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A New Approach to LQ Design:
Application to the Design of Optimal Servo Systems

Takao FuJir* and Narihito MIZUSHIMA**

First, a new design theory of LQ regulator is developed from the practical viewpoint by applying some results
on the inverse problem of LQ regulator. The LQ regulator considered here is, unlike the usual one, designed
without specifying a performance cost, but it proves to be such a feedback control that minimizes some cost.
This theory is then applied to design an optimal servosystem with the following features suitable for practical
use: 1) a time constant of the output response can be taken as our design spec., 2) the design computation
requires no Riccati solutions, 3) there is a close structural relationship between the controlled system and the

resulting feedback matrix.
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1. Introduction

Despite the recent increase of practical applications of
LQ regulator, this design methodology still suffers from
various difficulties in practical use such as 1) implicit re-
lationship between the quadratic weights to be selected
and the resulting closed-loop responses, 2) complicated
and time-consuming design computation based on Riccati
solutions, 3) complex configuration of the control system
using almost full-state feedback of the plant structure.
The LQ regulator is, however, known, irrespective of the
choice of weights, for its desirable properties such as re-
duced sensitivity and robust stability V). In addition, of
practical importance are the properties of the regulator
to be designed, rather than the weights to be selected.
From this viewpoint, it may be more practical in the LQ
regulator design to give up the weight selection and de-
sign instead those state feedback controls that are optimal
for some unknown weights, thereby simplifying the design
procedures. This motivates us to design an LQ regulator
from the viewpoint of the inverse regulator problem 3,
which is a new approach to the LQ design that we pro-
vide in this paper. Here we develop such an LQ design
theory by utilizing some pertinent results on the inverse
regulator problem, and then apply it to the design prob-
lem of an optimal servosystem. The new design method

of optimal servosystems proposed here is fundamentally
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different from the usual ones ® 4), and overcomes their in-
herent difficulties mentioned above in the following way:

(1) The design specification can be given as the time
constants of first-order step responses of controlled vari-
ables.

(2) This method is computationally simple, since the
primary computation required is that for pole assign-
ment, and no Riccati solutions are required, thus lead-
ing to substantial reduction in computational time.

(3) The feedback structure of an optimal servosys-
tem designed by this method is closely related to the
system structure of the plant. In particular, realizabil-
ity of state feedback by output feedback can be checked

in terms of the number and values of the system zeros.
2. Problem Formulation

For a linear time-invariant, controllable and observable

system

&= Ax+ Bu; A€R™", BER™V™ 1)
y=Cxz; CeR™", rankB=m<n
we consider the design problem of optimal servosystems
tracking a step reference input 7. Let us denote the steady
states of state  and input u for the optimal servosystem
by Z and 7, respectively and consider the following aug-
mented system with the states z. = [(:c — )" (u— ﬂ)T] T,

the input v = % and the output y. =y —r:
Te = AeZe + Bev

2
ye:Cexe ()
where
A B 0
Ao = Be=| |, c.=[C 0]
0 0 I

Then this problem can be reduced to the LQ problem for
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Fig.1 General configuration of an optimal servo system

the augmented system (2) minimizing the performance

cost:
J= /oo (2f Qe +v"Rv)dt; Q >0, R>0 (3)
0
and a solution to this problem:
v=—Kexe, Ke=[K1 Kb (4)
yields an optimal servosystem as in Fig.1 (1), where
A B
o)

n m n m

[RF R[]:[Rl }?Q]Dil, D:|: (5)

We assume throughout the paper that the matrix D is
nonsingular, or the system (1) has no zeros at the origin.

The objective of this paper is to provide a new LQ de-
sign theory for solving the above LQ design problem, and
apply it to develop a new design method of optimal ser-

vosystems.
3. Inverse problem of optimal control

A new LQ design theory proposed here is based on some
results on the inverse problem of the LQ problem (2)-(3):
Given a state feedback control law (4), or a control law
K. for short, find necessary and sufficient conditions on
Ae, Be and K. such that the control law K. is optimal
in the sense of minimizing the cost (3) for some Q > 0
and R > 0. First, we state the algebraic characteriza-
tion of optimality of K. as a direct consequence of LQ
theory.

Lemma 1. A control law K. is optimal if and only if

there exist P > 0 and R > 0 satisfying
BTP = RK., (6)
and
1 1 T
P (5351@ - Ae> + (5361@ - Ae) P>0  (7)

In connection with this result, the following two results
play important roles.

