the above condition and the trajectory fulfilling

the terminal constraints are searched through the GA.

3. Fitness function of the GA

Using the necessary conditions on the optimality, we

can extend the performance index as

JGA ≡ J2 +

s∑
i=1

ki|φi(x(t1))|

+

∫ t1

t0

m1∑
j=1

ajγj(x, p, u)
√

|Hj(x,p)| dt

+

∫ t1

t0

m2∑
j=1

bj |u2,j − ũ2,j(x, p, u1)| dt (24)

+ q〈λ, φ(x(t1))〉
where ũ2,j(x,p, u1) denotes u2 minimizing the Hamilto-

nian, and

γj =




0
(u1,j = u1,j min and Hj(x,p) > 0)

or
(u1,j = u1,j max and Hj(x,p) < 0)

1 other.

(25)

This extended performance index drives the GA proce-

dure. The positive coefficients ki, aj and bj vary adap-

tively in each generation of the GA. The coefficient q

starts from zero, and becomes q = 1 after a pre-specified

generation. Since the absolute values of the terminal con-

straints are adopted in the equation of the performance

index, the trajectory corresponding to the minimum value

of JGA satisfies the terminal constraints for sufficiently

large ki, aj and bj . In this study, if the error of the i-th

terminal constraint of the best individual in a generation

is contained within a tolerance of

|φi(x(t1))| ≤ εi, (26)

the coefficient ki becomes smaller in the next generation

by being multiplied by a constant smaller than 1, and if

the error is out of the tolerance, ki of the next generation

becomes large by being multiplied by a constant greater

than 1. Moreover, if all the terminal constraints are within

the tolerances, ai (i = 1, . . . ,m1) and bi (i = 1, . . . ,m2)

decrease in the next generation, and, if not, these coef-

ficients increase in the next generation. Under the con-

straints, the minimum values of the four performance in-

dices J1, J2, J3 and JGA coincide with each other as fol-



T. SICE Vol.E-1 No.1 2001 277

0Y 1Y

1X∆

2Y

2X∆

3X∆

3Y

4X∆

4Y

-2X∆ N

-2YN -1YN

u i,j
∼

0

1

t1t0 t

Node 1 Node 2

Node 3

Node 5

Node 4

Node N-1 Node NT∆2
T∆

Fig. 1 Parameterization of input.

lows:

J1(x
∗, p∗, u∗) = J2(x

∗, p∗, u∗)

= J3(x
∗, p∗, u∗) = JGA(x∗, p∗, u∗). (27)

As the value of JGA is large, the fitness function of the

GA should be small. In this paper, we adopt

JGA max − JGA

JGA max − JGA min
+ d (28)

as the fitness function, where JGA min and JGA max are

the minimum value and the maximum value, respectively,

of JGA in the generation of the GA, and d is a positive

coefficient varying in every generation. For a large d, the

values of the fitness function in the generation are leveled

evenly, and for a small d, the ratio between the values of

the fitness function for two individuals becomes large. If,

in the selection stage, the number of the culled individ-

uals is greater than a pre-specified value, d increases in

the next generation. Conversely, if the number is smaller

than the pre-specified value, d decreases.

4. Coding method of chromosome

The gene in each individual of the GA should contain

the information for the sequence of input u and the La-

grange multipliers λ corresponding to the terminal con-

straints. First, we address the coding method of the input

sequence into the chromosome in each individual.

Figure 1 illustrates the coding method for an in-

put sequence. The horizontal-axis shows time, and

the vertical-axis shows the input ui,j normalized from

[ui,j min, ui,j max] into [0, 1]. We place N nodes (node

1, node 2,. . . , node N) at the following coordinates:

(t0, Y0),
(

t0 +
∆T

2
+ ∆X1, Y1

)
,(

t0 +
3∆T

2
+ ∆X2, Y2

)
, . . . (29)

. . . ,
(

t1 − ∆T

2
+ ∆XN−2, YN−2

)
, (t1, YN−1),

where ∆T = (t1 − t0)/(N − 2). The black circles in

Fig. 1 indicate the nodes. All nodes are interpolated by

a third spline-curve of which the parameter is the time

axis. If the value of the normalized input of the interpo-

lated curve overruns the period [0, 1], the curve is clipped

within [0, 1]. Moreover, at the point where the values of

time of two adjoining nodes are backward, the input se-

quence becomes discontinuous, and the parts before and

after the discontinuous point are interpolated separately.

In the example of Fig. 1, there exists a discontinuous point

between the 4th node and the 5th node. The chromosome

of each individual has the information for the data of the

nodes

Y0,∆X1, Y1, . . . ,∆XN−2, YN−2, YN−1 (30)

for all inputs and the data of the Lagrange multipli-

ers λ1, . . . , λs corresponding to the terminal constraints.

Therefore, the chromosome length is �{2(N − 1)(m1 +

m2) + s} bits, where every real value is quantized into �

bits.

The interpolated inputs, which is denoted by ũi,j(t), are

normalized into [0, 1]. The real input sequences can be

calculated as

ui,j=ui,j(x, t) (31)

=(ui,j max(x) − ui,j min(x))ũi,j(t) (32)
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+ ui,j min(x), i = 1, 2; j = 1, . . . ,mi,

which lead the state vector x and co-state vector p by

solving

ẋ = f(x,u2(x, t)) +

m1∑
j=1

gj(x, u2(x, t))u1,j(x, t) (33)

ṗ = −∂H

∂x
(x, p, u1(x, t), u2(x, t))

+

[
∂ĥt

∂u

]+
∂H

∂u
(x, p, u1(x, t), u2(x, t))

∂h̃t

∂x
(x) (34)

with a numerical method, e.g., the Runge-Kutta method.

