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Fault Diagnosis of Linear Dynamical Systems†

Yoshito Ohta∗, Hajime Maeda∗∗ and Shinzo Kodama∗∗∗

This paper considers a fault diagnosis problem of linear dynamical systems. Specifically, we derive conditions

for fault detectability and fault distinguishability, and also we derive a fault diagnosis algorithm which decides

the faulty element from the system observation.

As the main result of the paper, graphical necessary and sufficient conditions for fault distinguishability are

derived. The conditions are given in terms of the system representation graphs which depict the system struc-

tures. The conditions are essential in carrying out the fault diagnosis algorithm at two stages: to check the

distinguishability assumed in the algorithm; to find the covering set defined in the algorithm. An example is

given to see how the algorithm works.
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1. Introduction

This paper studies the fault diagnosis problem of linear

dynamical systems. Specifically, we derive conditions for

fault detectability and fault distinguishability, and also

we derive a fault diagnosis algorithm which decides the

faulty element from the system observation.

This paper employs an analytical method that uses sys-

tem models. If we were to identify the system parameters

such as elements of system matrices then we need compli-

cated nonlinear calculation. The fault diagnosis method

in this paper avoids parameter identification and uses lin-

ear calculation alone.

The method is originally proposed for the diagnosis of

linear electrical circuits. If the circuits has a faulty ele-

ment, then the observation vector is confined to a sub-

space corresponding to the fault. Fault detectability and

distinguishability conditions are stated in terms of these

subspaces 1). In 2), 3), these conditions are successfully

translated into graph conditions that reflect electrical cir-

cuit structure. In 4)∼7), the study was extended to linear

systems that are not necessarily electrical circuits. In 7)

in particular, a fault diagnosis algorithm was proposed. If

the system is described by linear algebraic equations such

as static linear systems, graph distinguishability condition

can be exploited in carrying out the algorithm.
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In this paper, we apply the algorithm in 7) to linear

dynamical systems. For this purpose we derive fault diag-

nosis conditions that are essential in (i) verifying the fault

distinguishability condition required in the algorithm, and

(ii) deciding a cover set in the algorithm. Some examples

are included to show how to apply the conditions.

This paper is organized as follows. In Section 2, we re-

view three kinds of system description and examine sys-

tem behavior when a fault occurs. In Section 3, we show

that the difference of observation vectors of faulty and

normal systems are confined to a subspace corresponding

the fault. A fault distinguishability condition is derived

using the subspace. In Section 4, we briefly explain the

system structure and representation graphs. Then we give

graphical fault distinguishability conditions as a main re-

sult of the paper. In Section 5, the fault diagnosis algo-

rithm in 7) is applied to linear dynamical systems. Some

examples are included.

2. Fault diagnosis problem

In this section, we formulate a fault diagnosis problem

of linear dynamical systems. We first describe the system

description, and study the behavior of the faulty system.

Then we introduce the concept of detectability and dis-

tinguishability of faults, and discuss what is required for

a fault diagnosis algorithm.

2. 1 System description

In this paper, we use three forms of system description;

namely, the state space form, the descriptor form, and the

interconnected form.

(s) State space form:

ẋ = Ax + Bu, (1.s)

y = Cx, (2.s)
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where A ∈
� n×n , B ∈

� n×r , C ∈
� m×n are the system

matrices, x ∈
� n is the state, u ∈

� r is the input, and

y ∈
� m is the output.

(d) Descriptor form:

Eẋ = Ax + Bu, (1.d)

y = Cx, (2.d)

where E ∈
� n×n , A ∈

� n×n , B ∈
� n×r , C ∈

� m×n are

the system matrices, x ∈
� n is the state, u ∈

� r is

the input, and y ∈
� m is the output. We assume that

det (sE − A) 6≡ 0.