Lemma 2. The following properties hold concerning
the matrices P > 0 and R > 0 satisfying (6). %

(1) The state feedback law (5) turns out to be a solution
to the LQ problem for an augmented system with the state
ze =[(z—2)T 27T)7 (2 = ye) and the input v = u, which
ensures the well-known robustness at the point ”a” in Fig.1.

(i) These matrices exist if and only if the following con-
ditions hold.

Al) K.B. has m linearly independent real left-
eigenvectors, which naturally form the rows of a nonsin-
gular real matrix V.

A2) K.B. has m real "positive” eigenvalues, which we
denote 01, -+, Om, and set & = diag (o1, -+, Om).

(ii) They are generally given in terms of V and ¥ by

P=(VK) TS Y(VK.)+ l 1(/)1 g ] (8)

R=VTrv (9)
for some real symmetric matrices I' and Y1 such that
>0, TI¥=%I, Y1 >0 (10)

Proof: See Appendix A. |
Lemma 3. The matrix inequality for an unknown

symmetric matrix X:
XH+H"X >0, HepRg"m™x+tm (11)

has a diagonal solution X > 0 if H = (hs;) satisfies any
of the following conditions:
B1) H is copositive 9 namely H + H >0

B2) H is column diagonal dominant ®, namely

his > ci(H) — |hy| = ci(H) 1<i<n+m  (12)

where
n+m .
ci(H)= % |hij| 1<j<n+m
=1
Proof: In the case of Bl it is obvious since X = I satifies
(11). The latter case of B2 is due to the reference 7). I
These three lemmas yield useful optimality conditions
as follows:
Proposition 1. (i) Any optimal control law K. for

the LQ Problem (2)-(3) can be expressed by

K.=[K:1 K K=V 'SV, K; =K,F (13)

for some real matrices V, ¥ > 0 and F' of appropriate
dimensions with V' nonsingular and ¥ diagonal.

(ii) For any control law K. of the form (13), define S as a
real Jordan from of A — BF, and T as a real nonsingular

matrix such that
(A= BRT =TS (14)

and define G, T, and H by

G = —FT (15)
T 0
Te = I V_l ] (16)

H = Te_l (%BeKe - Ae) Te (17)
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Then the control law K. is optimal if H is copositive or
diagonal dominant.
Proof: See Appendix B. |

4. A new approach to LQ design

In this chapter, we develop a new solution to the LQ
problem (2)-(3) based on the optimality conditions ob-
tained in Proposition 1. The key idea is to parameterize

a control law K. in the form (13), namely,
K.=V7'SV[F I (18)

based on the necessary condition (i), and then determine
these ”parameter” matrices F, V and ¥ based on the suf-
ficient condition (ii). As described above, this idea stems
from the ”Inverse Liner Quadratic” problem, so that we
name this method ”ILQ design method”, and call LQ reg-
ulator obrained by this method an ”ILQ regulator”.

4.1 ILQ design method

As state above, the ILQ design method amounts to de-
termining F', V and ¥ so that the corresponding matrix
H satisfies the condition (ii) in Proposition 1. For simpli-

fying this process, we first set V' as
V=I (19)

and then determine F' by pole assignment. For the V
and F' so determined, we finally determine ¥ so that the
corresponding matrix H satisfies B1 or B2. The detailed
procedures are shown below.

(i) Determination of F

As stated above, we determine F' by the well-established
method of pole assignment with the following algorithm
8),9).
Step 1: Specify n stable poles {s;} with s; # A(A),

together with n real m-dimensional vectors {g; }, and set
S = (block)diag{s1, --sn} € R"*" (20)
G =[g1,",92] ER™™" (21)

Step 2: Solve the linear matrix equation with an un-
known T' € R™*"™:

AT — TS = —BG (22)

or equivalently, determine n-dimensional vectors {t;} by

t; = (siI—A)_lBgi = 1,---,n (23)
and set
T =[t1, -, tn] (24)

Step 3: Determine F' by

F=-Gr! (25)
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If T is singular, return to Step 1 and repeat the process
under different choice of {g:}.

Remark 1. This algorithm needs some modifica-
tion when assigning a complex conjugate pair of poles
(si, si+1). Namely, the sub-block (si, Si+1) in S must be

transformed into the usual real 2 x 2 block form:

a+ jb 0 a b
l —>l_b a] (26)

0 a—jb
Moreover, g; must be replaced by g; + jgi+1 in (23), and
(ti, ti+1) in (24) by (Re ti,Imti).
Remark 2. We should note at Step 3 that the matrix T’

is known® to be nonsingular as long as the assigned poles
{s:i} are distinct; in particular, it is always nonsingular for
any choice of {g; # 0} in the single input case '?.

