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Adaptive Control for Nonlinear Mechanical Systems'

Koichi OSUKA*

In this paper, a model reference adaptive contorl system(MRACS) for nonlinear mechanical systems is pro-

posed.

In general, dynamic model of mechanical systems, such as manipulators, are highly nonlinear. This is the rea-
son why control of such systems is difficult. Though the mechanical systems are nonlinear as mentioned above,
the form of nonlinear terms in the models can be determined by the structure of the mechanical systems. So, we
can know the terms of nonlinear terms perfectly. Moreover, because of the special feature of mechanical systems,
the position, the velocity, and the acceleration of each degree of freedom are measurable.

First, I will show that for such systems, MRACS, which has particular adaptive mechanism and is assured
global asymptotic stability, can be constructed, using actively the information of the nonlinearity and the special
feature of mechanical systems. Then I will show the effectiveness of this MRACS using DARM-I(Direct Drive

Arm with two degree of freedom).

Key Words: adaptive control, mechanical system, direct drive arm, global stability

1. Introduction

There are many researches concerned with adaptive
control for linear systems. In recently, adaptive control
methods for nonlinear systems have been proposedV?).

On the other hand, since needs for high speed and high
performance nonlinear mechanical systems such as manip-
ulators are gradually increasing, adaptive control methods
for such systems are proposed. However, since the adap-
tive control methods in the paper 3)-6) were based on an
adaptive control theory for linear systems, there is a prob-
lem that the global asymptotic stability of the controlled
system is not ensured. Since the control law proposed in
the paper 7) is discontinuous one, mechanical vibration
may be caused. It seems that there are at least the fol-
lowing two reasons why such problems have been arisen.

(i) a linear approximation has been used.

(ii) the special properties of mechanical systems have

not been considered.

The author has already proposed a model referenced
adaptive control method for n degrees of freedom of non-
linear mechanical systemsg) 10), Using the special proper-
ties of such systems and without using any linear approxi-
mation, we designed the adaptive control system that can
be ensured the global asymptotic stability. However, we

could not ensure the boundedness of the internal signals

T Presented at The 2nd Symposium on Flexible Automation
(1985 + 5)

* Toshiba Research and Development Center, Toshiba Corp.,
Kawasaki(Currently, GraduateSchool of Informatics, Kyoto
University, Uji, Kyoto)

in the control system.

In this paper, based on the result in the paper 10), we
show a new design method of adaptive control system for
nonlinear mechanical systems. As the results, the asymp-
totic stability and the boundedness of the internal signals
in the system can be ensured. Then we show the effective-
ness of the proposed method through experiment using a
simple manipulator.

The contents of this paper are as follows. In Chapter
2, we clarify a class of mechanical systems and show the
problem that we want to solve here. In Chapter 3, we
show a design method of our adaptive control law. In

Chapter 4, some experimental results are shown.
2. Problem Statement

We consider a design method of MRCAS for the follow-
ing nonlinear mechanical systems.Here Eq.(1) is a con-
trolled object, Eq.(2) is a reference model and Eq.(3) is a

error signal.

I 0 1 Ty
| = (1)
0 J(z) T2 F(z)+u
Ty = Aypxym + BU (2)
e =2ym—2 (3)
Where,
0 I 0
Ay = s = )
kil koI I
r = ($?>$g)T = (xllw"7$1n7x217"'7$2n)T7
T T \T
zv = (Thm1, Thr2)
= (TM11,- oy TMin, TM215 - TM20)
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and J(z) € R**™ and F(z) € R™ are nonlinear matrices
of the variable z. The matrix I € R"*"is an unit matrix
and 0 € R"™" is a zero matrix, the constant parameters
k1 and k2 are the design parameters.

Now, because of the system (1) is a mechanical system,
we can assume the following assumptions.
Assumption (i) The nonlinear matrices J(z) and
F(z) are linear with respect to physical parameters.

Namely,

J(z) = ZZ;I arJi(z)

F(x) = ZZZI arpFr(z),
where ar(k =1,...
The matrices Ji(z) € R™™™ and

Fi(z) € R™™" are nonlinear but do not contain any

(4)

,q) represent the uncertain phys-

ical parameters.

uncertain parameters.

