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Determining 3-D Shape from the Distribution of Normal Vector

on a Curved Surfacef

Tadashi NAGATA™* and Yoshihiko KIMURO*

This paper describes the shape representation of 3-D objects which utilizes the normal vector obtained from 2-D
images. It is proposed to use the 2-D plane which is obtained by projecting the Gaussian sphere perspectively as
the characteristic space for representing 3-D objects, and the shape of the surface of any 3-D object corresponds
to the figure on this plane. The characteristic figures on the plane are easily extracted using techniques for image
processing. Moreover, the method, by which both principal curvature and the tangential line vector are used,
is proposed for representing the object which cannot be satisfactorily represented only in the distribution of the
normal vector. It is also shown that the characteristic space proposed earlier is also applicable to the method,
because the change of the vector is shown as the figure in this characteristic space.
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1. Introduction

When we measure and recognize the 3-D shape of an ob-
ject using a computer vision system, information about
the relationship between the shape of the object and
the characteristics should be extracted. Obviously, the
amount of information decreases in a process of project-
ing the 3-D scene into a 2-D image. Therefore, it is a sig-
nificant problem in computer vision to recover the lacked
information. To resolve the recovery problem, we usu-
ally use the information of constraints about either 3-D
objects or multiple images.

When there is an object having curved surfaces in a
scene, intrinsic characteristics, which represent the curved
object, can be extracted through camera images and used
in order to measure and recognize the object. A method
to use such information about normal vectors of curved
surfaces has been proposed by B.K.P. Horn as a study on
shape from shading problem ). Woodham has proposed
the photometric stereo method to extract normal vectors
of the curved surface from grey images®. After that, the
method using a normal vector space has become one of
popular methods D~

Generally, the Gaussian sphere is used as a normal vec-
tor space in the field of differential geometry. However,
some other kinds of quantified normal vector spaces are
employed for computer processing. For the representa-

tion of a scene, a gradient space is used since the im-
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age processing is easier than other methods Y. Extended
Gaussian Image (EGI) proposed by Ikeuchi is a digitized
Gaussian sphere and keeps good symmetry ®). Using this
feature, EGI is adequate to apply a model matching tech-
nique. These two characteristic spaces are intrinsically
equivalent normal vector spaces each other. However, in
each method, there is a peculiar method to representing
curved objects and it is based on the following charac-
teristics; a dual relationship between line drawings and
figures in the gradient space®, and the definition of the
moment of inertia with each patches in EGI.

In this paper, we explain the technique to represent the
shape of curved objects on a characteristic space made
by the orthographic projection of a Gaussian sphere. At
first, we compare this characteristic space with other nor-
mal vector spaces such as a gradient space and EGI. Then,
we propose a new representation method of 3-D objects.
At last, we expand this normal vector space into a tan-
gential vector space and show a representation method of

curved objects using this characteristic space.

2. Representation of Characteristics us-
ing GPM

Each start point of normal vectors is moved to the cen-
ter of an unit sphere in Gaussian projection. The direction
of the normal vector is represented by the location on a
surface of the sphere. So, all of the normal vectors calcu-
lated in each pixel of an input image are projected on the
sphere. On the other hand, it is impossible to perform
the inverse projection since information of the location of

each pixel is lost in the process of Gaussian projection.
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However, such projection gives a new characteristic to us.

Using GPM ( Gaussian sphere Projection Map) method
proposed in this paper, a Gaussian sphere is projected
onto an orthogonal plane to the view direction and con-
ventional image processing techniques can be applied to
the projected image (Fig.1). A set of normal vectors pro-
jected from an image appears only in a hemisphere of a
Gaussian sphere. Therefore, in this projection process,
there is no loss of data. Moreover, information about
the location of normal vectors is ignored so that global
image processing can be performed on the image. These
characteristic is useful for a bottom-up approach in image

processing.

SURFACE ORIENTATION

~
¥ &

OBJECT
|

1 4 GAUSSIAN SPHERE
|
T

GPM

Fig.1 GPM(Gaussian sphere Projection Map)

3. Distribution of normal vectors on GPM

3.1 Pattern of normal vectors of curved sur-
face

At first, we will explain how primitive surfaces ( plane,

cylindrical surface, conical surface and sphere) are repre-

sented on GPM. When a curved surface is described with

parameters u and v, a normal vector of the curved surface

e can be formed as follows.
P, xP,

=2y 1
[Py X Py (1)

Where, P,,P, are tangential vectors along u,v curves

e

on the surface respectively. In the projection from the
Gaussian sphere into the GPM, the element of the nor-
mal vector corresponding to the direction of a view vector
is set as zero.