(ii) Determination of ¥

For S,G,T and F' as determined above, we determine
3 > 0 such that the resulting H of (17) is copositive or
diagonal dominant. For this purpose, we substitute (2),
(16), (18), (19) into (17) and use (14), (22) to obtain the

following expression for H:

-5 —T7'B ]

H =
GS 1S -FB

(27)

This expression yields the following sufficient condition
for H to be copositive or diagonal dominant, which will
be used later to determine ¥ (see Appendix C for the
proof).

Lemma 4. (i) The matrix H is copositive if

Re A(S) <0 (28)
0i >0, = Amax(F) 1<i<m (29)
where A(S) denotes any eigenvalue of S, and Amax(E) the
maximum eigenvalue of the matrix:
E =[GS—(T7'B)")(-§ - sT)~*
[(GS)" —T 'B]+ FB+ (FB)"

(ii) The matrix H is diagonal dominant if any of the

following conditions holds.

(a) The matrices S and G in (20) and (21) satisfy
Res; < 0, |[Resi| > |Ims;|] 1<i<n (30)
lo:, <0 1<i<n ifs;€R (31)
lgrlly < 31 — Mmsi| / [Ress) k=i, i+1

1<i<n—-1 ifsi=35511€C”
where ||o]|, denotes the sum of absolute values of all ele-
ments of the vector.
(b) oi>0; 1<i<m (32)
where

o = 2[Ci(T_lB) + C;(FB) + (FB)ii]
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and (F'B);; is the (¢, i) element of F'B.

(iii) Design procedure

We conclude this section with a summary of the ILQ
design method developed above.

Theorem 1. By the following procedure we can de-
sign an ILQ regulator, namely a solution to LQ regulator
problem (2)-(3) for some @ > 0 and R > 0.

Step 1: Choose n stable poles {s; # A(A)} together
with n real m-dimensional vectors {g; }, and determine F'
by the preceding pole assignment algorithm.

Step 2: Choose the diagonal elements {o;} of ¥ as in
(29) or as in (32), where in the latter case we must choose
{si} and {g:} so as to satisfy (30) and (31).

Step 3: Determine an optimal control law K. by
K.=X[F I (33)

Remark 3. Note that the primary computation required
in this method is that for pole assignment at Step 1 which
is, no doubt, much simpler than that for solving Riccati

equations in the usual L(Q design method.

4.2 Trade-off parameters and asymptotic
properties of the ILQ Regulator

As is clear from the design procedure of ILQ method
described above, this method uses three kinds of design
parameters {s;}, {g:}, and {o0;} instead of the weight-
ing matrices @ and R as in the usual LQ design method.
As for {o;}, their lower bounds are determined in Step
2, whereas no upper bounds exist. In addition, it fol-
lows from (33) that they have the function of adjusting
the magnitude of optimal control inputs. In view of this
observation, we use them as trade-off parameters between
the magnitude of optimal control inputs and the goodness
of the corresponding transient response of the ILQ regula-
tor. The theoretical basis for the trade-off is provided by
the following asymptotic property of the ILQ regulator as
{o:} tend to infinity, which has close analogy with those
of the cheap LQ regulator as shown in the reference 1).

[Asymptotic property of the ILQ regulator]

Let {o;} be of the form:

ogo=0v 1<i1<m

where {v;} are any fixed positive numbers. Then as {o;}
tend to infinity in the sense of ¢ — oo, the closed-loop

system of the ILQ regulator obtained in Theorem 1:
Te =Fexe Fe=Ac— BcKe (34)

shows the following asymptotic modal property.
1) The n eigenvalues of F. tend to {s;} and the corre-

sponding eigenvectors tend to the following vectors:

r

Fig.2 General configuration of an ILQ optimal servo system

fi:lti] 1<i<n (35)
gi

2) The remaining m eigenvalues tend to {—o;} and the

corresponding eigenvectors tend to the following vectors:

di:lol 1<i<m (36)

€

where {e;} are the natural basis of R" (see Appendix D
for the proof).

5. New design method of optimal servo-
system

5.1 Design method

Applying the ILQ design method developed above to
the optimal servo problem as stated in Chapter 2, we ob-
tain the following basic design procedure.

