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Structural Analysis of Fault-Tolerance for

Homogeneous Systems'

Reiko TANAKA®, Satoru IwaTa™ and Selichi Sgin*

This paper investigates fault-tolerance of homogeneous systems that consist of a number of identical subsys-
tems. In order to retain the fault-tolerance of large-scale systems, not only the reliability of each component,
but also the design of a whole system counts for much. We carried out quantitative evaluation of fault-tolerance
in terms of autonomous controllability for systems with different structures. The failure patterns to cause the
systems $0 be uncontrollable can be found merely by structural information. In consequence of this investigation,
we focused our attention on symmetrical structures of the systems, and applied group representation theory to

our analysis.
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1. Introduction

A variety of ideas have been proposed concerning how
to construct end how to manage large-scale systems, as
their size and complexity have shown a rapid increase.
The main point to construct a large-scale system is to
unify a number of small components through the inter-
connections between them. That is why researches have
been carried out for hierarchical multilevel systems 1 and
autonomous decentralized ones® . In addition, the lack of
reliability may cause serious problems especially for large-
scale systems, because failures may occur more frequently,
or, it may not be possible to react immediately againgt
the failures, for example in space stations, intelligent ve-
hicte systems, or, distributed control systems of factory-

%), In order to retain the fault-tolerance of

automation
large-scale systems, not only the reliability of each com-
ponent, but also the design of a whole system counts for
much, Therefore, it is useful to carry out structural anal-
ysis of fault-tolerance for large-scale systems.

Recently, reliability of systems have been increasingly
studied. For example, 4) and 5) considered passive re-
dundant controllers, and integrity conditions have been
discussed in 6}-9). A considerable number of the fault-

tolerant sysiems are also reported from the practical fields
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(for example, see 11}}. These reports are accompanied
by the studies on protocols for exchange of information
between subsystems. However, few researches have been
conducted on the physical connections among the subsys-
tems. Then the problems come about: “How should the
subsystems be interconnected one another to attain fault-
tolerance as a whole?™ This paper carriet out quantitative
analysis for fault-tolerance of the systems with different
structures aiming at pursuing “geod” interconnections.

As a measure of fault-tolerance, sutonomous controlla-
hility of the entire system ' has been defined for multi-
variable systems. This property guarantees the controlla-
bility of the entire system even with the failures in some
control channels. Moreover, the definition of autonomous
controllability is accompanied by the number of control
channels that have failed, so that this number should
serve for a quantitative evaluation of fault-tolerance. If a
system remains controllable even with m channels in the
outage, this system is said to be autonomously control-
lable at level . This is the similar idea with m-actuator-
integrity by Giindeg®, in the sense that it could adopt the
acceptable number of fajlures to keep certain properties.
Furthermore, & design method has been proposed ** for
such systems that remain stable against certain number
of failures, i.e., systems with integrity at a certain level of
failures.

We investigate the characteristics determined merely by
the structure of interconnections. Fence, all components
and the existing interconnections among them are sup-
posed to be identical, and such systems are called homo-
geneous systems. From the practical view, assemblage of
identical units has the advantage to facilitate analysis and
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design of the entire systems, and enables to get a variety
of systerns. Replacements of the components that have
failed could be facilitated by their mass-production. It is
therefore suitable to the recent demands on the produc-
tion of small quantity with more varisty. Some examples

14}, Especially, we shall dis-

are seen in robotic systems
cuss the following three kinds of basic structures (Fig. 1):
(a) ring-type, (b) chain-type, and (¢) wheel-type homoge-

necus systems.
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Pig. 1l Homogeneous systems considered in this paper. {a)
Ring-type, (b) chain-type, {c} wheel-type systems.

We carry out structural analysis of fault-tolerance for
such homogeneous systems and show the failure patterns
that cause the systems to be uncontrollable. At last, we
mentioned symmetric homogeneous systems defined by

the use of structural symmetry '

, and show that analy-
sis of fault-tolerance can profit from group representation
theory i5)

This paper is organized as follows, Section 2 intro-
duces the representation of structured homogeneous sys-
tems congidered in this paper, and a measure of fault-
tolerance utilizing autonomous controllability of the entire
systerns. In Section 3, we show the procedure to analyze
the failures that cause the homogeneous systems to be
generically uncontrollable and give the results for three
homogeneous systems. Section 4 considers application of
group theory to the analysis discussed in Section 3.

