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A Study on the Convergence of the Interpolation Point

Augmentaion Method for L1 and H
∞ Control Problems†
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This paper studies the convergence of the interpolation augmentation method when applied to multi-block H∞

and L1 control problems. Firstly, it is shown that the norm of the Hankel operator associated to the augmented

1-block problems converges to the norm of the Hankel Toeplitz operator of the multi-block problem in the H∞

control setting. Secondly, it is shown that the norm of the upper bound sequence approaches the optimum under

some conditions for L1 2-block problems to guarantee the suboptimality of the sequence.
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1. Introduction

One of the main idea of robust control is the exploita-

tion of the induced norm of a closed loop map in the feed-

back system. If we measure the magnitude of the signal by

its absolute maximal peak, then the induced norm turns

out to be the L1 norm of the impulse response. Hence the

control design involves the minimization of the L1 norm,

and this is the motivation of the L1 control theory 1).

The minimization of the L1 norm is solved in 2) for

so-called 1-block discrete-time problems and in 3) for so-

called 1-block continuous-time problems. However, an op-

timal solution for so-called multi-block problems which

deal with trade-off between various control specifications

is not obtained by the methods in 2), 3).

In 4) a new method to solve multi-block discrete-time

`1 control problems were proposed. It is called delay aug-

mentation method (DA method). The idea of the DA

method is to augment a multi-block problem to a se-

quence of 1-block problems from which we derive lower

and upper bound sequences for the original problem us-

ing optimal solutions of the augmented problems. The

method is inherently for discrete-time problems because

it explicitly uses properties of the norm space of discrete-

time systems. Therefore, the DA method is not applicable

to continuous-time problems.

The interpolation point augmentation method 5) ex-

ploits properties of the weak-∗ topology instead of those

of a particular norm space, and gives an optimal solu-

tion of continuous-time L1 control problems. Since the
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convergence is derived by the properties of weak-∗ closed

subspace, the augmented blocks can be constructed to

have unstable zeros and need not be pure delays. Since

the weak-∗ topology is a key factor, the method can be

applied to H∞ control as well.

There are a couple of issues on the convergence of the

interpolation point augmentation method. One of them is

to strengthen the theoretical background of the block aug-

mentation such as a relation to existing theories. Another

issue is to give a stronger convergence than the weak-∗

convergence of the upper bound sequence. Note that the

weak-∗ convergence does not guarantee the suboptimal-

ity, i.e., the derivation of a solution whose norm is close

to the optimal within a given error.

In this paper, the above two issues are resolved. For

the H∞ control problems, we give a relation of the mixed

Hankel-Toeplitz operator of the original multi-block prob-

lem and the Hankel operators of augmented 1-block prob-

lems, and show that the Hankel operators are compres-

sions of the mixed Hankel-Toeplitz operator. The increase

of the number of augmentation points corresponds the en-

largement of the compression spaces, and from this we can

deduce the convergence of the norm of the Hankel opera-

tors to the norm of mixed Hankel-Toeplitz operator.

For the L1 control problems, the norm of the upper

bound sequences converges to the optimal if the support

of delta functions of lower bound sequences is uniformly

spaced 5). It is shown that the same conclusion holds

under a milder condition than the assumption of uni-

formly spaced support. If this condition is satisfied, then

the suboptimality of the interpolation point augmentation

method is guaranteed.
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Table 1 Classes of input-output operators.

control problem signal space class of input-output stable operators

discrete-time H∞ control `2(
�

+) transfer functions in H∞(D)

continuous-time H
∞ control L

2(� +) transfer functions in H
∞( � + )

discrete-time `1 control `∞(
�

+) convolution operators in `1( � +)

continuous-time L1 control L
∞(� +) convolution operators in L1( � +)

2. Interpolation point augmentation

method

The so-called standard control problem is transformed

into the following model matching problem using the pa-

rameterization of stabilizing controllers:

γ = inf
�
‖Φ‖ind : Φ = H − UQV, Q ∈ A � , (1)

where A is a class of linear time-invariant input-output

stable systems defined as in Table 1 depending on the

control problems, and H,U, V ∈ A are fixed operators

determined by the generalized control plant. The set of

nonnegative integers is denoted as � +, the set of nonneg-

ative real numbers is denoted as � + , the closed unit disk

in the complex plane is denoted as D, and the open right

half plane in the complex plane is denoted as � + .