[Basic design procedure]

Step 1. Specify n stable poles {s; } with s; # A\(A), and
n real m-dimensional vectors {g;} as a design freedom for
pole assignment

Step 2. Determine F' by the pole assignment algorithm
stated in Section 4.1.

Step 3. Determine [K% K9] by

K. Ky =[F 1D (37)

Step 4. Choose m tuning parameters {o;} as in (29)
or (32).
Step 5. Configurate an optimal servosystem as in

Fig.2, where ¥ = diag (o1, -, 0m).

5.2 Choice of design parameters

The choice of design parameters {s;} and {g; } are made
based on the preceding asymptotic modal property of the
LQ regulator (2), (4), or equivalently the optimal ser-
vosystem of Fig.2. From this property, we first note that
the output response of this servosystem has the following

asymptotic behavior as {0;} — oo:
y(t) > 2() =71+ % aiCtie®’ (38)
i=1

where {a;} are some scalars. Moreover, by (23), the

asymptotic output response z(t) is expressed concisely as

z(t) =r+ 5 aiW(si)gie®i" (39)
i=1
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by using the transfer function of the system (1):
W(s) =C(sI — A 'B (40)

Based on this expression of z(t), we choose s1 ~ s, and
g1 ~ gn S0 as to yield some desirable asymptotic output
response z(t) of the optimal servosystem. In order to real-
ize such a choice of s1 ~ s, and g1 ~ g» we first express a
desired z(t) in the form of modal decomposition like (39),
and select them so that both responses coincide. The
most simplest and practical one among them is such that
each element z;(t) of z(t) is expressed as a step response
of a first-order system with a time constant —1/s; (> 0),

i.€.,

zi(t) =rm(1—e®')  1<i<m (41)

where r = [r1,---,"m]. In the sequel we consider only
this case for simplicity, and obtain a specific method for
selecting s1 ~ s, and g1 ~ gn.

From the definition of z(¢) and the restriction on {s;}
with s; < 0, The above choice is realized by choosing
$1 ~ Sp and g1 ~ S, SO as to satisfy

$: <0 Cty =W (s:)g: = aues, 1<i<m (42)
Resi <0 Ct; =W(si)gi=0, m+1<i<n
where {a; # 0} are arbitrary real numbers. Thus the

following steps realize the desired choice.

[Selection Procedure]

Stepl. Choose any negative real numbers s1 ~ s, that
do not coincide with the poles and the zeros of the system
(1).

Step2. Determine g ~ gm by
gi = aiW(si)flei 1<i<m (43)

Step 3. Choose the remaining Sm+1 ~ Sp SO as to be
the zeros of the system (1) .

Step 4. Choose the remaining gm+1 ~ gn SO as to be
the associated input zero-directions.

Obviously, the necessary and sufficient conditions for
feasibility of the above choice are:

C1) The sysytem (1) has the maximum number (i.e.,
n —m) of zeros, namely det CB # 0.

C2) All zeros of the system (1) are stable.

We summarize the foregoing discussions as a theo-
rem.

Theorem 2. Let us assume that the system (1) sat-
isfies C1 and C?<2), and design an optimal servosystem
by ILQ method with its design parameters si ~ s, and
g1 ~ gn chosen by Steps 1 to 4 in the selection procedure.

Then as {0;} — oo, each output y;(t) of the resulting

(2) These two condisions are void in the case of n =m

optimal servo system approaches the step response of a
first-order system with a time constant —1/s;, i.e.,
yi(t) = r(1—e®') 1<i<m (44)

This result provides various practical implications
which are useful in the design of optimal servosystems
such as:

a) The design specifications can be given in terms of
the time constant 7; of a first-order step response of each
output y; independently.

b) This specification can be achieved approximately by
obvious choice of design parameters {s;}, i.e.,

si=—1/T; 1<i<m
and hence the decoupling control of the outputs can be
achieved approximately.

c¢) The tracking performance of the optimal servo sys-
tem can be adjusted by tuning {o;}, while compromising
the magnitude of control inputs.

Remark 4 If we choose {o;} based on (32) at Step 4 of
the design procedure in Section 5.1, we need to adjust the
magnitude of g1 ~ g, so as to satisfy (31). Moreover, it
is better to increase the magnitude of each g; as much as
possible, so that o, becomes small. The system zeros and
zero-directions required in Steps 3 and 4 can be obtained
by solving (42), or equivalently the associated generalized

eigenvalue problem 1),

| _ |10 t;
Llle]l]

m+1<i1<n

A B
c 0

In regard to the nonsingularity of 7' as required in the
pole assignment of Step 2 in connection with the choice
of {si} and {g:} at Step 1 to 4, we should note the state-

ment made in Remark 2.