In this paper, I denotes the unit matrix of order k, and
R(A, B) denotes the controllability matrix of (4, B), i.e.,

R(A,B) = [BAB A®B-.. A~ 'B).

2. System structure and a measure of
fault-tolerance

2.1 Homogeneous systems

Consider a system & obtained by connecting m subsys-
tems {51, S8z, -, 8m}. Each subsystem S; {i=1,2,..-,m)
is described by a state transition equation

i (2) = Agyw; (t) + Byu{t) + Z Az () + Z Biju (£,
ek i

where ¢;(t) € R™ and w:(t) € R™ denote the state of
&; and the inpui from its control channel, respectively.
The entire system & is described in the standard form of
a state transition equation

&(t) = Aa(t) + Bu(t)

Ayr Az - Apm L1 By Biz v Bim 3
Ay Azz - Anm =2 Bz1 Baz +r Bom wy

= -+ . .. . . '
ml Am2+ Awmm m mi Bmz Boym, Mm

where the state and the input of the entire system S are
denoted as 2(t) € R" and u{t) € R7, respectively. Ma-
trices A;; and By are of consistent dimensions. The di-
agonal blocks of 4 and B stand for the effects of each
subsystem S; on its state ®;. On the other hand, the oft
diagonal blocks imply the interactions among subsystems.
If all the m subsystems S; (i=1,2,---,m) are identical,
i.e., Ty = Mo, T = 71D, Aﬁ = K, B-gi = P,
L (if & and &; are conmected)

A,‘__'; = .
0  (otherwise),
& (# 8; and 8; are connected)
0 (otherwise),

where K, L, P and @ are nonzero matrices with consistent

By =

dimensions, § is called a homogeneous system.

In the following we are interested in the characteris-
tics defined by its structure. Therefore, the numerical
information about K,L,P and @ is not required. The
structured system defined with these matrix parameters
is denoted by (4, B). For example, (4, B) of each homo-
geneous system considered here (Fig. 1) is described as

follows:
{a) Ring-type

KLO-- 0L PQO--0Q
L -~ © QF .0
O T o .
Lo T s .
o KL c .. Pg
LO---0OLK QO.-.0QP

where the index number of subsystems is assigned clock-

wise from an arbitrary subsystermn,
(b} String-type

KL0. 01 [PQO.0
LK . - Qp .
12 N B~ SRR v ,
R oot Q
0---0OLK 0---0QP

where the subsystem of one side is assigned to 1, from
which the index number is assigned in regular order to

the subsystem S, of the other side.
{c) Wheel-type

"KLO.-.OLL PQO.-0QQ
LKL . oL GFPQ oQ
oL ogQ
C o L o |
LO.- -0 LKL QO--0QPQ

| LL L LLK QQ---QQQP

where the subsystem at the center is S, and the index
number one to m— 1 of subsystems is assigned clockwise
from an arbitrary subsystem.
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All the information about structure of the systems is
sufficiently describad in & matrix A of order m obtained
by replacing K and L in A with scalar parameters. More-
over, the structured systems (A4, B) is said to be generi-
cally uncontrollable if it is always uncontrollable in spite
of the numerical information about K, L, P and Q.

2.2 A measure of fault-tolerance

A measure of fault-tolerance is defined as follows, by
adopting autonomous controllability of the entire system
12) 4o “cut” in the study of the reliability of systers ™.

We first associate with each subsystem &; a variable f;
such that

0 (if S; is faulty),
ﬁ;{ (if Sy is faulty) )

1 {otherwise).

In this paper, failure of a subsystem is restricted to that
of its control channel?, In other words, to say a failure
occured in & subsystem &; at time fp means

u;(t) =0 for V2> to. (2)

Systems for practical use may be equipped to make the
controller stop when any kind of doubtful signals are de-
tected. Then, the suspected parts should be inspected
with their comtrol inputs off. Therefore, this definition
of failures as (2) can deal with the case of emergency
stops, or, maintenance of subsystems. Even in such cases,
fault-tolerant systems are desired {o keep functioning s
a whole.

We especially consider the controllability of the systems
with some failures. First of all, systems without failures
in any subsystems are supposed to be controllable. The
information we have is only the connections among the
subsystems described in (A, B), and the variables f; in
(2). Therefore, for each (A, B), the entire system becomes
generically uncontroliable depending on {f1, fz,- -+, fm)-
Let S be the subset of subsystemns whose indices belong
to J. If the entire system is generically uncontrollable
when all the subsystems in § have failed, ie., f; = 0 for
jeJand f; = Lfor j ¢ J, one says that S is a cut. Then
the munber of the subsystems in a cut may manifest the
level of fault-tolerance of the homogeneous systems to be
generically controllable.