(ii) The structure of the matrices Ji(x) and Fy(z) are

known and they have the following properties.
(a) The all of elements of the each matrix are non-
linear piecewise continuous functions.
(b) The all elements of Jy,(x) ( J;’)are bounded for
arbitrary z, and their upper and lower bounds can
be calculated in advance, namely,

For Vz, 1£r}czigxm {77 () |} < My. (5)
1<i,5<n

(c) The all elements of F(x) are bounded for arbi-
trary .

(iii) The upper and lower bounds of uncertain param-

eters a, can be estimated in advance, namely,
(6)

(iv) The state variable z,  and x s can be detectable.
(v) The input U is bounded.

Here, we explain the meaning and the appropriateness

< .
pax {| ax [} < amaz

of the above problem statement using a manipulator.
The kinetic energy T', the potential energy V', and the
dissipation energy E of manipulators with n d.o.f. can be

written as the following.

T = %a';lTJ(xl)a';l, (7)
V = v(z1), (8)
E = %gb;Hﬁcz. 9)

Where, 1 € R"™ is a generalized coordinate vector,
J(z1) € R™*™ is a nonlinear matrix, v(z1) € R is a non-
linear function, and H = diag(hi,...,hy) is a coefficient
of viscosity matrix of the joint. Here, set z2 = @1, and
including the input torque vector w € R™ and the friction
term C = diag(fisgnzai,. .., fnSgnT2,), we can have the
following dynamical equation of the system via Lagrange’s

method.
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. d 1. oJ
J(x1)T2 + {EJ(.’M)— ag;g‘ ( af;?))}wz
)%
+a—$1+H$2+C’—u, (10)

where, &> is a matrix whose size is n? x n. Here, if we set

J(z) = J(a1) (11)
F(z) = — {%J(m) _ %@T (%) } 2o
av
- & —Hn-C, (12)

then we have the system(1). Now, in general, as shown
in Egs.(10)-(12), the dynamical equation of manipulator
is a nonlinear differential equation system with respect to
the variable z. But, it is well known that the equation is
linear with respect to special parameters®. Therefore, if

we set

P, = {parameter set of all independent

parameters in J(z)}, (13)
P, = {parameter set of all independent
parameters in F(z) }, (14)
then form Egs.(11) and (12), we have
PCP.Y (15)
Therefore, if we set
P = {ai,a2, - ,am} (16)
P, = {ai,a2, ", Qm,Qm+1," ", 0p} (17)

this implies that Eq.(4) can represents the nonlinear sys-
tem (1).

From the above discussions, we can say that the as-
sumption (i) can be satisfied for manipulators. Since the
structure of the nonlinear function in dynamical equation
of manipulators are decided from the structure of the ma-
nipulators, the assumption (ii) can be satisfied in general.
The assumption (iii) says that we should identify the pa-
rameters in the dynamical equation roughly in advance.
Since when we control a system, we may know some about
the system in advance, this assumption seems reasonable.
Since we can have high quality sensors in recently, the
assumption (v) also can be satisfied.

The similar analysis can be carried out for other me-
chanical systems. And we think that there are many sys-

tems which satisfy the assumptions.

3. MRACS for Mechanical Systems

In this chapter, we construct the adaptive control sys-
tem for the system (1),(2) and (3). To do this, we define
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the following observe matrix and the generalized error sig-

nal.
Xz = |[Ji(@)ds — Fi(2):, -+, idm (2)i2 — Fon(2):
- m+l($):a ’ _Fp(w) ) (18)
v = De, (19)

where, D = [D1I:D1], zj; denotes the j — k element of
the matrix z, and v; denotes the j element of the vector
.
The main result of this paper is the following.
Theorem 1. Consider the nonlinear mechanical sys-

tem (1) and the input

u —)\T2 +/\[k1$1 +k21’2—|—U]

+Y alJi(@)ir - Fu(@)]

k=1

+ Y al-Fu)],

k=m+1

t n
ar = —Fk/ Zijvde+dk(0),
0

k=1
r Q < mawx-
(T >0, 1?,3§p{l ar(0) [} <a

(20)

(21)

If the matrix D of Eq.(19) is chosen to make the transfer
function W(s) = D(sI — A)"'B to be strictly positive
real, then we can have lim;_, o e(t) = 0. Furthermore,
we can prove the existence of a constant value A which
assures the boundedness of the all internal signals in the
hole system and can calculate the value.

proof. Substituting Eqgs.(4) , (20) and (21) into
Eq.(1), we get

#1 = s (22)
&3 = k121 + kama + U + Xm:(ak —ai)