It is easy to understand the distribution maps of normal
vectors of the both a plane and a sphere on the GPM. So
we will describe the condition of distribution of normal

vectors of both cylindrical surfaces and conical surfaces.

Let us think a regular cone; of which axis is parallel to y
axis and the angle between of which generating line and
axis is 7. Next this cone is rotated by an angle 6 around
z axis and then rotated by an angle ¢ around z axis. Dis-
tributed pattern of the normal vectors of this cone can be

represented with the following formula.

(fcos1b+gsin1,[))2
cosT
+(fsind)—g.cosd;—cosﬁsinT)Q:1 @)
sin 6 cos T

Consequently, an ellipse appears on the GPM. The long
span and the short span of the ellipse are cosT and
sin 0 cos T respectively. The gradient of the ellipse is equal
to 1, and the distance between the origin of the GPM and
the center of the ellipse is given as cosf sinT. Where, f, g
and h mean the axes of the Gaussian sphere corresponding
to x,y and z axes of a camera coordinate system. In this
case, only a visible hemisphere of the Gaussian sphere is
projected into the GPM. Therefore, when we assume that
a view vector is (0,0, —1), a half of the ellipse appears for
the condition h < 0. Concerning with a cylindrical sur-
face, it is enough that we consider only the simple formula
set as 7 =0.

Table 1 shows the comparison among some normal vec-
tor spaces. A difference among these normal vector space
is how normal vectors of a cone including a cylinder ap-
pears in the space. Basically, the way to represent a coni-
cal surface in a normal vector space is equal to determin-
ing three parameters of a distributed pattern of normal
vectors of the cone on a Gaussian sphere; i.e. the posi-
tion and pose of the plane crossing the Gaussian sphere.
Therefore, the three spaces shown in Table 1 are equiva-
lent each other. However, the parameter spaces, which are
planar, are more useful than a Gaussian sphere, because
2-D array description is easy to be used for a computer.
Moreover, an infinite plane such as a gradient space is not
adequate when global processing is applied to the param-
eter space. Namely, GPM represented as a finite plane is
useful. In GPM, both of a cylinder and a cone are simply

represented by an ellipse. So, many methods to extrac-

Table 1 Comparison among normal vector spaces

plane cylindrical conical spherical
Gaussian sphere | point planer planer distributed
(sphere) curve curve points

Gradient space | point straight hyperbolic distributed

(infinite plane) lines line points
GPM point ellipse ellipse distributed
(unit circle) points
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t the ellipse proposed by many researchers can be also
applied to GPM. In other words, a certain surface which
consists of multiple developable surfaces can be extracted
on GPM.

3.2 Method to extract the characteristics of

distributed normal vectors

In our experiment, normal vectors were extracted by
the photometric stereo method with three gray images
128 x 128 x 8bit, which were obtained under different light
conditions. As we described in the previous section, it is
equivalent to find local peak points on GPM to extract
planes. In order to extract cylindrical and conical sur-
faces, we employed the Hough transform method to ex-
tract multiple and discontinuous ellipses.

In the Hough transform method, there is one serious
problem concerning the computational cost. This compu-
tational cost is reduced assuming that an ellipse consists
of two or more points. Moreover, GPM is divided into
a square tessellation ( a 2-D array) in order to store the
number of pixels corresponding to the direction of the nor-
mal vector in each cell. Accumulating this value in the
Hough transform, the computational costs is radically re-
duced.

The accuracy of the Hough transform method is relat-
ed to the fineness of the parameter space. On the other
hand, we should note that parameters describing an ellipse
0,1, T are not symmetrical. Namely, we cannot change
these parameters uniformly in order to accumulate them
in the N-dimensional array. To reduce the influence from
this problem, # and %, which are related to the pose of
the cone, are changed in proportion to a solid angle.

Fig.2 shows the experimental result that two objects
in a scene are classified into two cylinders which have d-
ifferent poses by the use of the Hough transform method.
Fig.2(c) is a bird view of a density contour map of 6 — ¢
plane at 7 = 0. Fig.2(d) shows the process of clustering
of data in an accumulating array of the Hough transform
method. Two arrows in each figures show the correspond-
ing results of calculation. The number of ellipses to be
extracted is related to the sum of areas of surfaces. There-
fore, the process to extract the ellipses is terminated when
the sum of the number of normal vectors of the extracted
ellipses becomes bigger than the area of surfaces in the

scene.
4. Density distribution on GPM

4.1 Size of area of surfaces and density map on
GPM
The difference among a gradient space, EGI and GPM

s

(a) Needle diagram (b) GPM

(c) Parameter space (7 = 0.0) (d) Process of clustering

Fig.2 Detection of ellipses

is concerned with the way to quantify the characteristic
space. In this section, we will explain the relationship be-
tween the size of areas of surfaces and the density map on
GPM.