A faflure - defined by
F = disg{f1, fo." -+, fm}, corresponding to a pattern of

matrix is then

failures. The matrix BF.,, where Fry = F @ I, has zero
colurnn biocks that correspond to all the subsystems in
the outage.

Remark.

To consider the controllability of the entire system after

the failures in some subsystems is useful for the systems
in which total replacements of the subsystems are impos-
sible, for example, in space station systems '®) and large-
scale factory automation systems®. On the other hand,
autonomous controllability defined by Mori et al. ? is use-
ful if it is possible to remove the subsystems in the outage,
for example, in computer network systems®. Their au-
tonomous controtlability is the controllability of the states
of the functioning subsystems with all the failures in some
subsystems, so that it makes no mention of the states of
subsystems in the outage.

3. Evaluation of fault-tolerance for ho-
mogeneous systems

To evaluate fault-tolerance of structured homogeneous
systems, we investigate the cut & described above, where
the generic rank of (A, BF.,) becomes less than n. An
analysis procedure is described as follows.

Find a matrix Z such that Z7*AZ is diagonal. Then
A = (Z @I, "A(Z ® I,) becomes block diagonal,
say, block-diag{Ai, Az, -,Am}. DBecause the rank of
the controllability matrix R(A, B) is invariant under state
transformations, we shall deal with R{A, B), where B =
(Z ® Ing)~'B. Since B(Z ® I,,) is also block-diagonal,
say, block-diag{ B, Bs, - -, Bm}, we can get

A'B = diag{AiB) ALBy - ALBHZ ® Iny) 77
By permutating some rows and columns,

Iy

Ry

rankR{A, BF.y) = rank Z7F @ Inrg

B,
where R; = [Bj A;B; A%B;--- A}'By] (5 = 1,-++,m).
Here, we suppose that R, is of full-rank, ie., B{(4;, B;) is
of full-rank because the order of A4; is ng. Under this con-
dition, uncontrollability after failures can occur either by

the existence of a zero row in Z7'F, or, the dependency

of rows in ZIF corresponding to the identical blocks in
A

The discussion above leads us to the following procedure
for analysis on autonomous controllability of (4, B).

(1) Pind a constant matrix Z which makes A =
Z-'AZ diagonal, independently of the paramsters in
A

(2) Exsmine the zero and nonzero pattern of Z7°.

(3) Examine the dependence of rows in Z7%, corre-
sponding to the identical blocks of A.

‘We follow this procedure for three basic homogeneous
systems.
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(2)

foliows by a group theoretic approach. This procedure

The matrix £ for ring-type systems is obiained asg

shall be explained in the next section.
If m is an odd number, Z is obtained as

and if m is an even number, Z is obtained as

. -1 . wl
:}’2“ cosf  sin@ cos| W16 ein] Tt le —\}-2_-
. ] " 1
m\/"l; cos2f  sin20 ... con2| Tpn e sin2] Th5E |8 —m&%
{(4)
L ﬁ cosm@ sinmf --- cosm{Trt e sinmiziie ———\% ]

where 8 = %’;:« For both cases, Z7 % is equal to »r%:ZT.
(b} The matrix Z for chain-type systems is explicitly
obtained for tridiagonal matrices as follows.

sind gin 20 sinm@
sin 28 sin 40 sin 2mf
Z = » (B)
sinm@  sin2md sin m20
where § = %z and 271 = =27 Z7.

(c)
as follows by the aid of Z for ring-type systems.
If m' =m —1 is an odd npumber, Z is obtained as

The matrix Z for wheel-type systems is calculated

""71; cos @ sin @ Goslﬂ;ije sinL—m;—1j9 1

7‘5. cos 26 sin28 cos2|Bpdie  sinp|2xlig
A(3)

L —1\5 cosmf  sinm@ .- cosm|Fphie Sinmtm‘zﬂjeﬂ

I + -
cos# - sinf oo cos| Zamkie sin| Bo=L 1g 1/2 1/2
L
cos20 sin20 - cos2|TSile  sinz|BEile a2 1/2
r I
cosm’dsinm’e. . cosm'[-'iz-_—lje sinm’[m-fija 1/2 172
0 0 o 0 Al M
and if m’ = m — 1 is an even number, Z is obtained as
f ’
cos®  sinf .. cos|ZEhle smiPaplle L yzoo12
20 sin 28 s2lMmiie sima™mile -1, iz i/2
cOS BlD A foled —3 -5 \_/g
4 !
cosm/@sinm’y ... cosm’[m—{-‘—lje sinm'Lﬂ-;—le _% 1/2