For single-input single-output systems, the input-

output relation of an element in A is defined as follows

(see also 5)). Let u and y be elements of the input and the

output signal spaces, respectively, and let û and v̂ denote

the λ transform (1) of u and v if the system is discrete-

time and the Laplace transform of u nad v if the system is

continuous-time. For (continuous and discrete-time) H∞

problems, Ĥ ∈ H∞(D) (or Ĥ ∈ H∞( � + )) defines the

map ŷ = Ĥû. With a slight abuse of notation, we shall

denote the map as H ∈ A. For discrete-time `1 problems,

H ∈ `1 defines the convolution map

y(t) =
t�

τ=0

u(t − τ )H(τ ).

The transfer function of the map is

Ĥ(λ) =
∞�

τ=0

λτH(τ ).

It is known that Ĥ ∈ H∞(D). For continuous-time L1

problems, H ∈ M( � +) defines the convolution map

y(t) = 	
τ∈[0,t]

u(t − τ )dH(τ ).

The transfer function of the map is

Ĥ(s) = 	
τ∈ 
 +

e−sτdH(τ ),

(1) If z−1 is replaced by λ in the z transform, it is called the

λ transform. The unstable region is inside the unit circle.

which is in H∞( � + ). For multi-input multi-output sys-

tems, input-output operators are defined by matrices

whose entries are elements of A.

We shall assume that the transfer functions Ĥ, Û and

V̂ are rational in (1). If both Û and V̂ are square, the

problem (1) is called 1-block. Otherwise it is called multi-

block. The infimum (1) is achieved by an optimal solution

if the problem is 1 block and Û and V̂ do not have zeros

on the boundary, i.e., the imaginary axis if the system

is continuous-time, and the unit circle if the system is

discrete-time. For multi-block problems, partition H, U ,

and V in accordance with the sizes of U and V as follows:

H = � H11 H12

H21 H22 � , U = � U1

U2 � , (2)

V = 
 V1 V2 � .

Assumption 1. The block partition (2) satisfies the

following conditions.

(i) The subsystem U1 and V1 are square, and det Û1

and det V̂1 are not identically zero.

(ii) There are no unstable zeros on the boundary, i.e.,

the imaginary axis if the system is continuous-time, and

the unit circle if the system is discrete-time.

Note. The condition (i) is satisfied by column or row

permutation if Û is of full column rank and V̂ is of full

row rank. The condition (ii) is for the sake of simplicity.

Now, augment U and V as

U (k)
a = 
 U X

(k)
c � = � U1 0

U2 X
(k)
2,c � , (3)

V (k)
a = � V

X
(k)
r � = � V1 V2

0 X
(k)
2,r � , (4)

and consider the 1-block problem

γ(k)
a = inf � ‖Φ‖ : Φ = H − U (k)

a QaV (k)
a , Qa ∈ A � , (5)

Qa = � Q11 Q12

Q21 Q22 � . (6)

Assumption 2. The operators X
(k)
2,c and X

(k)
2,r satisfy

the following conditions.

(i) Their λ transforms (Laplace transforms) are sta-

ble rational functions.

(ii) There is no zeros on the unit circle (on the imag-

inary axis).
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(iii) In the ring of stable rational functions, X
(k)
2,c is

a left divisor of X
(k+1)
2,c and X

(k)
2,r is a right divisor of

X
(k+1)
2,r .

(iv) The zeros of any elementary divisor have an accu-

mulation point in the unit circle (open right half plane)

as k → ∞.

Note. If we choose X̂
(k)
2,c and X̂

(k)
2,r as a multiple of

identity matrix by a scalar transfer function, we have

a concrete construction of them which satisfies Assump-

tion 2. Since the condition (iv) depends on the zeros of

the minimum elementary divisor, it is equivalent that the

blocking zeros of X̂
(k)
2,c and X̂

(k)
2,r have an accumulation

point in the open right half plane.

If Assumption 2 holds, then the problem (5) has an

optimal solution which we denote

Φ(k) = H − U (k)
a Q(k)V (k)

a , (7)

Q(k) = � Q(k)
11 Q

(k)
12

Q
(k)
21 Q

(k)
22 � . (8)

Define

Ψ(k) = H − UQ
(k)
11 V. (9)

Then because Φ(k) is optimal for a relaxed problem and

Ψ(k) is feasible for the primal problem, it follows that

��� Φ(k)
��� = γ(k)

a ≤ γ ≤
��� Ψ(k)

��� .

Furthermore, the lower bound sequence � Φ(k) � and the

upper bound sequence � Ψ(k) � approaches an optimal so-

lution of the multi-block model matching problem (1) in

the following sense.

Theorem 1. Suppose that the augmented 1-block

problem (5) satisfies Assumption 2. Then a sequence of

optimal solutions (7) have a weak-∗ convergent sequence� Ψ(ki) � . Furthermore, it follows that

weak- ∗ lim Φ(ki) = weak- ∗ lim Ψ(ki) =: Φ(o),

and Φ(o) is optimal for (1).