5.3 Feedback structure

The optimal servo system of Fig.2 obtained in Theorem
2 shows a special structure of its feedback matrices K%
and K.

Theorem 3. Under the assumptions of C1 and C2,
the optimal servosystem obtained in Theorem 2 can be
realized in the form of output feedback configuration as
shown in Fig.3, where the feedback matrices are given by

Kg - (CBO)A (46)

K7 = —K,diag(s1, -, Sm)
Proof. By post-multiplying the matrix DT, with V =T
on both sides of (37), and using (22) and (25), we see that
K9 and K? are uniquely determined by solving

rsb ] — 1 (47)

K% K9
L
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@ |~

Fig.3 Configuration of an ILQ optimal servo system by out-
put feedback

Moreover, we see from (42) that this is satisfied by K =
KJC and the K? given by (46) with K = (CB)~*. 1
Remark 5. As shown above, the state feedback of the
optimal servosystem can be realized by a suitable output
feedback. In addition, it follows easily from (47) that,
when we choose g1 ~ g¢n by (43) at Step 1 of design
procedure, the converse statement is also true, and the

corresponding K7, K7 are given by (46).

6. Design example

In this section we illustrate a design example of the op-
timal servosystem obtained in Theorem 2. Consider the
system (1) with the following coefficient matrices and the

transfer function matrix:

04 -1 0 1 0
A= 0 -8 —-1|, B=]0 -1|,
0 0 0 0 2
[ 1 0 0
C:
01 0

Wi(s) = s(s+8)ts+0.4) l 9 e

0 —(s4+04)(s+2)
Note that this system satisfies the conditions C1 and C2
in Theorem 2, and has a zero of -2.

Step 1. Specify the time constants 71, 7% of a first-
order step response of the outputs y1, y2 , respectively,
and choose s1 ~ s3 as
1 1
AR A
Accordingly, choose g1, g2 by (43), i.e.,

S1 = — 83:—2

g=aaW(s1) ter =ai[s+04 0]

g2 = xW(s2)tea = az [l —s2(s2+8)/(s2 +2)]"

and g3 by the latter equation of (42), namely, choose it as

a solution of W (s3)gs = 0 as follows:

0
g3 = aQas
1

Here we determine each a; such that ||g:|, = 1.

Step 2. First compute t1 ~ t3 by (23) as

t1 = 1 [1 0 O]T
to=0a2[0 1 —2(s2+8)/(s2+2)]"
ts=oaz0 0 —1]"

and F by (25) as

—s1—04 -1 0
F =
0 s2+8 1

Step 3. Compute the gain matrices K%, K? of Fig.2 as

—S1 0
0 S2

Note that this result can be obtained directly from The-

1 0 0

[Kp Ki]=
0 -1 0

orem 3.

Step 4. Choose {o;} by (29) or (32).
As an example, we shall show the simulation result for
the case of 71 = 1> = 1. First, the conditions (29), (32)

for selection of the tuning parameters are as follows:
o1 > 114, i=1,2 (coopositivity) (48)
o1 > 2.4, o02>32 (diagonal dominance) (49)

By noting (49) we fix 02 as o2 = 33, and change o1,
for which the resulting input and output responses of the
control system of Fig.2 are shown in Fig.4. Obviously (a)
means that the asymptotic property (44) for the output
y1 as established in Theorem 2 holds true; (b) shows that
the response of y2 has almost reached to a desired first-
order response since o2 is large enough; (c) indicates that
the response of u1 becomes fast as 01 increases. Hence the
value of o1 should be determined by trade-off between the
tracking performance of y1 and the speed of the response
of ui. Similarly, we determine the value of o2 based on
the responses of y2 and u2 , which are omitted. As is clear
from Fig. 4, the tracking performance of outputs hardly
change for any values of {0;} larger than a certain level.
However, the input responses become fast at any rate of
speed in accordance with the increase of o1 . Therefore,
it is not only practical to increase {o;}, but also inappro-
priate from the viewpoint of robust stability; in fact, a
slight variation of B sometimes results in the instability
of the closed-loop system in Fig.3, and hence we should

be careful about it.
7. Conclusion

By taking a new look at LQ theory from the viewpoint
of the inverse LQ problem, we have obtained a practical
LQ design theory and applied it to the design of optimal
servosystems. Although our attention was restricted to
the particular system, the results presented here can be

easily extended to general linear time-invariant systems.
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Fig.4 Step responses of an ILQ optimal servo system for var-
ious values of o1 with o2 fixed