0 o 0 0 o

where # = 2%, For both cases, 27! is calculated as
2 T

SR BT

1/2
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For each of the matrix Z obtained above, we exam-
ine the zere and nonzero pattern of Z7!. For example,
the (i, 7)-component (1 < 4,5 < m) of (8) described as
{mod m -+ 1). The

discussion above, together with the following elementary

sin(i76) is zero if and only if 45 = 0

lemmea, leads us to the following theorem. Similar anal-
ysis can be carried out for ring-type and wheel-type sys-
tems.

Lemma 1. Suppose that 1 € ¢ < m (m > 1), there
exists an integer j which satisfies

1€£7<m eand =0 (modm<41),

if and only i ¢ is & divisor of m+ 1 with i > 1.
Theorem 1.

The cuts of three basic structures to be generically un-

controllable are described as follows.

(a2} The cuts of the ring-type structure asre & ~—
{84+ 82q: 534, -+, Om }, for all the divisors ¢ of m, ex-
cept for the case m = 2
included.

(b)
{85,824, 839, -\ St twg}, Tor all the divisors ¢ > 1
of (m + 1).

(¢} The cuts of the wheel-type structure are & —
{Sq,S2q,+ 1 8m—1,8m}, for all the divisors g of (m~1),
except for the case (m — 1) =2 (mod 4) where ¢ = 2

(raod 4) where g = 2 is not

The cuts of the chain-type structure are & —

is not included.

Example.
Figure 2 gives examples of generjcally uncontrollable sys-
tems according to the theorem shown above. Fajlures oc-
cur in the subsystems represented by dotted circles.
In the failure patterns that induce uncontrollability as
shown in Theorem 1, the functioning subsystems are dis-
tributed in periodic ways (see Fig. 2). This periodicity
derives from two kinds of symmetry. Namely, if a system
has structural symmetry, the system is not $olerant for
failures of subsystems distributed symmetrically. In this
context, it might be worth mentioning that ring-type ho-
mogenecus systems with a prime number m, chain-type
homogeneous systems with a prime number m + 1, and
wheel-type homogeneous systems with a prime number
m - 1 are superior in fault tolerance. In these cases, the
system never becomes uncontrollable by symmetry as far
as arbitrary two subsystems remain functioning.

Example. As snother examples, consider the systems
shown in Fig. 3 {a) and (¢). The miniraum number of sub-
systems to cause generic uncontroilability in each system
(a), (b), and (c) in Fig. 3 is then derived es 2, 4, and
4, respectively. This result suggests that the system with
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{a)

Fig.2 Examples of the homogeneous systems whick are
genericaily uncontrollable. Failures occur in the sub-
systems represented by dotted circles. (a) Ring-type,
(b) chain-type, (c) wheel-type homogeneous struc-
tured systerns.

structure {a) is less fault-tolerant than the others in a
sense. From neuroethology, it is known that the nerves in
the six legged insects adopt {¢) type interconnection 1%,

Fig.3 Homogeneous systems with six subsystems. Failures
occur in the subsystems represented by dotted circles.
‘We can see these systems are generically uncontrol-
lable, It is said that the interconnections among the
six legs of insects adopt (¢} style.

4. Application of group representation

During the procedure shown in the previous section,
the primary point is the diagonalization of A. This sec-
tion presents a group theoretic background for finding the
matrix Z for systems with symmetrical structures.

Before moving on to the definition of symmetric sys-
tems, we introduce some fundamental facts about group
representations (see, for example 15)) utilized in the fol-
lowing discussion.

Let & be a finite group. Let V be a finite-dimensional
vector space over K =R, or C, where R is the field of
real numbers and C is the field of complex numbers, and
denote by GL{V") the group of all nonsingular linear trans-
formations of V onto itself. A representation of G on rep-
resentation space V' is a homomorphism 7 : G — GL(V).