The combination of spline interpolation and the GA is

comparatively popular for the optimization problem of a

function, but one significant aim of this study is to ex-

tend the class of the function to the class of piecewise

continuous functions.

5. Example and simulation result

We address the following example:

ẋ = −(u + 5)x + u (35)

J1 = −
∫ t1

t0

(−4x(τ) + 3)u(τ) dτ, (36)

where n = 1, m1 = 1, m2 = 0, and the inverval of time is

[t0, t1] (t0 = 0, t1 = 1). The constraint conditions are

x(t0) = 0 (37)

φ1(x(t1)) = x(t1) − 0.2 = 0 (38)

0 ≤ u(t) ≤ 10. (39)

This example is a problem for obtaining the best earn-

ings for the dimension-less model of a stirred-tank reac-

tor, which was studied by Sawaragi et al. 10) The input

constraints are independent of the state, therefore, p is

independent of µ also.

The constants in the extended performance index JGA

are set as follows:

c = 4 (40)

Initial value of k1 = 9 (41)

Initial value of a1 = 15. (42)

If |φ1(x(t1))| ≤ ε1 = 0.0025 for an individual having the

largest JGA, which is called the best individual, then a1

and k1 are multiplied by 0.997. If |φ1(x(t1))| > ε1 in

the best individual, a1 are k1 are multiplied by 1.007.

The value of q is zero until the 130th generation, and

becomes 1 after that generation. In coding chromo-

some, we set N = 12, ∆T = (t1 − t0)/(N − 2) = 0.1,

−1.8∆T ≤ ∆Xj ≤ 1.8∆T , −0.125 ≤ Yj ≤ 1.125 (20%

of this interval is outside of [0, 1]), and −10 ≤ λ ≤ 10.

0
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0 0.2 0.4 0.6 0.8 1

Fig. 2 Optimal input u1(t).
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Fig. 3 Optimal trajectory of the state x(t).

Each value on the chromosomes is expressed by Gray cod-

ing of 16 bits. The population size is 1,200, and the GA

is performed through 250 generations. The initial values

of the chromosomes are generated by uniformly random

numbers. In the selection stage of the GA, an individual

survives to the number of the integer part of the fitness

value divided by the mean of the fitness value, i.e. if the

value is greater than two, the individual is copied. More-

over, the individual that has the best value of J1 in the

group in which members satisfy |φ1(x(t1))| ≤ ε1 survives

at discretion. The remaining individuals are selected ran-

domly according to fitness values. It is clear that the best

individual also survives by the algorithm of the selection.

The crossover rate is 70%, and the crossover is performed

at the 16 bits boundary only. Uniform crossover and

one-point crossover are applied with fifty-fifty probabil-

ity. The mutation rate is 20%, and in the mutation stage

a locus of one bit selected randomly is flipped. The best

individual and the individual that has the best J1 value

in the group in which members satisfy |φ1(x(t1))| ≤ ε1

are excluded in the crossover and mutation stages.

The optimal input obtained by the proposed method is

shown in Fig. 2. Figure 3 shows the optimal trajectory

of x, Fig. 4 shows the optimal trajectory of p, and Fig. 5
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Fig. 4 Optimal trajectory of the co-state p(t).
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Fig. 5 Optimal coefficient H1(x, p) of the input in the

Hamiltonian function.

shows the value of H1(x, p). The obtained optimal cost

J is −5.26641. The terminal constraint error of the ob-

tained solution is φ(x(t1)) = 7.34 × 10−4, which is less

than 30% of the pre-specified tolerance ε1 = 0.0025. Due

to the linearity of the input in the Hamiltonian, the period

during which the input of Fig. 2 is not on the boundary of

the input constraint indicates the singular control. The

obtained solution shows the outline of the optimal input.

Several solutions using other random seeds are tested, and

all solutions are similar to Figs. 2–5. In Fig. 5, H1(x, p),

the coefficient of the input in the Hamiltonian, is almost

zero on the singular arc, but x and p in Figs. 3 and 4

are slightly perturbed on the singular arc. When all in-

puts are included linearly in the Hamiltonian, i.e., when

m2 = 0, {Hi, Hj} (i, j = 0, 1, . . . ,m1) also vanish on the

singular arc by the generalized Legendre Clebsch condi-

tion, where {·, ·} denotes the Poisson bracket. Therefore,

to suppress the perturbation of x and p on the singular

arc, it may be effective to introduce this condition into

the extended performance index JGA.

In this example, parameters a1 and k1 that are changed

adaptively oscillate with small amplitudes in the GA

procedure. Since the individual that has the best J1

value in the subpopulation in which individuals satisfy

|φ1(x(t1))| ≤ ε1, survives infallibly, this oscillation causes

little trouble for obtaining a ‘good’ solution. The oscil-

lation is a useful phenomenon for maintaining variety in

the population.

6. Conclusions

We proposed a new numerical method solving the op-

timal control problem with singular arcs and terminal

constraints using the genetic algorithm. To handle the

terminal constraints properly, Lagrange multipliers were

adopted, with this information included in the chromo-

somes. The extended performance index using the neces-

sary conditions of the optimality was proposed, and the

weighting coefficients in the extended performance index

varied in every generation of the GA. Introduction of the

GA increased the calculation time. However, this kind

of problem is always solved in off-line rather than real-

time calculation, and the development of computers in

recent years makes such a method practicable. We be-

lieve that obtaining a good-quality solution is important,

even though a much time is necessary for calculation.

This study was partially supported by the Ministry of

Education, Science, Sports and Culture, Grant-in-Aid for

Encouragement of Young Scientists (A), 05855056, 1993.
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