At first, let’s think something about a sphere. Nor-
mal vectors of the surface of the sphere are uniformly
distributed. However, the size of the view area producing
the normal vector is reduced in proportion to the magni-
tude of an angle between the normal vector and the view
vector. Therefore, an unit sphere is produced as if the
sphere in the scene is resized into GPM and the density
distribution on GPM becomes uniform. In other word-
s, Gaussian curvature, which is a rate between the area
of the curved surface and the area corresponding to the
curved surface projected into a Gaussian sphere, is relat-
ed to the density on GPM. Therefore, instead of finding
ellipses in the GPM, we can extract developable surfaces
using this characteristic.

4.2 Extraction of cylinder using density map

For use of a density map on the GPM in order to ex-
tract curved surfaces in a scene, we have to think about
the concrete method and its accuracy. In this section, we
will show the method and experimental results.

The curvature k of a cylindrical surface C, which has
the height h and the radius of bottom r, is 1/r. When
the cylindrical object can be observed without occlusion,
we can obtain the relationship As/h = r. Where, s is

the size of its visible area and A is a coefficient concern-
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ing the pose of the object. If this cylinder is projected
onto the GPM and the ellipse appears, we can obtain s
as psa. Where, sg is the length of the contour of the
ellipse and p is a line density of the ellipse. Then we can
calculate k with h. However, there is occlusion in a scene
frequently and s and h can not be obtained. So, k can
not be estimated. In order to solve the influence of the
occlusion, we set a small window whose width and height
are w and [ respectively and we assume that the size of
the window is enough small than the occlusion expected
in advance. Projecting the data in the small window into
the GPM and then obtaining s¢ and rho on the GPM,

we can estimate the curvature k (Fig.3).

(b) GPM

(a) Image

Fig.3 Principle of the method

In our experiment, GPM was separated into multiple
cells such as square tessellation and the density of each
cell was calculated. To obtain the line density on GP-
M approximately, the number of cells on the ellipse was
used. In this case, GPM should be divided into 2n x 2n
at least, if a radius of a cylinder in a scene is bigger than
n.

Fig.4 shows the case of a cylinder. Fig.4(a) is normal-
ized by the value of the density, which is of the case that
data are distributed uniformly. Using the same input im-
age, Fig.4(b) shows the graph of curvatures calculated by

the first fundamental form of a surface %,

In compari-
son of these two graphs, we were able to confirm that the
method to calculate the curvature using the density map
was equivalent with the method using first fundamental
form.

In the method using the fundamental form of a surface,
the differential value of an irradiance of pixels is needed
but the value often have an error for the noises. There-
fore, a normalizing method and a noise reduction method
are required to reduce the influence of noises. On the
other hand, in the proposed method, a main process is
only to count the number of pixels observed through the
square window. So its computational cost is relatively s-

mall. Moreover, the accuracy in computing the density
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(a) Distribution of density (b) Distribution of curvature

Fig.4 Result

is the same as that of the method using the fundamental
form of a surface, if the size of the window is adequate.
Using these good characteristics, we can use this method
for a coarse-to-fine algorithm by changing the size of the

window.
5. Tangential vectors on GPM

5.1 Tangential vector space

Using the information of a distribution map of normal
vectors, we can represent some curved surfaces. How-
ever, when there are multiple objects in the same scene
or there are more complex objects with occlusion in the
scene, we are not able to represent these objects individ-
ually. For example, we cannot distinguish the difference
between multiple cylinders and a torus, and also cannot
distinguish the difference between a plane having noise
uniformly and a part of a sphere. This is because the
continuousness among normal vectors in a local area is
not represented. So in order to deal with this weak point,
the change of neighboring normal vectors should be rep-
resented as a curvature. Generally, principal curvatures
and principal directions can be obtained by solving the
second fundamental form of curved surfaces. They have
five parameters in comparing to 2-D GPM so it is not
adequate to make a new characteristic space using these
features for computer processing.