(c) Interconnected form. Consider the intercon-

nected system composed of n single-input single-output

systems. The input-output characteristic of the i-th

component is described as

xi(s) = gi(s)ui(s),

where xi is the output, ui is the input, and gi is

the transfer function of the i-th subsystem (i ∈ n :=

{1, · · · , n}). The overall system description is

x(s) = G(s)u(s), (1.c)

u(s) = Lx(s) + Bv(s), (1.c′)

y(s) = Cx(s), (2.c)

where

x(s) =

���
�
x1(s)

...

xn(s)

� ��
� , u(s) =

���
�
u1(s)

...

un(s)

� ��
� ,

G(s) =

���
�
g1(s) 0

. . .

0 gn(s)

� ��
� ,

and L ∈
� n×n , B ∈

� n×r , C ∈
� m×n are the system

matrices. The matrix L denotes the interconnection be-

tween subsystems. We assume that det (I − G(s)L) 6≡

0.

2. 2 Fault diagnosis problem

Suppose that the system (1) has a faulty component

which results in a failure in one of the equation, where

(1) denotes one of (1.s), (1.d), and (1.c). Hence when the

system is faulty,

ẋ = Ax + Bu + ε, (3.s)

Eẋ = Ax + Bu + ε, (3.d)

x = Gu + ε, (3.c)

holds for some ε which have zero elements but for the i-th

element. We call ε a fault vector. One of the advantage

of defining such a fault vector is that a simple algorithm

exists to distinguish which equation has failed as is shown

in the rest of the paper. This does not mean that we can

specify the reason of the equation failure. For example,

there might be actuator errors, unexpected disturbances,

and parameter change of the system matrices.

The fault diagnosis problem studied in the rest of the

paper is stated as follows. Given the observation by (2),

decide whether the faulty vector ε is non-zero (fault de-

tectability), or decide which element of ε is non-zero (fault

distinguishability), and construct an algorithm to make

such decisions.

3. Fault distinguishability condition

In this section, we show that the difference of observa-

tion vectors of the faulty and normal systems is confined

to a subspace corresponding to the fault (we shall call

such a subspace as fault observation subspace), and that

this fact can be used to diagnose faults. Then we mention

a distinguishability condition for faults.

Let us see the behavior of the observation vectors when

a fault occurs in the systems. To do this, we take the

Laplace transform for (s) and (d). Then (1), (2) and (3)

become

(sI − A) x(s) = Bu(s) + ε(s) + x0, (4.s)

y(s) = Cx(s), (5.s)

(sE − A) x(s) = Bu(s) + ε(s) + Ex0, (4.d)

y(s) = Cx(s), (5.d)

(I − G(s)L) x(s) = G(s)Bv(s) + ε(s), (4.c)

y(s) = Cx(s). (5.c)

From (4) and (5), it follows that the difference ∆y(s) =

yf (s) − yn(s) of the observation yf (s) of the faulty sys-

tem and the observation yn(s) of the normal system, i.e.

ε = 0, satisfies

∆y(s) = C (sI − A)−1 ε(s), (6.s)

∆y(s) = C (sE − A)−1 ε(s), (6.d)

∆y(s) = C (I − G(s)L)−1 ε(s), (6.c)

respectively.

Hence if we take (sI − A), (sE − A), and (I − G(s)L)

as the system matrix in 7) and unit vectors e1, · · · , en as

the fault element vectors, we can apply the results in 7).

Let J ⊂ n. If the fault vector ε in (3) lies in the sub-

space spanned by {ei, i ∈ J}, we say the fault J occurs.

Let |J | denote the number of elements in J . If |J | = k, we

say J is a k-th order fault. When the fault J occurs, form

(6) we see that ∆y lies in the following fault observation
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subspace S(J):

S(J) = spanΛ �
�
C (sI − A)−1 ei, i ∈ J � , (7.s)

S(J) = spanΛ �
�
C (sE − A)−1 ei, i ∈ J � , (7.d)

S(J) = spanΛ �
�
C (I − G(s)L)−1 ei, i ∈ J � , (7.c)

where spanK X is the linear span of the vectors in X with

the field K, and Λ
�

denote the field of formal Laurent se-

ries at s = ∞ having the maximal power. If z′, z′′ ∈ Λ
�
,

and z′ = � ∞
t=t′

0

z′
ts

−t, z′′ = � ∞
t=t′′

0

z′′
t s−t, then the sum

is power-wise addition, z = z′ +z′′ = � ∞
t=t0

(z′
t + z′′

t ) s−t,

t0 = max {t′0, t
′′
0}, and the product id the convolution,

z = z′z′′ = � ∞
t=t0

zts
−t, t0 = t′0 + t′′0 , zt = � t−t′′

0

j=t′
0

z′
jz

′′
t−j .

