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We have long focused on the outstanding characteristics of mechanical resonators and directed intensive 
research toward finding applications. This paper describes mainly the structure, principles, and characteristics of a 
double-ended tuning fork resonator which combines two tuning forks, cylindrical resonator which consists of a thin-
walled cylinder fixed at both ends, and transducers using these mechanical resonators for pressure, force, and density 
measurement. 
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1. Introduction 
It is well known from our daily experience that 

when tension is applied to a string or water is poured 
into a glass, its resonance frequency changes. Although 
attempts to use such elastic vibration, for a physical 
quality measurement have already been reported1) to 9) 
and some have even been commercialized, their use has 
not yet become widespread. 

While conventional transducers using 
mechanical resonators can offer very good repeatability, 
resolution, and stability, there is a nonlinear relationship 
between their inputs and outputs which requires 
complicated signal processing circuits. They also tend 
to have sensitive characteristics against external 
vibration. However, as digital signal processing has 
become much easier thanks to the remarkable progress 
in electronic technology, these frequency-output sensors 
have been greatly improved. 

We have long focused on the outstanding 
characteristics of mechanical resonators and directed 
intensive research toward finding applications for 
advanced transducers by overcoming the conventional 
drawbacks with new technology.10)  This paper 
describes mainly the structure, principles, and 
characteristics of a double-ended tuning fork resonator 
which combines two tuning forks, cylindrical resonator 
which consists of a thin-walled cylinder fixed at both 
ends, and transducers using these mechanical resonators 
for pressure, force, and density measurement. 

2. Double-ended Tuning Fork 
Resonator and Its Applications 

The natural frequency f of an elastic beam is 
determined from only its material and structure, and is 
given by relationship (1): 

f ∝ 1
L

E
ρ

 
 
  

 
 

1 2

 (1) 

 
where  

L: length of the beams (typical) 
E: Young’s modulus of beam material 
ρ: density of the beam. 

Thus if a resonator is designed so that its natural 
frequency varies with such a specific physical quantity 
as strain, force, pressure, or temperature, it can be used 
as transducers. The dual-ended tuning fork resonator is 
a transducer whose natural frequency varies with axial 
force (axial strain).  

2.1 Structure and Principles of the 
Resonator 11),12) 

As the natural frequency of the resonator varies 
with the amount of axial force applied to the beam, it 
can be a measure of the axial force. For a conventional 
single beam, however, it is difficult to obtain a 
resonator with a stable natural frequency. Because, the 
vibrational energy transmitting from the bearing to the 
outside changes due to the bearing conditions, leading 
to a low mechanical Q (a reciprocal of the mechanical 
damping factor). 

We have devised a double-ended tuning fork 
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resonator that overcomes such drawbacks. Figure 1 
shows its structure. As the two beams vibrate 
symmetrically, vibrational counter forces R1 and R2, and 
bending moments M1 and M2 cancel each other out, 
which eliminates any force applied to the bearing. As a 
result, the vibrational energy is trapped inside the 
resonator and its mechanical Q is high (1 × 104 or more). 
In addition, the flexure mountings at both ends of the 
resonator also reduce the effect of mounting status and 
external vibration. The natural frequency of the 
resonator can be measured by configuring a self-
excitation oscillator circuit, which includes a pair of 
piezoelectric elements attached to nodes of vibrating 
beams for excitation and detection. 

If the natural frequency of the resonator is f0 
when compressing axial force F is 0, the possible 
frequencies f of symmetrical vibration modes when a 
force is applied are given by equation (2). 13), 14)     

f = f0 1 − 1
a3 tanh

a
2

a tanh
a
2

− 2 
 

 
 

l 2F
2EI

 
 
 

 
 
 

1 2

 

f0 = a2

2πl2
EI
ρA

 
 
  

 
 

1 2

 (2) 

where  
a: value determined by mode number n of vibration 
 ≅ 1 + 2n( )π 2[ ] 
E: Young’s modulus of beam material 
I: resonator’s second moment of inertia of area 
A: cross-section area of the resonator beam 
l: length of the beams 
ρ: density of the beam. 

Thus the resonant frequency f is a measure of the 
applied axial force F. 

2.2 Characteristics of the Resonator 
Figure 2 shows an example of measured values 

of  the frequency sensitivity (∆f/f0) when applying a 
compressing axial force to the double-ended tuning fork 
resonator (effective length: 10 mm; thickness: 0.1 mm; 
width: 2 mm) shown in figure 1 for different vibration 

mode numbers n.  The measured values match the 
values calculated from equation (2).  