[Ie(@)ds — l”’k(ﬂ«')]/f\:1

+ XP: (ar — ar)[—Fi(x)]/A (23)

k=m-+1
Further, subtracting Egs.(22) and (23) from Eq.(2) and

using Eq.(3), we have the following error equation,

¢ = Ae + B[Z4¢],

24
. (24)

where ¢ = (1, -, ¢x)" = (41 —a1,---,44 —aq)”. Since
the transfer function W(s) is chosen to be strictly pos-
itive real, using the Kalman-Yakubovich-Popov Lemma,
we can say that there exists a positive definite matrix P

which satisfies the equations,

No.1
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PA+ATP=-Q (VQ>0)
r (25)
B*"P=D.
Now, consider the positive definitie function
V(t)=e"Pe+¢"T ¢ >0, (26)

where I = diag[l'1,---,[',]. After differentiation of V(t)
along the solution of Eq.(24) yields

V(t)=—e"Qe <0. (27)

From Egs.(24) and (25), the following properties can be
obtained.

(i) e is bounded.

(i1) ¢ is bounded and lim; o, ¢ = ¢* (constant).

(iil) V(¢) < V(0).
To assure lim;— e = 0, we must prove that the signal
e is continuous. On the other hand, the continuity of e
can be proved by assuring the boundedness of the internal
signals in the whole system.
(Boundedness of the internal signals) Rewrite the system
(22) and (23) as the following.

(28)

1

l)\l - i ¢ka(x)] T2

x2

A [klml + kozo + T]

P
+ D o [-Fil@)].(29)
k=m+1
Since r, k1 and ko are bounded, it is clear that xas1 and
znm2 are bounded. And so, from Eq.(3) and the property
(i), 1 and x2 are bounded. Therefore, from the assump-
tion (iii), the all elements of J (z) and F}(z) are bounded.
Moreover, from the property (ii), ¢» are bounded.
In this way, we can prove that the all elements of the right
hand side of Eq.(29) and the matrix defined as
R(z) =M =Y ¢nJi(x) (30)
k=1
are bounded. Therefore, the boundedness of the internal
signals in Eq.(20) can be ensure the boundedness of the
signal 2. To do so, we prove that, for some constant e

and for arbitrary ¢ > 0, the following equation holds.
R;; > ¢, (31)

where R;; denotes the i-i element of R(z). This claim can
be proved by choosing the constant A as the following way.
At first, from Egs. (6) and (21), for all k(1 < k < p), we

have
01.(0)” = (a1(0) — ar)® < 4al,q,. (32)

Then, from Egs. (26) and (32), and the property (iii), we
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have the following.

P
0'T0 =) 6/
k=1

e(0)" Pe(0) + Y _ 64 (0)/T

k=1

IN

< e(0)"Pe(0) + > 4aj,o./Tx = My. (33)
k=1

Eq.(33) implies that, for arbitrary ¢ > 0, 6, does not
go outside of a certainp dimensional ellipsoid. From
this result, if we set ['maz = maxi<i<p 'k, then, for all
k(1 < k <p), we have

I ek IS V FmamMG- (34)
Therefore, since we have
A= 0l (2)

k=1

Z )\—mMJ\/Fmaa:MG(l SISN), (35)

Ri;

if we set A as
A > e+ mM FmaxMey (36)

we have Eq.(31).
From the above discussions, we could prove the existence
of a value of A which ensure the boundedness of the whole
control system. And we can calculate the concrete value
via Eq.(36).
(proof of lim;_; o, e = 0) Since the boundedness of the in-
ternal signals in the control system have been proved, we
can show that the error signal é is bounded. This im-
plies that the signal e is continuous signal. Then, using
Eqn.(26) and (27), we have lim; ,o e = 0. i
The structure of the proposed adaptive control system

is shown in Fig.1.

Referspce Model
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Fig.1 Adaptive control for nonlinear mechanical systems

No.1 January 2002

As you can see in Fig.1, the control system is designed
based on nonlinear compensation method with adap-
tive functions. That is, the each parameter in Egs.(20)
and (21) has a physical meaning. Therefore, if we set
I'v(1 < k < p) = 0, this control law realizes a nonlinear
compensation method with acceleration signals.