We will determine which fault has occurred based on

which fault observation subspace contains the observa-

tion vector ∆y. For this purpose, we have to consider the

situation where for J1 6= J2 (i) ∆y ∈ S(J1) ∩ S(J2), and

(ii) S(J1) = S(J2).

We shall assume the following in view of (i), which ef-

fectively says that the elements of the fault vector ε are

independent.

Assumption H. If the fault J1 occurs and S(J2) 6⊃

S(J1), then ∆y 6∈ S(J2).

As for (ii), notice that the fault vector ε is an ele-

ment of the n-dimensional space Λ
� n , and the fault ob-

servation subspace is in the m-dimensional space Λ
� m

(m < n). Hence J1 6= J2 does not imply that S(J1) 6=

S(J2) in general. However, if the following condition (k-

distingusihability) is satisfied and Assumption H holds,

then it is possible to diagnose from the observation vec-

tor ∆y whether the system has a fault of order less than

or equal to k, and, if this is affirmative, which fault has

occurred 7).

Definition (k-distinguishability).

The system (1),(2) is called k-distinguishable if J1 and

J2 are distinct faults whose orders are less than or equal

to k.

A condition for the k-distinguishability is stated in

terms of the fault observation subspaces.

Proposition 1 (k-distinguishability condition 2)).

The system (1),(2) is k-distinguishable (k < n) if and

only if dimS(J) = k + 1 for any fault J of order k + 1.

4. Graph conditions for distinguishability

In this section, we first mention the notion of inter-

connection between subsystems (system structure), and

introduce system representation graphs for the system

structure. Then we derive graphical distinguishability

conditions. These conditions are useful when we apply

the diagnosis algorithm in 7) at the following stages: (i)

to check the distinguishability, and (ii) to derive so-called

cover sets.

4. 1 System structure and representation

graph

The three types of dynamical systems have been dis-

cussed in Section 2. 1. If we regard each equation in (1)

as a subsystem, then we define system structure by inter-

connection between subsystems.

If we regard the i-th equation of the state space form

(1.s) as the i-th system component, then aij 6= 0 (A =

(aij)) means that the i-th component is affected by the

j-th component. If we regard the i-th equation of the

descriptor form (1.d) as the i-th system component, then

eij 6= 0 (E = (eij)) or aij 6= 0 (A = (aij)) means that the

i-th component is affected by the j-th component. If we

regard the i-th equation of the interconnected form (1.c)

as the i-th system component, then lij 6= 0 (L = (lij))

means that the i-th component is affected by the j-th

component. Hence non-zero elements of the matrix A (E

and A, or L) represent interconnection between system

components, and therefore we call the pattern of non-zero

elements as the system structure.

The matrix C in the observation equation (2) represents

the relation between the variable (or state) x and the ob-

servation y. We observe m out of n elements of x, which

we shall call the observation variables. Then the rows of

C consist of unit vectors and the matrix C is of full row

rank. We call the pattern of non-zero elements of C as

the system (observation) structure.