If ε is the axial strain produced by applying an 
axial force F, substituting F = 2εEA in equation (2) 
gives: 

f = f0 1 −
1
a3 tanh

a
2

atanh
a
2

− 2 
 

 
 

Al 2

I
ε

 
 
 

 
 
 

1 2

. (3) 

Then the frequency sensitivity SF, the frequency 
sensitivity per unit strain in the vicinity of f0, is given 
by: 

SF =
1
f0

∂f
∂ε

≅ −
1
a3 tanh

a
2

atanh
a
2

− 2 
 

 
 

Al 2

2I
.  (4) 

The value SF for the first vibration mode (n = 1) 
is 1200 or more and is much larger than that for a wire 
resistance strain gauge or semiconductor strain gauge. 
This means that the resonator can operate even for  
small strains and increase repeatability and hysteresis 
characteristics, which is a major feature for resonator-
type transducers. 
 

Figure 3 shows the long-term stability of f0 of a 
resonator made of a nickel alloy with a constant 
modulus of elasticity. Such a resonator with adequate 
stability can be manufactured by precisely controlling 
the temperature of heat treatment and the bonding 
method of piezoelectric elements. 

2.3 Application to Pressure 
Transducer14),15)   

We have developed accurate pressure 
transducers using a dual-ended tuning fork resonator for 
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three measuring ranges (0 to 20, 0 to 200, and 0 to 
2000 kPa). All three transducers use the first vibration 
mode, which is highly sensitive, to achieve 10% of the 
rate of frequency change within the measuring range. 

Figure 4 shows the structure of a pressure 
transducer. The upper end of the resonator is welded 
directly to the diaphragm and the lower end to the 
transducer body. It is a simple structure with fewer 
components. Moreover, the resonator does not come 
into contact with the measured fluid and thus is not 
affected by it. When the pressure to be measured is 
applied to the upper side of the diaphragm, the 
compressing axial force acts upon the resonator. Hence, 
this pressure transducer can measure gauge pressure if 
the chamber under the diaphragm is open to the 
atmosphere, and the absolute pressure if it is under 
vacuum. Three different diaphragms are designed for 
three measuring ranges. We have reduced the spring 
constant of the diaphragm to a tenth or less than that of 
the resonator, in consideration of a predominance of the 
resonator’s superior characteristics. 

The measured frequency is linearized according 
to the scale for each resonator, converted into an 
engineering unit, and zero adjusted by a microcomputer. 
In addition, if accurate measurement is required over a 
wide range of temperature, the pressure transducer can 
have an internal temperature transducer. It can be used 
to apply pulse amplitude modulation to the frequency 
cycle of a pressure signal with the temperature signal, 
and transfer both signals simultaneously to a 
microcomputer for compensation.  

Actually, the frequency f is converted into the 
pressure P using the following equation (5), which is a 
modification of equation (2): 

 

P = An
n=1

3

∑ 1−
f
f0

 

 
  

 
 

n

 (5) 

where  
f0: resonator frequency when P = 0  
An: constant. 

 
Typical examples are given in figure 5, which shows the 
calibration characteristics of a pressure transducer with 
a measuring range of 0 to 200 kPa, and in figure 6, 
which shows the temperature characteristics before 
compensation. As aforementioned, compensating 
temperature with the internal transducer can further 
improve the accuracy of a pressure transducer to 
±0.01% of the full scale when within 0°C to 50°C. 

 

 
2.4 Application to Electronic Balance16)   

Figure 7 shows the basic structure of a single-
pan electronic balance using the dual-ended tuning fork 
resonator as a force transducer. By adding weights to 
the pan, axial force is applied to the resonator through a 
Roberval’s mechanism and lever. A single resonator can 
replace the small-displacement pickup mechanism and 
moving-coil force motor of electromagnetic balances, 
which are now in widespread use. The use of a 
resonator enables a simple structure to provide 
frequency output.  

 
For two prototype electronic balances with 

weighing capacities of 200 g and 2 kg, the errors were 1 
part in 105 of span for the 200-g balance and 1 part in 5 
× 104 for the 2-kg balance. The structure of the circuit 
for converting frequency into mass is basically the same 
as the pressure transducer. However, as the electronic 
balance has a problem of noise caused by external 
vibration, a frequency filter using a digital PLL is added 
to the input circuit. 