Proof. From (7) and (9),

Φ(k) = Ψ(k) −
�
R

(k)
1 + R

(k)
2 + R

(k)
3 � , (10)

where

R
(k)
1 = X(k)

c Q
(k)
21 V,

R
(k)
2 = UQ

(k)
12 X(k)

r ,

R
(k)
3 = X(k)

c Q
(k)
22 X(k)

r .

From (10),

Φ
(k)
11 = Ψ

(k)
11 ,

Φ
(k)
12 = Ψ

(k)
12 − U1Q

(k)
12 X

(k)
2,r ,

Φ
(k)
21 = Ψ

(k)
21 − X

(k)
2,c Q

(k)
21 V1,

Φ
(k)
22 = Ψ

(k)
22 −

�
U2Q

(k)
12 X

(k)
2,r

+X
(k)
2,c Q

(k)
21 V2 + X

(k)
2,c Q

(k)
22 X

(k)
2,r � .

Applying Lemma 5 in 5), we see that the boundedness of� Φ
(k)
11 � implies the boundedness of � Q

(k)
11 � and hence the

boundedness of {Ψ(k)}. This in turn implies the bound-

edness of � U1Q
(k)
12 X

(k)
2,r � and � X

(k)
2,c Q

(k)
21 V1 � . Applying

again Lemma 5 in 5), we conclude that � Q
(k)
12 X

(k)
2,r � ,� X

(k)
2,c Q

(k)
21 � and � X

(k)
2,c Q

(k)
22 X

(k)
2,r � are bounded. Applying

a modified version of Lemma 4 in 5) for multi-input multi-

output systems, we see that Q
(k)
12 X

(k)
2,r → 0, X

(k)
2,c Q

(k)
21 → 0

and X
(k)
2,c Q

(k)
22 X

(k)
2,r → 0 in the weak-∗ topology.

3. Interpolation point augmentation and

mixed Hankel-Toeplitz operator

It is well known that the optimal cost of a 1-block H∞

control problem is equal to the norm of a Hankel opera-

tor, and that the optimal cost of a multi-block H∞ control

problem is equal to the norm of a mixed Hankel-Toeplitz

operator 6). In this section, we shall investigate the rela-

tion between the Hankel operators corresponding to aug-

mented 1-block problems and the mixed Hankel-Toeplitz

operator corresponding to the original multi-block prob-

lem. Specifically, it is shown that the norm of the Hankel

operators converges to the norm of the mixed Hankel-

Toeplitz operator. This is an alternate proof of the con-

vergence of the lower bounds to the optimal cost. For

the sake of simplicity, we shall treat the continuous-time

systems in this section though the theory applies both

continuous and discrete-time systems.

3. 1 Mixed Hankel-Toeplitz operator

Note that the Fourier transform is a unitary map be-

tween L2( � ) of the time domain signals and L2(j � ) of

the frequency domain signals, i.e., for f ∈ L2( � ) and its

Fourier transform f̂ ∈ L2(j � ), there holds

‖f‖2 = 	 ∞

−∞

f(t)∗f(t)dt

=
1

2π
	 ∞

−∞

f̂(jω)∗f̂ (jω)dω =
��� f̂

��� 2

.

Let partition the time axis � into the positive time inter-

val � + and the negative time interval � − . This extends

to the frequency domain partition

L2(j � ) = H2( � + ) ⊕ H2( � − ),
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where � − is the left open half plane of the complex plane.

Let Π+ and Π− be the orthogonal projection form L2(j � )

onto H2( � + ) and H2( � − ), respectively.

Let L∞(j � ) be the matrix valued bounded functions on

the imaginary axis. By the multiplication M̂(jω)f̂ (jω) for

M̂ ∈ L∞(j � ) and f̂ ∈ L2(j � ), we can define a map from

L2(j � ) to L2(j � ), which we shall denote M : L2(j � ) →

L2(j � ), and call M̂ as the symbol of the map M . Taking

non-tangential limit to the imaginary axis, we can iden-

tify H∞( � + ) as a subspace of L∞(j � ). The map whose

symbol is in H∞( � + ) leaves H2( � + ) invariant.

Consider the H∞ model matching problem (1). We

can assume that Û is inner because the outer part can

be included in the free parameter Q̂. By the same rea-

son, we assume that V̂ is co-inner. For a stale ratio-

nal function M̂(s), the para-conjugate M̂∼ is defined as

M̂∼(s) = M̂ (−s)T.

If the problem (1) is 1-block, then the optimal value is

equal to the Hankel operator

Π−U∼HV ∼|
H2( � +) .