Similarly, the proposed selection method of design param-
eters, though it has a certain restricted application, can
also be extended to the one without restrictions. These
matters will be discussed in the future paper, and thus
the discussion was focused here on its basic one. Finally,
the first author wishes to thank Prof. N. Suda of Osaka

University for helpful discussions, and also thank Prof.
M. Ikeda of Kobe University and Prof. S. Hara of Tokyo
Institute of Technology as well as anonymous referees for
their valuable comments.
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Appendix A.

Noting rank B = m by definition, we apply some re-
sults of the reference 5) to the algebraic equation (6).
First, the necessity of (i) is obvious from Theorem 2.2
in the reference 5), and so is it from Lemma 2.1 (ii) and
Theorems 3.1, 3.4, 4.1 and the definition of B, that an ar-
bitrary set of solutions P > 0, R > 0 of (6) are expressed
by (8), (9). The converse fact follows easily by applying
Theorems 3.1, 4.1 and noting the following relation as a

direct consequence of A2:

rank K.B. = rank K. = rank B. (A1)

This completes the proof for sufficiency of (i) as well as
that of (ii).

Appendix B.

(i) By definition K> = K.Be, which satisfies Al and
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A2 by Lemma 1 and Lemma 2(i) if K. is optimal. Hence
with V| ¥ defined in Lemma 2 (i), the first relation of
(13) is obvious. The second relation is also obvious with
F = K; 'K, since K> is nonsingular.

(ii) Since KeB. = K> = V'SV implies the condi-
tions Al and A2 in Lemma 2, it suffices by Lemma 1 and
Lemma 2 (ii) to show that there exists a solution P > 0
to (6) satisfying (7) under the conditions Bl or B2. In
other words, it suffices to show under the above condi-
tions that, for some solution P > 0 of (6) and the H of
(17), the matrix

X =TI PT. (B.1)

satisfies (11). To show this, substituting (16), (8) into
this, and noting (13), (15) yield

X = diag(T" VAT, ST), Y1 >0, T'>0 (B.2)

This obviously means that X could be an arbitrary pos-
itive definite diagonal matrix by proper choice of Y7 > 0
and I" > 0, or a suitable solution P > 0 of (6), and there-
fore X could be a positive definite diagonal solution of
(11) by Lemma 3.

Appendix C.

(i) From the form of H in (27) and a well known prop-
erty related to the positive definiteness of a symmetric

matrix, H + HT < 0 if and only if
S+8T<0, T-E>0 (C.1)

By the structure of S in (20), the first half is equivalent
to (28), and the second half holds if

Omind > E  (Omin = min{o;}) (C.2)

namely, (29) holds, since E is real and symmetric.

(ii) From the structures of H in (27) and S in (20), it fol-
lows easily that the conditions (30), (31) give a sufficient
condition for column diagonal dominance with respect to
the first n columns of H, and the condition (32) gives the

one with respect to the remaining m columns.
Appendix D.

Note from (18) and the special form of o; that K. =
oKy [K, I] with Ky = V™ 'diag(vi,--+,vm)V and
K, = F, and note also that the eigenvalues of A — BF
are {s;} and those of K; are {7;}. Then the asymp-
totic eigenvalue properties as stated in 1) and 2) follow
directly from Theorem 2 of the reference 12). To show
the asymptotic eigenvector property for Fe, we first con-
sider F = T, 'F.T. , which is expressed by (17), (27) and

(18), (19) as
S T 'B
- [—GS FB— ol
Denote the eigenvalue of F' by A; and the corresponding

5= |:Z11:| }n
zi2| }m

Then we have Fz; = \;z;,i.e.,

:| ) r'= dlag(ryla e 77777')

eigenvector by

(S —Xil)zia + T ' Bziz = 0
—GSzi1 + (FB — ol — )\iI)Ziz =0

Using this relation and the preceding asymptotic eigen-
value properties, we easily see that as o — oo,

1) z;1 = pi and zi2 = 0 if A\ = s; 1<i<m

2) zig = 0and zio v e if i =—0y;, m+1<i<n
where p; is the ¢ th eigenvector of S associated with an
eigenvalue s; of S. Transforming this eigenvector property

of F' into that of F, yields the desired result.
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