The parameter A which is introduced for ensuring the
internal signals makes the value of the moment of inertia
of Eq.(30) big. That is, the parameter A works as a kind of
a fly-wheel. Furthermore, from Eq.(26) and the property
(iii) in the proof, we can say that the control performance
of the proposed control system arises if the initial values
of the adaptive parameters 5 are chosen to be near the

real values of the parameters.

4. Application to Control of a Direct
Drive Arm

In order to show the effectiveness of the proposed con-
trol system (MRACS), we applied the controller to solve
the control problem of a certain mechanical system.

4.1 Experimental System

Photo 1 shows the photograph of the direct drive arm.
This arm is a SCARA-Type manipulator which has two

degrees of freedom.  The rare earth D.C. torque mo-

Photo.1 Direct Drive Arm

tors are used for joint actuators and the links are made of
aluminum. The each joint has a photo-encoder for mea-
suring the joint angle and a tach-generator for measuring
the angular velocity of the joint. Moreover, an accelerom-
eter is mounted on the edge of the each link as shown in
Fig.2. We can obtain the joint acceleration using the

signals from these accelerometers as follows;
é1 = a1/d1 (37)
52 = [Otz — Otl(COS 62 — dz/d1) — d1t9% sin62]/d2. (38)

Here, you can see 61, 62, di and d» in Fig.2, and a; and

as are the signals obtained from the accelerometers.
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Fig.2 Model of D.D. Arm

Thus, we can obtain the joint angles, the joint angu-
lar velocities and the joint angular accelerations of the
arm. And, obtaining the dynamical model of this arm,
we can see easily understand that the assumptions (i)-(v)
are satisfied for this arm.

Fig.3 shows the structure of the experimental system.
The CPU of the system is 80286+8087. The sampling pe-
riod is 7[msec]. The main datas of the arm are tabulated
in Table 1.

Jdoint 1

/2y

PRBOBIA !
16

D/A, AR

/8

NELFIE0S

Joint 2

ol

Tncoder o Board !.___/
A o
po-Motor »—-—-—-~-—@«--- o

Ay

Fig.3 System Configuration

Table 1 Parameters

1 2

l; 0.3m 0.3m

d; 0.3m 0.3m

Weight of link 4 3.7 kg 2.2 kg
Peak torque of joint ¢ | 1,647 kgm | 304 kgm

4.2 Experimental Results

Define a coordinate system as shown in Fig.4 in the
work space of the arm according to the following way.
At first, define the center of the joint one as the origin
of the coordinate system. Define the direction, which
can be obtained by setting 61 = 62 = 0, as the Y di-
rection. Define the direction which crosses at right an-
gles to the Y direction as the X direction. =~ Then we
designed the test motion as the following. Test motion:

Wright a straight line by the tip of the second link of the

Fig.4 Arm work space

arm from A-point (X = —0.4m,Y = 0.4m) to B-point

(X =0.4m,Y = 0.4m). The experiments were executed

under the following cases.

Casel
arm is 0.5m/s, and no payload is mounted on the arm.

Case2

arm is 0.5m/s, and the payload is mounted on the edge

The desired maximum speed of the edge of the
The desired maximum speed of the edge of the
of the arm is 2kg.

Case3

arm is 0.5m/s, and the payload is mounted on the edge

The desired maximum speed of the edge of the

of the arm is 4kg.
Case4
arm is 1.0m/s, and no payload is mounted on the arm.
Caseb

arm is 1.0m/s, and the payload is mounted on the edge

The desired maximum speed of the edge of the

The desired maximum speed of the edge of the

of the arm is 2kg.

Here, the maximum speed is the maximum velocity of the
edge of the arm.

For each case, we compared with the experimental re-
sults due to the proposed control scheme and the results
due to the conventional control scheme, i.e., nonlinear
compensation method of computed torque method. The
nonlinear compensation method can be obtained by set-
ting ' (k = 1,---,p) equal to zero. In all cases, we used
the values of the physical parameters identified via our
method proposed in 8) as the initial values of the adap-
tive parameters ax(0). Here, it should be noticed that the
parameters may not be identified perfectly. The identified
parameters are tabulated in Table A.1.