If the problem (1) is multi-block, then define square inner

functions 
 Û Ûc � , � V̂

V̂r � ,

by inserting Ûc and V̂r
7). The the optimal value of the

problem (1) is equal to the norm of the mixed Hankel-

Toeplitz operator 6)

ΓHT = � Π−U∼HV ∼|H2( � +) Π−U∼HV ∼

r

U∼

c HV ∼|
H2( � +) U∼

c HV ∼

r . � (11)

3. 2 Relation to interpolation augmentation

method

The augmented blocks in (3) and (4) satisfy the follow-

ing in addition to Assumption 2.

Assumption 3. The augmented blocks U
(k)
a and

V
(k)

a satisfy the following conditions.

(i) The transfer functions Û∼X̂
(k)
c and X̂

(k)
r V̂ ∼ are

stable rational functions.

(ii) The determinants of Û∼X̂
(k)
c and X̂

(k)
r V̂ ∼ are not

identically zero, and do not have a zero on the imagi-

nary axis including the infinity.

Note. A construction of X̂
(k)
c and X̂

(k)
r to satisfy As-

sumption 3 is done as follows. The condition (i) is satisfied

if we cancel the unstable poles of Û∼ and V̂ ∼ by placing

zeros to X̂
(k)
c and X̂

(k)
r . Because the (1, 1) block Û1 of
 Û Ûc � has no zeros on the boundary, the (2, 2) block

of 
 Û Ûc � ∼

is nonsingular on the boundary, and hence

the condition (ii) is satisfied.

The Hankel operator corresponding the augmented 1-

block problem (5) is computed as follows. Since

� Û∼

Û∼

c � Û (k)
a = � I Û∼X̂

(k)
c

0 Û∼

c X̂
(k)
c � ,

the inner-outer factorization of (3) is

Û (k)
a = 
 Û ÛcŶ

(k)
c,i � � I Û∼X̂

(k)
c

0 Ŷ
(k)
c,o � ,

where Û∼

c X̂
(k)
c = Ŷ

(k)
c,i Ŷ

(k)
c,o is the inner-outer factoriza-

tion. Similarly, (4) is factorized as

V̂ (k)
a = � I 0

X̂
(k)
r V̂ ∼ Ŷ

(k)
r,co � � V̂

Ŷ
(k)

r,ci V̂r � ,

where X̂
(k)
r V̂ ∼

r = Ŷ
(k)
r,coŶ

(k)
r,ci is the coouter-coinner factor-

ization. Define

Γ
(k)
H =

��
Π−U∼HV ∼|

H2( � +)

Π−Y
(k)∼

c,i U∼

c HV ∼ ��� H2( � +)

Π−U∼HV ∼

r Y
(k)∼
r,ci

��� H2( � +)

Π−Y
(k)∼
c,i U∼

c HV ∼

r Y
(k)∼

r,ci
��� H2( � +)

� �
� . (12)

Then it turns out that Γ
(k)
H is the Hankel operator corre-

sponding to the augmented 1-block problem (5).

Theorem 2. Assume that Assumptions 2 and 3 hold.

Then the Hankel operator (12) and the mixed Hankel-

Toeplitz operator (11) satisfy

lim
k→∞

��� Γ
(k)
H

��� = ‖ΓHT ‖ .

Proof. The operators (12) and (11) are related by the

equation

Γ
(k)
H = � I 0

0 Π−Y
(k)∼
c,i � ΓHT

��
I 0

0 Y
(k)∼
r,ci

��� H2( � +)

�
� .

Define

Λ(k) =

��
I 0

0 Y
(k)
c,i

��� H2( �
−

)

�
� Γ

(k)
H � I 0

0 Π+Y
(k)

r,ci � .

Then it follows that Λ(k) → ΓHT (SOT) as k → ∞, where

(SOT) means that the convergence is in the strong oper-

ator topology 8). Indeed, let

Π(k)
c =

��
I 0

0 Y
(k)
c,i

��� H2( �
−

)
Π−Y

(k)∼
c,i

�
� ,

Π(k)
r =

��
I 0

0 Y
(k)∼
r,ci

��� H2( � +)
Π+Y

(k)
r,ci

�� .

Then Π
(k)∗
c = Π

(k)
c , Π

(k)∗
r = Π

(k)
r , Π

(k)2
c = Π

(k)
c and

Π
(k)2
r = Π

(k)
r imply that these operators are orthogo-

nal projections. Furthermore, Π
(k)
c → I (SOT). Note
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that · · · ⊃ Y
(k)
c,i H2( � + ) ⊃ Y

(k+1)
c,i H2( � + ) ⊃ · · · , and

∩kY
(k)

c,i H2( � + ) = (0) where (0) is the zero subspace.