Graphs are useful to represent the system structure

as follows. For the state space form (1.s), (2.s), we

use the Coates graph GA(N, BA) and the modified bi-

partite graph Gb(Nr, Nc, Bb). The node set N of the

Coates graph GA has one-to-one correspondence with the

variables x1, · · · , xn. The branch set BA is defined as

(i, j) ∈ BA if and only if aij 6= 0. Note that GA is a

directed graph. The node sets Nr and Nc of the bipartite

graph Gb have one-to-one correspondence with the rows

and columns of the matrix A, respectively. The branch

set Bb is defined as (ir, jc) ∈ Bb if and only if aij 6= 0 or

ic = jc. We shall use the subscript r and c to represent

rows and columns of matrices. Note that Gb is an undi-

rected graph. Let J ⊂ n be a fault. Let us slightly abuse

the notation and denote J ⊂ N . Also corresponding to

the observation matrix C, we shall define C ⊂ N as the

set {i : the i-th row of the matrix C is non-zero}. We re-

fer C as the observation node set. We shall use similar

notations for subsets of Nr and Nc: for example, Jr ⊂ Nr

and Cc ⊂ Nc. Let Cc = Nc \ Cc be the complement of
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Cc.

For the descriptor form (1.d), (2.d), we use the bipar-

tite graph Gb(Nr, Nc, Bb) associated with the matrices

E and A. The node sets Nr and Nc of the bipartite

graph Gb have one-to-one correspondence with the rows

and columns, respectively, of the matrices A and E. Note

that the rows of the matrices correspond to the equations

in (1.d) and the columns to the variables of x. The branch

set Bb is defined as (ir, jc) ∈ Bb if and only if eij 6= 0 or

aij 6= 0. Notations such as Jr for a fault J are defined as

in the state space form.

For the interconnected form (1.c), (1.c’), (2.c), we use

the Coates graph GL(N, BL) for the matrix L. The node

and branch sets are defined similarly as in the state space

form.

4. 2 g-distinguishability condition

In this section, the k-distinguishability condition

(Proposition 1) is paraphrased as conditions on the rep-

resentation graphs defined in Section 4. 1. Advantages of

using the graphs are the following: (i) the distinguisha-

bility of faults is determined by the system structure, (ii)

the decision on which variables to observe is possible in

view of (i), and (iii) techniques of graph theory can be

applied both in the verification of the distinguishability

and in the decision of the so-called cover set in the fault

diagnosis algorithm proposed in 7).

The graphical distinguishability conditions are given as

a generic 8) property of the non-zero elements of A for the

state space form and the non-zero elements of E and A

for the descriptor form. A generic property is a property

which holds for almost all parameter values. Henceforce,

we shall use the suffix “g-” to denote things which hold

generically.

We shall use the following terminologies for the graphs.

A directed path in the directed graph G(N, BA) is an

alternate sequence of nodes and branches of the form

(n0, b1, · · · , bk, nk), ni ∈ N , 0 ≤ i ≤ k and bi =

(ni−1, ni) ∈ BA, 1 ≤ i ≤ k, k ≥ 0, where n0 is the

initial node and nk is the terminal node. Note that the

path consisting of a single node (n0) is a directed path.

Two directed paths are disjoint if they share no nodes in

common. A set of directed paths are disjoint if any two

directed paths in the set are disjoint. Let J, C, D ⊂ N .

We say that D separates C from J if there is no directed

path whose nodes are in D with the initial node in J and

the terminal node in C. A subset M ⊂ Bb in the bipar-

tite graph Gb(Nr, Nc, Bb) is called a matching if any two

branches in M share no node. A subset X ⊂ Nr ∪ Nc is

said to be saturated by a matching M if for any node in

X there is a branch in M connecting to the node.

Theorem 1-s (state space form, g-k-distinguishability).

The following four statements are equivalent.

(i) The sate space form (1.s), (2.s) is g-k distinguish-

able.

(ii) For any J ⊂ N with |J | = k + 1, there is a set of

k + 1 disjoint paths from J to C in GA.

(iii) For any J ⊂ N with |J | = k + 1, the minimum

cardinality of a subset of N which separates J form C

in GA is k + 1.

(iv) For any Jr ⊂ Nr with |Jr| = k + 1, there is a

matching of Cc and Jr in Gb which saturates Cc.

Proof. Note that (ii), (iii), and (iv) are necessary and

sufficient conditions for g- dimS(J) = k + 1 9). This and

Proposition 1 prove the theorem.

