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M-transform and its Application to System Identification†
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Hiroshi Harada∗ and Teruo Yamaguchi∗

A new method for signal transform by use of M -sequence, called M -transform, is proposed, and some prop-

erties of the M -transform are described. The essence of M -transform is to suppose any periodic time signal to

be the output of a filter whose input is an M -sequence. The application of the M -transform to linear system

identification is described, and the result of computer simulation show a good agreement with the theoretical

consideration.

1. Introduction

In the field of instrument and control engineering , the

extraction of useful information from a measured signal

by use of signal processing such as stochastic data process-

ing is very important and frequently used. In those cases,

the method of signal processing depends on what kind of

information we would like to extract from the measured

signal. For example, if the information on the frequen-

cy characteristics is to be extracted, Fourier transform

method would be used.

In the Fourier transform, sinusoidal functions are used

as orthonormal functions for transform, and any time

functions are transformed into frequency demain by con-

sidering any time functions are weighted sum of sinusoidal

functions with various frequencies.

In this way, once we determine to use an orthonor-

mal function, a signal transformation is achieved corre-

sponding to the orthonormal function. Walsh transform

or Hadamard transform are such examples.

This paper proposes a new method for signal transform,

calledM -transform, by making use of the fact that a pseu-

dorandom M -sequence has a pseudo-orthogonal proper-

ty;that is, the autocorrelation function of M -sequence is

approximately equal to δ-function. The properties of M -

transform are investigated and the application to linear

system identification is described.

2. Definiton of M-transform

Let us consider anM -sequence {ai}(ai = 0 or 1) of peri-

od N(= 2n−1) which is generated by n-th order primitive

polynomial f(x) defined over Galios field GF (2). And let
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{mi}(mi = +1or − 1) be the sequence obtained from the

M -sequence by assigning 0 of ai to +1 of mi, and 1 of ai

to −1 of mi.

Then the autocorrelation functoin φmm(k) is written

as 9)

φmm(k) =
1

N

N−1∑
i=0

mi−kmi

=

{
1 ( k = 0, N, 2N, · · ·)
− 1

N
( otherwise)

(1)

The period N is usually 102 ∼ 104, so 1
N
becomes very

small. Therefore Eqn.(1) is considered to represent that

M -sequence {mi} and {mi+k}(k �= 0，N，2N，· · ·) are ap-
proximately orthogonal. So we call here that {mi} and
{mi+k} are pseudo orthogonal.
Now let us construct a matrix M i by use of mi as fol-

lows.

M i =




mi mi−1 . . . mi−N+1

mi+1 mi . . . mi−N+2

...
...

. . .
...

mi+N−1 mi+N−2 . . . mi


 (2)

When MT
i denotes the transpose of M i, we have the fol-

lowing equation.

MT
i M i =




N −1 . . . −1
−1 N . . . −1
...

...
. . .

...

−1 −1 . . . N


 (3)

And the inverse of MT
i M i becomes

9)

(MT
i M i)

−1 =
1

N + 1



2 1 . . . 1

1 2 . . . 1
...

...
. . .

...

1 1 . . . 2


 (4)

Now we consider a periodic time function x(t) having its

period N∆t, where ∆t is the time increment. The sam-
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✲ A ✲
mi x(i)

Fig. 1 Definition of M-transform

pled time function x(i∆t) is denoted here as x(i), for sim-

plicity, where i is an integer considered as modN .

Then M -transform A of x(i) is defined as

Xi = M iA (5)

where

Xi = {x(i), x(i+ 1), · · · , x(i+N − 1)}T

A = (α0, α1, · · · , αN−1)
T

(6)

The M -transform A is determined uniquely by the fol-

lowing equation

A = (MT
i M i)

−1MT
i Xi 　 (7)

In other expression, we have

x(i) =

N−1∑
j=0

αjmi−j 　　　(0 ≤ i ≤ N − 1) (8)

The meaning of M -transform A becomes as follows. From

Eqn.(5), any periodic time function Xi is considered to

be a weighted sum of M -sequences, with weighting coef-

ficient A. That is, any periodic time signal x(i) is con-

sidered to be the output of a filter with impulse response

{αi}, whose input isM -sequence {mi} as shown in Fig. 1.

This corresponds to so-called Pre-whitening filter in case

of white noise: any time function is considered to be the

output of a filter whose input is white noise.