Hence considering the orthogonal complements in L2(j � )

we have · · · ⊂ Y
(k)
c,i H2( � − ) ⊂ Y

(k+1)
c,i H2( � − ) ⊂ · · · , and

⊕kY
(k)
c,i H2( � − ) = L2(j � ). This implies that given ε > 0

and f ∈ L2(j � ) there is k > 0 and g ∈ H2( � − ) such that��� f − Y
(k)

c,i g
��� < ε. Then���� f − Y

(k)
c,i

��� H2(C
−

)
Π−Y

(k)∼
c,i f

����
=

���� f − Y
(k)

c,i
��� H2(C

−

)
Π−Y

(k)∼
c,i

�
f − Y

(k)
c,i g �

− Y
(k)

c,i
��� H2(C

−

)
Π−Y

(k)∼
c,i Y

(k)
c,i g

����
≤ � 1 +

���� Y
(k)

c,i
��� H2(C

−

)
Π−Y

(k)∼
c,i

������ ��� f − Y
(k)

c,i g
���

≤ 2ε,

which shows that Π
(k)
c → I (SOT). We can show

Π
(k)
r → I (SOT) similarly. These in turn imply that

Λ(k) = Π
(k)
c ΓHT Π

(k)
r → ΓHT (SOT) 8). From this we have

lim inf
��� Λ(k)

��� ≥ ‖ΓHT ‖. On the other hand,
��� Λ(k)

��� =��� Π
(k)
c ΓHT Π

(k)
r

��� ≤ ‖ΓHT ‖. Hence limk

��� Λ(k)
��� = ‖ΓHT ‖.

Since
��� Λ(k)

��� =
��� Γ(k)

H

��� , this proves the theorem.

Note. A sequence {Tk} of operators in a Hilbert space

X converges to T in the strong operator topology (SOT)

if for any x ∈ X there holds ‖Tkx − Tx‖ → 0. See 8) for

detail.

Note. The Hankel operator Γ
(k)
H and the operator Λ(k)

in the proof of Theorem 2 are compressions of the mixed

Hankel-Toeplitz operator ΓHT . The augmented 1-block

problems approached the original multi-block problem in

the sense the orthogonal projections Π
(k)
c and Π

(k)
r con-

verge to the identity operators in the strong operator

topology.

4. Application to L1 control

The interpolation point augmentation method yields an

upper bound sequence that converges to an optimal solu-

tion of the multi-block problem in the weak-∗ topology. If

a sequence � Ψ(k) � converges to Φ(o) in weak-∗ topology,��� Φ(o)
��� ≤ lim inf

k

��� Ψ(k)
��� .

This shows that if the number of the augmentation is fi-

nite then we cannot guarantee that
��� Ψ(k)

��� is close to the

optimal value.

In 5), the norm convergence of the upper bound se-

quence was proved for a class of column 2-block problems

under the assumption that the solutions of augmented 1-

block problems have uniform space for delta functions. In

this paper, we shall show the norm convergence with less

restricted assumption. Notice that the conclusion of 5) is

wrong unless the same assumption on the direct term of

Û2Û
−1
1 .

Consider the column 2-block problem

γ = inf {‖Φ‖ : Φ = H − UQ, Q ∈ M( � +)} , (13)

where

H = � H1

H2 � , U = � U1

U2 � .

The augmented 1-block problem is

γ(k)
a = inf � ‖Φ‖ : Φ = � H1

H2 � − � U1 0

U2 X
(k)
2,c � � Q1

Q2 � ,

Q1, Q2 ∈ M( � +)} .

Lower and upper bound sequences are

Φ(k) = � Φ(k)
1

Φ
(k)
2 � = � H1 − U1Q

(k)
1

H2 − U2Q
(k)
1 − X2,cQ

(k)
2 � ,

and

Ψ(k) = � Ψ(k)
1

Ψ
(k)
2 � = � H1 − U1Q

(k)
1

H2 − U2Q
(k)
1 � .

Notice that

Ψ
(k)
1 = Φ

(k)
1 ,

Ψ
(k)
2 = Φ

(k)
2 + X

(k)
2,c Q

(k)
2

hold. Let Φ
(o)
1,i be the i-th row of Φ

(o)
1 . If a matrix con-

sists of rows having at most one nonzero element, then it

is called a row selection matrix.

Theorem 3. Consider the column 2-block problem

(13). Suppose that Ĥ(s) is strictly proper and the di-

rect term of Û2Û
−1
1 is a row selection matrix. Further-

more, suppose Φ(o) has no absolute continuous part, and��� Φ
(o)
1

��� =
��� Φ(o)

��� . Then it follows that

lim
k→∞

��� Ψ(k)
��� =

��� Φ(o)
��� .