Theorem 1-d (descriptor form, g-k-distinguishability).

The descriptor form (1.d), (2.d) is g-k distinguishable if

and only if for any Jr ⊂ Nr with |Jr| = k + 1 there is a

matching of Cc and Jr in Gb which saturates Cc.

Proof. Notice that

rank

�
sE − A J

C 0 � = rank

�
sE − A J

0 −C (sE − A)−1 J �
= n + dimS(J),

where J in the matrices represents the n× (k + 1) matrix

consisting of column unit vectors corresponding to the set

Jr. On the other hand,

rank

�
sE − A J

C 0 �
= rank

�
(I − JJT)(sE − A)(I − CTC) J

C 0 �
= m + k + 1 + rank

�
(sE − A)(Jr, Cc) � ,

where (sE − A)(Jr, Cc) is the submatrix of (sE − A)

consisting of rows in Jr and columns in Cc. Hence

dimS(J) = k+1 if and only if the matrix (sE−A)(Jr, Cc)

has non-zero (n − m)-th order minor. The necessity is

obvious from the definition of determinant. For the suf-

ficiency, let M be a matching satisfying the condition.

Substitute 0 into the elements of E and A which do not

correspond to the branches in M . Let Xr ⊂ Jr be a

maximal subset which is saturated by M . Then from the

definition of determinant det(sE−A)(Xr, Cc) 6= 0. Hence

(sE − A)(Jr, Cc) is of full column rank generically.

Theorem 1-c (interconnected form, k-distinguishability).

If the interconnected form (1.c), (1.c’), (2.c) k distinguish-

able, then the following statements hold.

(i) For any J ⊂ N with |J | = k + 1, there is a set of

k + 1 disjoint paths from J to C in GL.
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(ii) For any J ⊂ N with |J | = k + 1, the minimum

cardinality of a subset of N which separates J form C

in GL is k + 1.

Proof. The proof is identical to the necessity part of

Theorem 1-s.

For k = 0, k-distinguishability is called detectability.

This means that we can distinguish if the system is nor-

mal (i.e., 0-th order fault) or the system has a fault.

The distinguishability graph conditions are exploited

in determining a cover set required in the fault diagno-

sis algorithm. This is discussed in detail in 7, Lemma 1,

Theorem 2).

The distinguishability graph conditions are similar to

those for linear static systems 7). The reason for this is

that we would like to distinguish which component of the

fault vector is nonzero. In other words, we would like to

distinguish faults up to which equation has an error.

5. Fault diagnosis algorithm

Since linear dynamical systems are a special case of lin-

ear systems studied in 7), the fault diagnosis algorithm

studied in the paper is readily available. In order to de-

termine which subspace contains the fault vector, the al-

gorithm in the paper requires differentiation of ∆y. How-

ever, as we shall show that an left inverse system will

suffice to find the fault subspace.

In what follows we shall state the result for the state

space form. Similar arguments hold for the descriptor

form and the interconnected form.

Theorem 2. Suppose that the state space form (1),

(2) is k-distinguishable. Assume that the difference of

the normal and fault observation ∆y satisfies Assump-

tion H. Then the following algorithm determines whether

the system has a fault of order less than or equal to k,

and, if this is affirmative, which fault has occurred.

Algorithm:

(Step 1) Find a k-cover K ⊂ P(n) which satisfies the

following two conditions, where P(n) is the power set

of n = {1, · · · , n}.

(i) For any K ∈ K, |K| = m, and dimS(K) = m,

where m is the number of measurements.

(ii) For any J ∈ K with |J | ≤ m, there is a K ∈ K

such that J ⊂ K.

(Step 2) For each K ∈ K, with a slight abuse of no-

tation let K be the n×m matrix consisting of columns

ei, i ∈ K. Define an left inverse system HL,K(s) of

HK(s) = C (sI − A)−1 K such that

HL,K(s)HK(s) = ΛK(s),

6

4

7

1

3

2

8

9

5

PSfrag replacements
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Fig. 1 The Coates graph of the example.

where ΛK(s) is a nonsingular diagonal transfer matrix.