M -transfom A of x(i) is called hereafter ”M-filter” as

shown in Fig.1.

M -transform resembles Fourier transform in the sense

that, in M -transform, any periodic time signal is con-

sidered to be the weighted sum of pseudo-orthogonal M -

sequence, whereas, in Fourier transform, any signal is con-

sidered to be the weighted sum of orthogonal sinusoidal

functions.

3. Properties of M-transform

M -transform defined in Eqn.(5) has the following prop-

erties.

Property 1：Mean value

1

N

N−1∑
i=0

x(i) = − 1

N

N−1∑
i=0

αi (9)

Since each column of matrix M i is one period M -

sequence, the sum of elements of each column becomes

-1. So Eqn.(9) holds. Namely, when the mean value of

x(i) is equal to zero, the mean of｛αi｝is also zero.

Property 2：Autocorrelation function

The autocorrelation function φxx(k) of a signal x(i) is

obtained as follows.

φxx(k) =
1

N

N−1∑
i=0

x(i − k)x(i)

=
1

N
XT

i−kXi

=
1

N
AT MT

i−kM iA

Here MT
i−k M i becomes

k

MT
i−kM i =




−1 −1 . . . N −1 . . . −1
−1 −1 . . . −1 N . . . −1
...

...
. . .

...
...

. . .
...

−1 −1 . . . −1 −1 . . . N

N −1 . . . −1 −1 . . . −1
−1 N . . . −1 −1 . . . −1
...

...
. . .

...
...

. . .
...

−1 −1 . . . −1 −1 . . . −1




Therefore, we have

φxx(k) =
N + 1

N

N−1∑
i=0

αi−kαi − 1

N
(

N−1∑
i=0

αi)
2 (10)

When the mean of {x(i)} is zero, the mean of｛αi｝is also

zero due to property 1, so Eqn.(10) indicates that the au-

tocorrelation function φxx(k) of x(i) is caluculated by use

of αi in the same manner as in φxx(k), only the difference

is the coefficient N + 1.

Property 3：Crosscorrelation function

Let M -transform of signal y(i) be B.

Y i = M iB (11)

where

Y i = {y(i), y(i+ 1), · · · , y(i+N − 1)}T

B = (β0, β1, · · · , βN−1)
T

Then the crosscorrelation functoin x(i) and y(i) becomes

φxy(k) =
1

N

N−1∑
i=0

x(i − k)y(i)

=
1

N
XT

i−kY i
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=
1

N
AT MT

i−kM iB

=
N + 1

N

N−1∑
i=0

αi−kβi

− 1

N
(

N−1∑
i=0

αi)(

N−1∑
i=0

βi) (12)

When the means of x(i) and y(i) are zero, the means of

｛αi｝and｛βi｝are also zero due to property 1. There-

fore the crosscorrlation function φxy(k) is almost equal to

φαiβi(k) with only the difference of the coefficient N + 1.

Property 4：Crosscorrelation function between an M -

sequence and a signal x(i)

When a signal x(i) is M -transformed to αi via M -

sequence as in Eqn.(5), the crosscorrelation function be-

tween the M -sequence {mi} and {x(i)} becomes

φmx(k) =
1

N

N−1∑
i=0

m(i − k)x(i)

=
1

N

N−1∑
i=0

m(i − k)

N−1∑
l=0

αlmi−l

=
1

N

N−1∑
l=0

αl

N−1∑
i=0

m(i − k)m(i − l)

=

N−1∑
l=0

αlφmm(l − k)

=
N + 1

N
αk − 1

N

N−1∑
l=0

αl (13)

That is, the crosscorrelation function between {mi} and
{xi} can be described by αi, and especially when the

mean of x(i) is zero, N+1
N

αk describes the crosscorrela-

tion φmy(k).

Property 5 : Input-output relation of linear system

Let g(i) be the impulse response of a linear system

whose input is x(i). Then the output y(i) is written as

y(i) =

N−1∑
j=0

g(j)x(i − j) (14)

or

Y i = [Xi, Xi−1, . . . , Xi−N+1]G (15)

where

G = (g(0), g(1), · · · , g(N − 1))T (16)

Then what is the relationship between M -tranform B of

y and M -transform A of x ?