 

3. Cylindrical Resonator and Its 
Applications 

3.1 Structure and Principles of the 
Resonator17)   

Figure 8 shows the basic structure of a 
cylindrical resonator where n is the wave number of 
the circumferential flexural vibration, and m is the 
axial mode number. It consists of a thin-walled 
cylinder and a holder with sufficient rigidity and mass, 
and it has a similar cross-section, which includes the 
center axis of the cylinder, to that of the dual-ended 

tuning fork resonator. Therefore, as was mentioned in 
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section 2.1, vibration energy cannot easily escape 
outside, leading to a high mechanical Q (1 × 104 or 
more). 

Applying pressure to the inner surface of the 
cylinder increases the internal tension of the cylinder, 
which increases its natural frequency. For a cylinder 
filled with a high-density fluid, its mass also increases 
as the natural frequency falls. Gas pressures or liquid 
densities can be calculated by taking advantage of such 
effects for measuring the natural frequency of a 
cylindrical resonator. 

Vibration modes of the cylindrical resonator can 
be expressed by a combination of n and a wave number 
of the axial flexural vibration m/2. The natural 
frequency fmn(0) of the vibration mode of a cylinder in a 
vacuum can be calculated from equation (7) using the 
minimum real root ∆mn of cubic equation (6): 
∆ mn

3 + Am n∆ mn
2 + Bm n∆mn + Cm n = 0  (6) 

where 
 Amn, Bmn, and Cmn: constants 
determined by the structure, vibration mode number, 
boundary condition of cylinder, and Poisson’s ratio ν of 
the material 

fmn(0 ) =
1

2πR
E∆mn

ρ 1− ν2( )
 
 
 

 
 
 

1 2

 (7) 

where 
R: radius of the cylinder 
E: Young’s modulus of cylinder material 
ρ: density of the cylinder. 

The pressure sensitivity Smn, the rate of 
frequency change per unit pressure for the vibration 
mode <m, n> when an internal pressure P is applied to a 
cylinder as shown in figure 8, can be expressed by 
equation (8) 17) ,18):  

Smn =
1
2

(1− n2 )2

1 + n2 •
R
h

•
1− ν2

E∆ mn

 (8) 

where 
h: thickness of the cylinder wall. 

Meanwhile, an apparent mass increment M per 
unit area when the cylinder is filled with a fluid with a 
density of ρx is approximately given by equation (9) 19):  
M ≅ ρx • R n.  (9) 

Consequently, the density sensitivity Dmn, the 
rate of frequency change per unit density for the 
vibration mode <m, n>, can be expressed by equation 
(10): 19)   

Dmn = −
1
2

1

ρx
ρ
ρx

• h
R

• n +1
 
 
  

 
 

.  (10) 

Then the natural frequency fmn of the cylinder can be 
given by the following equation (11), which can be 
derived from equations (8) to (10): 
fmn

2 ≅ fmn(0)
2 1+ 2Dmn ρx( )1 + 2Smn P( ).  (11) 

 

3.2 Application to Barometer 
We have applied the cylindrical resonator to the 

development of a precision barometer with extremely 
little aging. The cylindrical resonator is made of a 
nickel alloy with a excellent modulus of elasticity. 
However, even such an excellent material generates a 
slight temperature error or drift, which together with 
contamination or rust on the vibrating surface causes a 
change in natural frequency. Therefore, for accurate 
measurement of absolute pressure, barometric pressure 
in particular, we devised a method of exciting the 
pressure transducer in two vibrational modes at the 
same time that can theoretically eliminate these 
influences, and produced desired results. 

When equation (7) is modified to allow for such 
disturbances as the linear expansion coefficient of 
material, the temperature coefficient of elastic material, 
and aging or contamination or rust on the vibrating 
surface, the natural frequency fmn(0)  of the cylinder can 
also be empirically given by equation (12): 

fmn(0 ) =
1

2πR
E∆mn

ρ' 1−ν2( )
 
 
 

 
 
 

1 2

1+αT( )× 1+β log
t
t0

 

 
  

 
   (12) 

where 
ρ’: equivalent density of vibrating surface 

allowing for contamination 
α: temperature coefficient of material 
T: deviation from standard temperature 
β: effect of drift with time 
t: elapsed time 
t0: initial time. 
 

Now using equation (12), the ratio r of the 
natural frequency in the vibration mode <i, j> to that of 
the mode <k, l> is as per equation (13): 

r =
∆ ij

∆kl

 

 
  

 
 

1 2

.  (13) 

This means that r is not affected by temperature, 
elapsed time, or contamination of the vibrating surface. 
In addition, the rate of change in r for pressure P can be 
obtained from equation (14) using equation (11): 
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1
r

dr
dP

= Sij − Skl .  (14) 

Figure 9 shows the relationship between 
vibration mode numbers and pressure sensitivity of the 
barometric pressure transducer. We chose the vibration 
mode <1, 2>, which has the smallest pressure sensitivity, 
and <1, 4> with a large pressure sensitivity to improve 
various characteristics. 