Define

µK(s) = HL,K(s)∆y(s),

and let #K be the number of nonzero elements of µK ,

and

J = {i : the ρ(i)-th element of µK is non-zero} ,

where the i-th column of the matrix K is the unit vector

eρ(i). If #K ≤ k, then fault J has occurred.

(Step 3) If #K > k for any K ∈ K in Step 2, then a

fault of order larger than k has occurred.

Note. A condition for the existence of a proper left

inverse HL,K(s) in Step 2 using the relative degrees of

ΛK(s) is discussed in 9).

We shall show a numerical example. The system is rep-

resented by the state space form with the A matrix shown

in Table 1. We apply an input to the variable 7 and

measure the variables 5 and 9. The Coates graph of the

system is shown in Fig. 1. Since the system is not g-1-

distinguishable, we cannot directly apply the algorithm of

Theorem 2 to distinguish faults of order 1. However, with

an appropriate modification the algorithm can distinguish

fault equivalent classes. Using the graph condition in

9), the fault equivalence classes are {1, 2, 3, 6}, {4}, {5},

{7, 8} and {9}. Choose a g-1-cover as K = {K1, K2, K3},

K1 = {1, 4}, K2 = {5, 8} and K3 = {5, 9}. Choose left in-

verses ΛKi
(s) = 1/(s + 1)piI, where pi is the nonnegative

integer defined as Note.

Let Fault 3 be such that a31 is 50% of the normal, and

Fault 5 be such that a54 is 60% of the normal. The im-

pulse responses of the faulty system (Fault 3) and the

normal system is shown in Fig. 2. The difference of the

outputs is fed into the three left inverses HL,Ki
, i = 1, 2, 3.

The outputs of HL,K2
and HL,K3

have two non-zero ele-

ments whereas the output of HL,K1
has only one non-zero

element which corresponds the variable 1 as is shown in

Fig. 3. Thus we rightly conclude that the fault is in the

equivalence class {1, 2, 3, 6}.
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Table 1 The system matrix A of the example.

column

1 2 3 4 5 6 7 8 9

1 -2.27 -3.01 2.98 1.0 -0.599

2 26.8 -61.5 0.524 0.176 -0.0923 -32.1

3 30.0 -15.5 -32.3 -15.6

r 4 -27.7 -0.0828 -5.32

o 5 44.0 -89.8 -100.0

w 6 -3875.0 -100.3

7 -5.0

8 -223.0 -47.8 55.4 -0.35 -222.0

9 1.0
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Fig. 2 The impulse responses of the faulty system and the

normal system when the faulty a31 is 50% of the nor-

mal value.
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Fig. 4 The impulse responses of the faulty system and the

normal system when the faulty a54 is 60% of the nor-

mal value.
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Fig. 5 The outputs of the left inverse systems when the faulty

a54 is 60% of the normal value.
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When Fault 5 occurs, the impulse responses of the

faulty system (Fault 5) and the normal system is shown in

Fig. 4. The difference of the outputs is fed into the three

left inverses HL,Ki
, i = 1, 2, 3. The output of HL,K1

has

two non-zero elements whereas the outputs of HL,K2
and

HL,K3
have only one non-zero element which corresponds

the variable 5 as is shown in Fig. 5. Thus we rightly con-

clude that the fault is in the equivalence class {5}.

6. Conclusions

We derived a fault distinguishability condition and a

fault diagnosis algorithm for linear dynamical systems

in state space form, descriptor form and interconnected

form.

Advantages of the graph distinguishability condition

are:

(i) we can determine the distinguishability from the

system structure,

(ii) we can design the observation variables using (i),

and

(iii) we can apply various graph theoretic techniques

to the fault diagnosis algorithm.

When we apply the algorithm, we need to choose

(i) a cover set, and

(ii) left inverses HL,K(s) (or equivalently diagonal

transfer matrices ΛK(s),

appropriately. Such a choice needs further investigation.
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