Submitting Eqn.(11) into Eqn.(15), we have

M iB = [Xi, Xi−1, . . . , Xi−N+1]G (17)

Therefore

B = (MT
i M i)

−1 ·[
MT

i Xi, M
T
i Xi−1, . . . , M

T
i Xi−N+1

]
G (18)

Here, (MT
i M i)

−1 is written in the next equation by using

Eqn.(4).

(MT
i M i)

−1 =
1

N + 1
×





1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1


+



1 1 . . . 1

1 1 . . . 1
...

...
. . .

...

1 1 . . . 1




 (19)

or

MT
i Xl = 　N ×




　φmx(l − i)

φmx(l − i+ 1)
...

φmx(l − i+N − 1)


 (20)

where (l = i，i − 1，. . .，i − N + 1).

Submitting Eqn.(13) into φmx(·) in Eqn.(20), the inside
of [ ] in Eqn.(18) becomes[

MT
i Xi, M

T
i Xi−1, . . . , M

T
i Xi−N+1

]
=

(N + 1)




α0 α−1 . . . α−N+1

α1 α0 . . . α−N+2

...
...

. . .
...

αN−1 αN−2 . . . α0




−



1 1 . . . 1

1 1 . . . 1
...

...
. . .

...

1 1 . . . 1




N−1∑
l=0

αl


 (21)

When we submit Eqn.(19) and Eqn.(21) into Eqn.(18),

we have

βi =

N−1∑
j=0

g(j)αi−j (22)

This means that the input-output relationship of a lin-

ear system between x(i) and y(i) in the time domain is

exactly the same as that in the M -transformed domain.

In addition, the crosscorrelation function between the

input x(i) and the output y(i) is known as

φxy(k) =

N−1∑
j=0

g(j)φxx(k − j) (23)

Submitting Eqn.(10) and Eqn.(12) into Eqn.(23), we have

N + 1

N

N−1∑
i=0

αi−kβi − 1

N
(

N−1∑
i=0

αi)(

N−1∑
i=0

βi)

=

N−1∑
j=0

g(j)

{
N + 1

N

N−1∑
i=0

αi−k+jαi − 1

N
(

N−1∑
i=0

αi)
2

}
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✲ A ✲ g(i) ✲
mi x(i) z(i) y(i)

❣ ✲
✻

n(i)︸ ︷︷ ︸
h(i)

Fig. 2 Application to Linear System identification

=
N + 1

N

N−1∑
j=0

g(j)

N−1∑
i=0

αi−k+jαi

− 1

N

N−1∑
j=0

g(j)

(
N−1∑
i=0

αi

)2

(24)

From Eqn.(22), the summation of βi over its period is

written as

N−1∑
i=0

βi =

N−1∑
j=0

g(j)

N−1∑
i=0

αi−j

Therefore, the second term of lefthand side of Eqn.(24) is

equal to the second term of righthand side of Eqn.(24).

Thus we have

1

N

N−1∑
i=0

αi−kβi =

N−1∑
j=0

g(j)
1

N

N−1∑
i=0

αi−k+jαi

．．． φαβ(k) =

N−1∑
j=0

g(j)φαα(k − j) (25)

which has the same form as in Eqn.(23).

4. Application to Linear System
Identification

4. 1 Principle

Let us consider the identification of a linear system hav-

ing the impulse response of g(i) whose input is x(i) and

output is z(i) as shown in Fig. 2. Let us also assume that

an independent noise n(i) is added to the output z(i) and

y(i) = z(i) + n(i) is observed.

Among many identification methods for linear system,

M -sequence correlation method 1)∼3) is known as one of

the most simple methods for identification, since all we

have to do is to multiply a matrix with the crosscor-

relation function between the input M -sequence and its

output. It has two advantages; (1) Calculation is easily

carried out since the input M -sequence is of two-valued

signal, so the multiplication is carried out by addition

or substraction. (2) Because M -sequence is a periodic

deterministic signal, the crosscorrelation function is de-

termined in a period and there are no statistical disper-

sion due to finite averaging time. M -sequence correlation

method is a very simple, useful method, but in order to

use this method, M -sequence must be applied to the input

to the system. When we would like to identify a system

under normal operating condition such as in case of chem-

ical process, we sometimes encounter the case where it is

difficult to apply a special signal for identification to the

operating system. In those cases, the identification must

be carried out by use of only input x(i) and output y(i).