Figure 10 shows the configuration of the dual-
mode oscillator circuit. The self-exciting cylindrical 
resonator oscillates in two modes of <1, 2> and <1, 4> 
independently and asynchronously. The terminals of the 
piezoelectric elements attached to vibrating nodes of the 
cylinder are represented by a, b, c, and d, where a and b 
are strain detection, while c and d excitation. The 
voltages generated in terminals a and b are in the same 
phase for the vibration mode <1, 4>, but are in reverse 
phase for the mode <1, 2>. They are therefore 
subtracted at point e and summed at point f to extract 
the voltage signals representing the two modes. Then 
the extracted voltage signals are controlled by a low-
pass filter (LPF) and an automatic gain controller 
(AGC) in order for their phases and gains to meet 
oscillating conditions, and return back to terminals c 
and d for excitation. 

Figure 11 shows the structure of the barometric 
pressure transducer. Atmospheric pressure is applied to 
the inner surface of the cylinder, and the outer surface is 
held at a reference vacuum level of 10−5 torr {1/760 Pa} 
or more with the casing. As barometric pressure is 

nonlinear to the frequency ratio, a microcomputer 
calculates the pressure using a cubic equation as in the 
case of the pressure transducer using the dual-ended 
tuning fork resonator. After the pressure calibration, a 
repeatability better than ±0.1 mbar was obtained within 
the range of 0 to 1000 mbar. 

Figure 12 shows measurement data when 
attaching magnesium oxide to the surface of the 
cylinder for testing the effect of dual-mode oscillation. 
It is clear that the dual-mode oscillation, which outputs 
the natural frequency ratio, has improved the effect of 
contamination by an order of magnitude compared to 
the single-mode oscillation. The same goes for aging 
and a one-year performance test confirmed that the 
pressure drift was accurate within ±0.1 mbar based on a 
standard mercury barometer. 

3.3 Application to Differential Pressure 
Transducer 20), 21)   

Since the cylindrical resonator has such 
parameters as the pressure sensitivity and density 
sensitivity shown in equation (11), it is necessary to 
consider the effect of static pressure (density) for 
measuring differential pressure (P1 – P2). It is evident 
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from equation (10) that the density sensitivity is always 
constant for the same circumferential mode number n 
even if the axial mode number m varies. However, 
figure 9 indicates that the pressure sensitivity for m = 1 
differs from that for m = 2, even if n = 4 for both of 
them. The ratio rd between f14 and f24 can be calculated 
using equation (11): 

rd =
f14

f24

=
f14 (0)

f24(0)

1 + 2S14 P1 − P2( )
1+ 2S24 P1 − P2( )

 
 
 

 
 
 

1 2

≅
f14(0)

f24 (0)

S14 − S24( ) P1 − P2( ).
 (15) 

Therefore, choosing rd as an output can eliminate 
the effects of static pressure, temperature, 
contamination on the vibrating surface, and aging, 
allowing for the implementation of a differential 
pressure transducer using a differential pressure 
sensitivity between two vibration modes. 

Figure 13 shows the structure of a differential 
pressure transducer using this method. A differential 
pressure (P1 – P2) is applied to a cylindrical resonator. 
The terminals of the piezoelectric elements attached to 
vibrating nodes of the cylinder are represented by a, b, 
and c. The self-exciting cylindrical resonator oscillates 
in the same manner as for the barometer. In other words, 
the voltages generated in terminals a and b are in the 
same phase for the vibration mode <1, 4>, but are in 

reverse phase for the mode <2, 4>. They are therefore 
summed and subtracted to extract the two frequency 
signals. 

 
Figure 14 shows the static pressure 

characteristics of the differential pressure transducer 
with a measuring range of 0 to 200 kPa, contrasted with 
a single mode pressure transducer. The residual errors 
probably resulted from the approximation by equation 
(9). But they can further be improved by compensating 
after one-point calibration for the static pressure.  

 

3.4 Application to Highly Environmental 
Resistant Absolute Pressure Transducer 

We have developed a small, lightweight absolute 
pressure transducer that can be used in harsh 
environments susceptible to extreme vibration or 
temperature such as that of electronic control for aircraft 
engines. The cylindrical resonator transducer is 
unaffected directly by attitude or acceleration and thus 
is suitable for use in aircraft. Moreover, it has already 
achieved satisfactory results in testing in which it was 
mounted to an actual fan jet engine on the ground. 