Proof. First notice that

Ψ̂
(k)
2 = Ĥ2 − Û2Û

−1
1 Ĥ1 + Û2Û

−1
1 Φ̂

(k)
1 ,

Ψ̂
(o)
2 = Ĥ2 − Û2Û

−1
1 Ĥ1 + Û2Û

−1
1 Φ̂

(o)
1 .

Since Û−1
1 is rational, two-sided inverse Laplace transform

is well defined, and we have

Ψ
(k)
2 = W1 + W20Φ

(k)
1 + W2M ∗ Φ

(k)
1 ,

Ψ
(o)
2 = W1 + W20Φ

(o)
1 + W2M ∗ Φ

(o)
1 ,

in L1(� +) ∩ M(� +), where W1 ∈ L1( � ) is the inverse

Laplace transform of Ĥ2 − Û2Û
−1
1 Ĥ1, W20 is the direct

term of Û2Û
−1
1 , and W2M ∈ L1(� ) is the inverse Laplace

transform of the strictly proper part of Û2Û
−1
1 . Notice

that W2M ∈ L1(� ) ∩C0( � ). Then Lemma 1 in Appendix
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shows that W2M ∗ Φ(k) → W2M ∗ Φ(o). Hence it follows

that ��� Ψ(k)
2

��� →
��� Ψ

(o)
2

��� =
��� Φ

(o)
2

��� ≤
��� Φ(o)

��� .

5. Conclusion

In this paper, we considered the convergence of the

lower and upper bound sequences of the interpolation

point augmentation method. For the lower bound se-

quence, the norms of the Hankel operators corresponding

to the augmented 1-block problems approaches the norm

of the mixed Hankel-Toeplitz operator of the multi-block

problem. This links the interpolation point augmenta-

tion method and the existing H∞ control theory. For the

upper bound sequence, the norm of the upper bound se-

quence converges to the optimal value under some condi-

tions for continuous-time L1 control problems. This con-

vergence is stronger than the weak-∗ convergence.
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Appendix A. Functional spaces related

to continuous L1 control

Notice that M(� +) is a Banach algebra when the mul-

tiplication is defined by the convolution. We shall extend

the time axis to include the negative time and consider the

space L1(� ) and C0( � ). If G ∈ C0(� ) and Φ ∈ M(� +),

then

〈G, Φ〉 = 	
τ∈ 
 +

G(τ )dΦ(τ ),

from which we regard M(� +) as a subspace of the dual

space of C0( � ). If G ∈ L1( � ) and Φ ∈ M(� +), then we

shall define F = G ∗ Φ ∈ L1( � ) as

F (t) = 	
τ∈ 
 +

G(t − τ )dΦ(τ ). (A. 1)

Notice that F ∈ L1( � ) is concluded by the similar argu-

ment as in 9).

Let X ⊂ � be a Borel set. The characteristic function

χ is defined as

χ(t) = � 1, (t ∈ X)

0, (t 6∈ X)
.

With a alight abuse of notation, for Φ ∈ M(� +), we define

χΦ ∈ M( � +) as 	
τ∈T

dχΦ = 	
τ∈T∩X

dΦ,

where T ⊂ � is a measurable set. For G ∈ L1(� ), define

χG ∈ L1( � ) as

(χG) (t) = χ(t)G(t).

In this section, we shall see some important properties of

these spaces.

Property 1. Let Φ ∈ M(� +) and ε > 0. Then for suf-

ficiently large t1, ‖χΦ‖ < ε, where χ is the characteristic

function of the interval [t1,∞).

Proof. This follows from the fact that the total varia-

tion of Φ is bounded.

Property 2. Let � Φ(k) � ⊂ M(� +) be a bounded

weak-∗ convergent sequence. Let Φ(o) = weak- ∗ lim Φ(k).

Suppose that lim ‖Φ (k)‖ =
��� Φ(o)

��� holds. Then for any

ε > 0, there is t1 such that
��� χΦ(o)

��� < ε and
��� χΦ(k)

��� < ε

for sufficiently large k, where χ is the characteristic func-

tion of the interval [t1,∞).

Proof. A singular measure is supported on a set whose

(Lebesgue) measure is zero. Hence the measure of the

union of the support sets of the singular part of Φ(k),

k = 1, 2, · · · , and Φ(o) is also zero. Choose 0 < t0 < t1

in such a way that t0 and t1 are not on the support

set of the singular parts and
��� χ0Φ

(o)
��� < ε/3, where

χ0 is the characteristic function of the interval [t0,∞)

(see Property 1). Choose F ∈ C0(� +) in such a way

that ‖F‖ = 1, F (t) = 0 if t > t1, and � F, Φ(o) � >��� Φ(o)
��� − ε/2. If there us no k such that

��� χΦ(k)
��� < ε,

then we can choose a sequence of integers {ki}. ki → ∞

such that � F, Φ(ki) � <
��� Φ(ki)

��� − ε. But this implies that
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� F, Φ(o) � = lim � F, Φ(ki) � ≤
��� Φ(o)

��� − ε, which is a con-

tradiction.