In this section, the authors show that the input x(i) is

considered to be the output of a filter (M -filter A) whose

input is M -sequence {mi}, so when the cascaded system
ofA and g(i) is considered to be a linear system whose im-

pulse response is h(i), the input to h(i) is an M -sequence

and the output of h(i) is y(t). Therefore we can apply M -

sequence correlation method to this system for obtaining

h(i) and then g(i), since A is already known.

Firstly M -transform A of x(i) is obtained from Eqn.(7).

And then,

y(i) =

N−1∑
j=0

h(j)mi−j + n(i) (26)

Therefore

Y i = M iH +Ni (27)

where

Y i = (y(i), y(i+ 1), · · · , y(i+N − 1))T (28)

H = (h(0), h(1), · · · , h(N − 1))T (29)

Ni = (n(i), n(i+ 1), · · · , n(i+N − 1))T (30)

So by use of M -sequence correlation method 9), we have

H = (MT
i M i)

−1MT
i Y i (31)

Since h(i) is an impulse response of the cascaded system

of M -filter A and linear system g(i),

h(i) =

N−1∑
j=0

α(i − j)g(j) (32)

So we have

H = αg (33)

where

g = (g(0), g(1), · · · , g(N − 1))T (34)

α =




α0 α−1 . . . α−N+1

α1 α0 . . . α−N+2

...
...

. . .
...

αN−1 αN−2 . . . α0


 (35)
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✲ 2
s2+s+2

✲ 6
s2+3s+6

✲

uniform
random
signal x(i)

✲ A

✻

mi

z(i) y(i)
❣ ✲
✻

n(i)

Fig. 3 Identification of linear system by use of M-transform

Therefore, the impulse response g(i) is obtained as fol-

lows,

g = α−1H (36)

4. 2 Simulation

In order to verify the usefulness of the above mentioned

method, a simulation is carried out for the system shown

in Fig. 3. A uniform random signal is applied to a second-

order system, and let the output be x(i) as shown in

Fig. 4. x(i) becomes the input to the linear system to be

identified. The output z(i) is added by a noise n(i) to be

the system output y(i), as shown in Fig. 5 (Here SN ratio

is about 30dB). The input x(i) is now considered to be the

output of an M -filter A whose input is an M -sequence. A

is obtained by use of Eqn.(7) and is shown in Fig. 6. Here

the M -sequence {mi} used is of 7 degree having a char-
acteristic polynomial f(x) = 375 in octal notation. Now

from M -sequence correlation method, we can obtain the

impulse response h(i) between the input {mi} and output
{yi} by using Eqn.(31), as is shown in Fig. 7. Lastly from

Eqn.(36) we have the impulse response g(i) as is shown

in Fig. 8. Here a lag window having the effect of ensem-

ble average is used for originally obtained g(i). In Fig. 8,

the solid line shows the theoretical impluse response, and

”。” denote the obtained g(i), showing a good agreement

between them although there are a little dispersions due

to the effect of noise.

5. Conclusion

A new method of signal transformation(called M -

transform) by use of pseudo-orthogonal property of M -

sequence is proposed, and several properties of M -

transform are described with application to linear system

identification. The main characteristics of M -transform

is that any periodic time signal is considered to be

the output of a filter (called M -filter) whose input is

an M -sequence. This property resembles the so called

prewhitening in which any time signal is considered to be

-0.8
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0
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0.8
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i)

i

a random input of a linear system

Fig. 4 Input signal of the system to be identified
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-0.4

-0.2

0

0.2

0.4

0.6

0 20 40 60 80 100 120

y(
i)
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a random output of a linear system

Fig. 5 Output signal of the system
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-2

0
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6

8

10

12

0 20 40 60 80 100 120

a(
i)

i

input filter a(i)

Fig. 6 M transform of x(i)

the output of a filter whose input is white noise.

This M -transform is applied to the identification of lin-

ear system in which the input and output are observed

and the impulse response of the system is to be obtained.

The result of simulation shows that this method of system

idetification becomes a new method for linear system iden-

tification using so-callled M -sequence correlation method.
Other applications of M -transform are under develop-

ment.
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Fig. 7 Obtained h(i)
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Fig. 8 Comparison of the obtained g(i) with theoretical one
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