As we know, two principal directions are orthogonal
each other. So we choose one of two principal directions,
where the norm of the principal curvature corresponding
to the chosen principal direction is smaller than another
one. In this case, this chosen principal direction corre-
sponds to the generating line of a cylinder and the prin-
cipal curvature of orthogonal direction shows the radius
of the cylinder. So we employ the particular tangential
vector described above as a feature to represent objects.
This feature means that a curved surface can be approxi-
mately represented as some cylindrical surfaces. A radius
of a Gaussian sphere is proportional to the magnitude of

a principal curvature in this parameter space. So, a shape
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of a GPM projected from such a Gaussian sphere becomes
three dimensional parameter space such as a cylinder.

A figure in this GPM produced by this method is sim-
ilar to the sweeping trajectory of a generalized cylin-
der method® because the figure in the GPM shows the
change of a pose of a cylinder. For example, a figure in a
GPM corresponding to a torus is an ellipse, which shows
the rotation of the axis of a cylinder. In a case of a cone,
a different type of an ellipse, which shows the rotation of
the generating line of the cone, appears and the ellipse is
swept along an axis indexing the norm of a principal cur-
vature. A plane also makes an ellipse on GPM because
the plane is equal to a cylinder having curvature = 0 and
the direction of its axis is indeterminant. In a case of a
sphere, the magnitude of the curvature is constant but
the principal direction is not uniquely decided so the end
points of projected vectors are distributed in a GPM. So
trajectory of tangential vectors selected in our method
can be used as a new characteristic value.

5.2 Expansion of GPM for tangential vector

space

In the expanded GPM, which has a new axis to index
the magnitude of the curvature, we can apply the conven-
tional image processing such as peak points extraction
methods and ellipse extraction methods. Fig.5-7 show
experimental results of a cylinder, a cube and a torus.
These figures were obtained by the projection of the ex-
panded GPM along the axis of the curvature so we note
that these data have the different magnitude of the cur-
vature —a ~ +a. The cylinder was extracted as a peak
point in the GPM (Fig.5). The cube having three visible
planes has three ellipses in the GPM (Fig.6). Fig.7(a)
shows the needle diagram of a torus. This torus can be
considered to be made by rotating a low height cylinder
around the view direction. Therefore, ellipses appear in
IT and IV quadrants of the GPM ( Fig.7(c)) because each
cylinder appears as a peak point in the GPM. In this fig-
ure, we can also find other ellipses in I and III quadrants.
These were made by some cones which were in contact
with either the hole of the torus or the edge of the outside
of the torus.

In this extended GPM method, curved objects are rep-
resented as a set of some cylinders. So both a plane and
a sphere, which have been individually represented up to
this time, can be represented as one kind of curved sur-
faces in the same characteristic space. It seems that this
representation of a plane is redundant because many pa-
rameters of an ellipse are needed. However, we can note

that a tangential vector of a cylinder corresponds to a

(a) Needle diagram (b) Normal vector

(c) Tangential vector

Fig.5 CYLINDER

(c) Tangential vector

Fig.6 CUBE

crossing point of multiple ellipses, which are produced
from multiple planes. Namely, this method is equal to
the polygon approximation of the cylinder. The polygon
approximation of 3-D objects is related to the size of the
pixel of an image plane because the size is used as the
measure of approximation. But information about the
size of objects to be searched in the scene is not usually
given in advance. So, we think that our approach using
this tangential vector space is useful to estimate a curved
surface having multiple partial curved surfaces by a top-

down approach.
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(a) Needle diagram (b) Normal vector

(c) Tangential vector

Fig.7 RING(1/4)

6. Conclusion

When intrinsic characteristics of 3-D objects are given
with 3-D vectors, we proposed a new method to project a
Gaussian sphere involving these vectors into a plane and
to estimate these characteristics as features of 2-D figures
in the projected plan. These 2-D figures show the continu-
ous change of vectors corresponding to 3-D characteristics
of curved objects and can be extracted by conventional
image processing methods.

A generalized cone method is one of a typical volumetric
representation method for curved 3-D curved objects. On
the other hand, our GPM method is a surface represen-
tation method. So our method is not equal to the former
one in a strict sense. However, if the models of objects
having a sweeping rule of the generalized cone method can
be employed and the sweeping rule can be represented as
a 2-D figure in the GPM, it is easy to find the matching
between the models and objects in the scene.

A problem to be solved is how to divide a certain curved
object into some basic surfaces. If an adjacency between
neighboring surfaces can not be estimated clearly, com-
plex objects might not be found sufficiently. Moreover,
there is no obvious way to deal with the occlusion among
objects in our method since our method is a bottom-up
approach. In our future work, we are going to try to use
this proposed method with a top-down approach in or-
der to choose the intrinsic characteristics of 3-D objects

adequately.
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