Fig.5 and Fig.6 show the experimental results. We show
only the data of the joint 2. In each figure, figure (a)
shows the result due to the proposed control scheme, and
figure (b) shows the result due to the conventional control
scheme, i.e., nonlinear compensation method. In the all
figures, the reference trajectory and the actual trajectory

are shown.
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From Fig.5(a)-1 and Fig.6(a)-1, we can say that in case
of conventional scheme, due to the insufficiently nonlinear
compensation effect, there are some trajectory tracking
error. From Fig.5(a)-2, Fig.5(a)-3 and Fig.6(a)-2, we can
see that a big load causes a big trajectory tracking error.
From these results, it can be said that the conventional
non-adaptive type is not powerful against the change of
the dynamical property.

On the other hand, in Fig.5(b) and Fig.6(b), we can see

that the trajectory tracking error becomes much smaller

2 1.04fe © 193488 ¢

January 2002

than results obtained by the conventional method. This
implies that the proposed adaptive method is effective.
Photo 2 shows the photograph of one of the result (
case 4 ) that the D.D.Arm wrote a straight line on the
paper with a pen. In the photograph, (a) shows the result
based on the nonadaptive control scheme and (b) shows
the result based on the adaptive control scheme. These

experimental results show the effectiveness of our method.

a) Nonadaptive

Photo.2 Experiment result

5. Conclusion

We have proposed a design method of an adaptive con-
trol system for nonlinear mechanical systems and shown
the effectiveness of the proposed method through several
experiments using the D.D.Arm. Our method has the
following properties. (a) Any linealizeations or approxi-
mations are used for designing the controller. (b) There-
fore, the global asymptotically stable of the error between
the states of the reference model and the actual states has
been ensured. (c) The boundedness of the internal signals
in the whole system have been ensured.

The proposed method is based on nonlinear compensa-
tion method, and all adaptive parameters in the control
law has a physical meaning. Therefore, if it is needed, we
can set an adaptive gain of the adaptive parameter corre-
sponds to a parameter which is strongly unknown or will
be changed big.

Furthermore, since we included all nonlinear structures
of the controlled system in the control law, we can ex-
pect that our control method can be used for high speed
manipulators compared with the conventional adaptive
method® 9,

In the future, we have to discuss the effect of using ac-
celeration signals more precisely. And we also have to
discuss the robustness of the control system against dis-

turbances or noises.
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Appendix A.

The dynamical model of this arm can be derived as fol-

lows;
I 0 il _ xTo , (A 1)
0 J(z) T2 F(z)+u
where,
r1 = (91702)T,$T = (él,éZ)T, (A.2)
6
J(@) = ardi(@) (A.3)
k=1
10
F(z) = ar Fi.(z) (A.4)
k=1
a = (al,az,' . .,alo)
= (Ji+J2,J3,J2,J3, Ry, R}, By, B,
fla f2) (A 5)

[J(z)y © - SJﬁ(x)] =

10 010 0 0 O
0 0 0 0 0 1 1 0

2cosfy cosbs 0 0
0 0 cosfy 0
[Fi(z) | - Jo(z)| =
0 0 0 0 —20,6:sin6, — 63sinbs
0 0 0 O 0

0 -6, 0
—9% sin 92 0 —92

—sgnb 0
sgnes . (A.7)
0 —sgnb
where J; = I + mﬂ"% + mﬂ%, Jo = I, + mQT%,

Ry = moarali, and here I;,m;,r;,B;,f; denote the moment
of inertia of the link 7 about the center of mass , the mass
of the link 7, the distance from the joint ¢ to the center
of mass of the link 7, the viscous friction and Coulomb
friction of the joint i, respectively.

From the above formulation, since the forms of Ji ()
and Fj(z) become clear, we substitute these equations to
Eq.(20). Here, the parameters in Eq.(20) are tabulated
in Table.A.1. The U in Eq.(20) can be written as the

Table A.1 Parameters

Ji | 0.8(kgm?) | By | 10.5(Nms) | f1 | 1.4(Nm)
Ja | 0.19(kgm?) | B2 | 1.05(Nms) | f2 | 0.9(Nm)
R> 0.1(kgm)

I 40.0 | Ts 04| A 1.0
Ty 0.4 I'y 30.0 | k1 -64.0
I's 8.0| I's 6.0 | ko -16.0
Ty 0.4 | I'g 20.0 | Dy 2.0
I's 0.4 | "o 4.0 | Do 0.2
following.
Ur = 9d, — k164; — k‘zédi(i =1, 2), (A. 8)

where, 64;,04:, and 64; denote the reference trajectory of

the each joint.
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