The dimension of the representation is n = dimV. A
subspace W of V is invariant under 7 if v(g)w € W for
every g € G,w € W. The representation 7 is irreducible
if the only invariant subspaces of V are {0} and V itself.
An n~dimensional matrix representation of ¢ is a homo-
morphism T : G — GL(n,K), where GL(n,K) denotes
the group of all nonsingular matrices over K of order n.
If a basis {v1,v2, -+, v} is fixed for V, we obtain a ma-
trix representation T of G. The character ¥ : G — K of
7 Is defined by x{g} = Tr7(g)} = TrT(g). Note that the
character x is independent of the choice of basis vectors
for V. ‘

We denote by {r* | u € R(G)} a complete list of
nonequivalent irreducible representations of &, where
R(G) denotes an index set for the irreducible represen-
tations of G. A complete list of nonequivalent irreducible
matrix representations of G is denoted by ™ | ue
R(G)}. We denote the dimension of T by n*. Every
finite-dimensional representation of a finite group can be
decomposed into a direct sum of irreducible representa-
tions. The direct sum decomposition is obtained by

V = B.er O VP,
where V. are invariant subspaces of V which transform
irreducibly under the restrictions +* of * to V#, and the
multiplicity «* of 7% In 7 is uniquely determined. Then

the matrix representation can be put into a block-diagonal
form

T(g) = Buer) ®iey T (g),

where T is irreducible, if we first choose a basis {vfli =

g €G,

L,---,n*} for each V}* and adopt their union as a basis of
V. Moreover, by choosing a basis adequately, we can have
TH(g) = T*(g) (1 <4 £ o”). Namely, the decomposition
ig as

T{g) = ®uer(G) e, ™ (g). (6)
The following is known as Schur’s lemma, see, e.g.,
15).

Lemma 2.

Let Ty and Tt be irreducible matrix representations of &
over K, and H be a matrix over K. Assume that

Ti(g)H = HT2(g), geaq.

(1} T and 7% are not equivalent, then H = O.
(2) UK =Cand Th =T, then H = ol for some
aeC.
We now define symmetrical homogeneous systems as
follows.
Definition. A homogeneous system (A4, B) is said to
be symmetric for a specified group G if
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T{g " )AT(g) = A, g€G, ("

where T(g) is a matrix representation of G.
This equation {7} reflects the underlying geometric sym-
mesry in the system structure since A contains all the
structural information about system (A4, B).

Lemma 1, together with the equations (6) and (7),
shows that Z71AZ becomes block-diagonal with Z made
by arranging {v}; }: ZTAZ = Buerey{Du® Inn), where
Ay is of order ay. The basis {v};} can be determined from
{T*(g)lp € R(G)} by means of the projection methods,
see, e.g., 15).

Ring-type system is symmetric for the dihedral group
D of order 2m, which is defined as

Do = {1,7,- ™ g e ,sr(m'”},

vrhere r™ = 4% = (s7)? = 1. The irreducible representa-

tion decomposition is described as

] AOBOE®E:® - 9EBz
- A1®E1®E2@“'®Em_;~_1_

where one-dimensional irreducible matrix representations

are given as
T (g) =1 (g€ Dm)

and

TB1 (g) = —1 (9 e {Srﬁj+1!r2j~}*l’rm—-2j—-1})’

with 0 € 7 £ % ~ 1, and two-dimensional irreducible

{zﬁ%m=1 (g € {3, 50 7% pm=tily,

matrix representations are given as

—sin ki#
i (rl) . ii cos kiF }

cos klg
sin k18

and

—ginklf — coskld

with 0 €1 < (m ~ 1). The first column of Z in (3) and
(4) correpsonds to A; and the last of (4) to B1. A pair
of columns whose first entries are cos kf and sin kf corre-
sponds to Fy. The matrix Z is thus obtained from the

e —sin ki
TP (5r1) = { cos ki@ sin kif } ’

irreducible decomposition of the representetion.
5. Conclusion

This paper has discussed the fault-tolerance of homo-
geneous systems with three basic and widely-used struc-
tures. As a measure of fault-tolerance, we adopt au-
tonomous controllability, that is, controllability of the en-
tire system in spite of the failures in some subsystems.
The structure of homogeneous systems is characterized
only by their interconnections among subsystems, and it

contains no numerical information. We have shown the

{m is even) ,
(m is odd) ,

procedure to analyze the failure patterns that cause the
systems to be generically uncontrollable merely by their
structural information. And its result for three types of
homogeneous systems has been shown, Moreover, sym-
metrical homogeneous systems have been defined by the
use of group representation theory, which suggested that
the analysis conducted in this paper can be further ap-
plied to various homogeneous systems with symmetrical

structures,
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