Property 3. If Φ ∈ M( � +) and G ∈ L1(� ) ∩ C0( � ),

then G ∗ Φ is a continuous function.

Proof. Since G ∈ C0( � ), G is uniformly continuous,

or for any ε > 0, there is δ > 0 such that |h| < δ implies

|G(t + h) − G(t)| < ε. Hence

|F (t + h) − F (t)|

=
����� 	

τ∈ 
 +

(G(t + h − τ ) − G(t − τ )) dΦ(τ )
�����

≤ 	
τ∈ 
 +

|G(t + h − τ ) − G(t − τ )| d |Φ| (τ )

< ε ‖Φ‖ .

Property 4. Let Φ ∈ M( � +) and G ∈ L1( � )∩C0( � ).

For any ε > 0, there is t0 < 0 such that

(i) sup |χ0 (G ∗ Φ) (t)| < ε,

(ii) ‖χ0 (G ∗ Φ)‖1 < ε,

where χ0 is the characteristic function of the interval

(−∞, t0].

Proof. (Uniform norm): If t0 is sufficiently small, since

G ∈ C0( � ) sup |χ0G(t)| < ε/ ‖Φ‖. Hence if t < t0

|(G ∗ Φ) (t)| =
����� 	

τ∈ 
 +

G(t − τ )dΦ(τ )
�����

≤ 	
τ∈ 
 +

|G(t − τ )| d |Φ| (τ ) < ε.

(1 norm): If t0 is sufficiently small, since G ∈ L1( � )

‖χ0G‖1 < ε/ ‖Φ‖. Then

‖χ0 (G ∗ Φ)‖1 = 	 t0

−∞

����� 	
τ∈ 
 +

G(t − τ )dΦ(τ )
����� dt

≤ 	 t0

−∞

	
τ∈ 
 +

|G(t − τ )| d |Φ| (τ )dt

= 	
τ∈ 
 +

	 t0−τ

−∞

|G(t)| dtd |Φ| (τ ) < ε.

Property 5. Let G ∈ L1( � ) ∩ C0( � ). Let� Φ(k) � ⊂ M( � +) be a bounded sequence. Sup-

pose for any ε > 0, there is t1 > 0 such that

2 max
�
‖G‖

∞
, ‖G‖1 � ��� χ1Φ

(k)
��� < ε, where χ1 is the char-

acteristic function of the interval [t1,∞). Then for suffi-

ciently large t2 > t1,

(i) sup ��� χ2

�
G ∗ Φ(k) � (t) ��� < ε,

(ii)
��� χ2

�
G ∗ Φ(k) � ���

1
< ε,

where χ2 is the characteristic function of the interval

[t2,∞).

Proof. If G = 0, then the conclusions are trivial.

Hence we shall assume G 6= 0 henceforth. (Uniform

norm): Since G ∈ C0( � ), choose t2 > t1 in such a way

that t > t2 − t1 implies |G(t)| < ε/
�
2 supk

��� Φ(k)
��� � . Let

χ0 be the characteristic function of the interval [0, t1).

Then t > t2 implies

���
�
G ∗ Φ(k) � (t) ���

=
����� 	

τ∈ 
 +

G(t − τ )dΦ(k)(τ )
�����

≤ 	
τ∈ 
 +

|G(t − τ )| d ��� χ0Φ
(k) ��� (τ )

+ 	
τ∈ 
 +

|G(t − τ )| d ��� χ1Φ
(k) ��� (τ )

≤
ε

2
+

ε

2
= ε.

(1 norm): Since G ∈ L1( � ), choose t2 > t1 so that

‖χ3G‖1 < ε/
�
2 supk

��� Φ(k)
��� � holds, where χ3 is the char-

acteristic function of the interval [t2 − t1,∞). Then��� χ2

�
G ∗ Φ(k) � ���

1

= 	 ∞

t2

����� 	
τ∈ 
 +

G(t − τ )dΦ(k)(τ )
����� dt

≤ 	 ∞

t2

	
τ∈ 
 +

|G(t − τ )d| ��� Φ(k) ��� (τ )dt

= 	
τ∈[0,t1)

	 ∞

t2−τ

|G(t)| dtd ��� χ0Φ
(k) ��� (τ )

+ 	
τ∈[t1,∞)

	 ∞

t2−τ

|G(t)| dtd ��� χ1Φ
(k) ��� (τ )

≤
ε

2
+

ε

2
= ε.