Figure 15 shows the structure and configuration 
of the absolute pressure transducer. Although it may 
look similar to that of the barometric pressure 
transducer, since it needs multi-measuring ranges, it 
does not adopt dual-mode oscillation so as to provide 
more design flexibility, with an eye on downsizing and 
weight reduction. Both ends of the resonator are welded 
to shift the natural frequency of the cylinder in the 
flexural mode to a higher bandwidth than the signal 
frequency for better vibration resistance.  

 

Figure 16 shows the calibration characteristics of 
the absolute pressure transducer at a measuring range of 
0 to 700 kPa abs, and figure 17 the vibration resistance 
characteristics. The absolute pressure transducer has 
high accuracy and compensating temperature with the 
internal transducer can further improve the accuracy to 
±0.1% of full scale when within –55°C to +110°C. 



      T.SICE Vol.E-1 No.1 2001       
 

 40 

 

 

3.5 Application to Portable Densimeter 

21),24),25) 
Figure 18 shows the structure of a pencil-sized 

densimeter using a cylindrical resonator. Liquid density 
can be measured easily by dipping the probe tip into the 
sample liquid in a test tube when the cylinder is filled 
with liquid. As the natural frequency of the resonator 
varies depending on liquid density as shown in equation 
(10), the liquid density can be determined by measuring 
the natural frequency. 

Figure 19 shows the relationship between 
vibration mode numbers and density sensitivity. The 
densimeter uses the mode <1, 2>, which has a 
maximum density sensitivity and minimum pressure 
sensitivity. As the density is nonlinear to the cycle of 
resonant frequency, a microcomputer is used to 
compensate and linearize it. 

If the liquid viscosity increases, resonant 
frequency f slightly decreases. This is because the 
increased density causes the liquid density to appear 
higher than it actually is. The following relationship 
(16) is maintained between the apparent density 
increment ∆ρx and the increment in damping ratio for 
vibration ∆C for Newtonian fluid: 
∆C ∝ f 2 • ∆ρ x.  (16) 

If the exciting force is kept constant, ∆C can be 
obtained from the ratio of vibration amplitude changes. 
Therefore the densimeter eliminates the effect of 
viscosity by compensating for the apparent density 
increment produced by the change in viscosity which 
can be calculated from equation (16).  

This densimeter has a small, lightweight sensor 
block, allowing density measurement of a sample liquid 
in several milliliter quantities with high accuracy. After 
calibration using the hydrostatic method, the error is 
less than ±5 × 10−4 g/cm3 for liquids whose density is 

0.6 to 1.5 g/cm3. Figure 20 shows the viscosity 
characteristics before and after compensation for 
comparison. The accuracy is ±5 × 10−4 g/cm3 for liquids 
whose viscosity is up to 0.1 Pa⋅s, which demonstrates 
the excellent compensation capabilities. 
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4. Conclusion 
Some of the resonator transducers described in 

this paper have already been commercialized. For 
example, an electronic balance using a resonator was 
released recently, 26)   and a barometer introduced on the 
market several years ago was favorably received. 27)   As 
for a highly environmental resistant absolute pressure 
transducer, various tests are being conducted in 
preparation for commercialization, and a densimeter 
will also be available very soon. 

These transducers using mechanical resonators 
boast the following features compared with 
conventional transducers: 

1) The frequency output signal can be easily 
converted into a digital signal with high resolution (e.g. 
24 bits) at low costs. 

 2) The frequency output signal is compatible with a 
microcomputer, thus allowing simultaneous detection of 
multidimensional information to realize an intelligent 
transducer. 

3) The transducer gives a wide frequency change for 
a small input. For a pressure transducer, the rate of 
frequency changes per unit strain(∆f/f0 ⋅ 1/∆ε)  is 
approximately 500 to 1300. This means that the 
transducer can be designed with minimum strain applied 
to the resonator. 

4) The transducer has high mechanical Q and thereby 
can give superior accuracy and repeatability using a 
simple electronic circuit. 

5) The structured transducer allows uniform 
characteristics through proper management of design 
and machining accuracy. 

We will pursue other transducers exploiting 
these features that are smaller and can be used in a 
wider range of applications. 
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to thank the late Dr. Isamu Ohno, Department Manager, 
Corporate R&D Department of Yokogawa Hokushin 
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this work, and Mr. Motoyoshi Ando, Seiki Luo, 
Daisuke Yamazaki, Kouichi Arashida, and others for 
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