Note. Properties 4 and 5 imply that G ∗ Φ ∈ C0(� )

in Property 3.

Properties 1–5 are exploited to establish the following

lemma which is crucial in proving Theorem 3.

Lemma 1. Let G ∈ L1(� ) ∩ C0( � ). Let � Φ(k) � ⊂

M( � +) be a bounded weak-∗ convergent sequence, and

Φo = weak- ∗ lim Φ(k). Suppose that lim
��� Φ(k)

��� =
��� Φ(o)

���
holds. Then G ∗ Φ(k) → G ∗ Φ(o) in L1( � ).

Proof. Let Gt(•) = G(t − •). Since G ∈ C0( � ),

Gt ∈ C0( � +). From the definition of convolution (A. 1),

the evaluations of G ∗ Φ(k) and G ∗ Φ(o) at time t are the

values of the linear functionals � Gt, Φ
(k) � and � Gt, Φ

(o) � ,

respectively. Since Φo is the weak-∗ limit, it follows that�
G ∗ Φ(k) � (t) →

�
G ∗ Φ(o) � (t). Let [ta, tb] be a compact

interval. Let f (k) and f (o) be the restrictions of G ∗ Φ(k)

and G∗Φ(o) on the interval, respectively. Note that Prop-

erty 3 implies that f (k) and f (o) are continuous. We shall

show that f (k) → f (o) uniformly on the interval. Fix
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t0 ∈ [ta, tb] and ε > 0. Choose δ(o)(t0) > 0 in such a way

that |t − t0| < δ(o)(t0) implies ��� f (o)(t) − f (o)(t0)
��� < ε. De-

fine

δ(k) = min � δ(o)(t0), sup {δ : |t − t0| < δ implies

��� f (k)(t) − f (k)(t0)
��� < ε � � .

Notice that δ(k) → δ(o)(t0). Otherwise, by choos-

ing a subsequence of k if necessary we can select a

positive number δ′ < δ(o)(t0) and t(k), ��� t(k) − t0
��� <

δ′ such that ��� f (k)(t(k)) − f (k)(t0)
��� ≥ ε. Since the

set {t : |t − t0| ≤ δ′} is compact, the sequence � t(k) �
has an accumulation point tc in the set. Then it

follows that ��� f (o)(tc) − f (o)(t0)
��� ≥ ε, which contra-

dicts the definition of δ(o)(t0). Consider an open

cover {I(t0) : ta ≤ t0 ≤ tb} of the compact interval [ta, tb],

where I(t0) = � t : |t − t0| < δ(o)(t0)/2 � . Choose a finite

subcover, and let {t0,1, t0,2, · · · , t0,N} be its index set.

Choose an integer k(t0) > 0 in such a way that k > k(t0)

implies δ(k) > δ(o)(t0)/2 and ��� f (k)(t0) − f (o)(t0)
��� <

ε. Let δ = min � δ(o)(t0,i) : 1 ≤ i ≤ N � , and k0 =

max {k(t0,i) : 1 ≤ i ≤ N}. If k > k0, then for any t ∈

[ta, tb]

��� f (k)(t) − f (o)(t) ���
≤ ��� f (k)(t) − f (k)(t0,i)

��� + ��� f (k)(t0,i) − f (o)(t0,i)
���

+ ��� f (o)(t0,i) − f (o)(t) ���
< 3ε,

for appropriate t0,i. This proves the uniform convergence.

Let χ0, χ1 and χ2 be the characteristic functions of the

intervals (−∞, t0), [t0, t2) and [t2,∞), respectively, where

t2 > t1. Then��� G ∗ Φ(k) − G ∗ Φ(o)
���
1

≤
��� χ1G ∗ Φ(k) − χ1G ∗ Φ(o)

���
1

+
��� χ0G ∗ Φ(k)

���
1

+
��� χ0G ∗ Φ(o)

���
1

+
��� χ2G ∗ Φ(k)

���
1

+
��� χ2G ∗ Φ(o)

���
1
.

The second and third terms of the right hand side can

be arbitrary small for sufficiently small t0 from Property

4 (notice that t0 can be chosen uniformly for k). The

fourth and fifth terms of the right hand side can be arbi-

trary small uniformly for k for sufficiently large t2 from

Property 2. Lastly, the first term of the right hand side

can be arbitrary small from the uniform convergence on

the interval [t0, t2].

Note. The proof of Lemma 1 is for single-input single-

output systems. An extension for multi-input multi-

output systems is straightforward by applying the same

argument elementwise.
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