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Model Reference Adaptive Control for Nonlinear Systems

with Unknown Degrees’

—CGeneral Case—

Yoshihiko MIYASATO*

In most of the studies of model reference adaptive control, it is assumed that an upper bound on the degree
of the controlled system is known. It makes the scope of application of model reference adaptive control too
restrictive, since the reasonable upper bound on the degree cannot be specified a priori in many practical cases.

In the present paper, we propose a design method of model reference adaptive control systems for nonlinear
systems with unknown degrees. The present adaptive controller is composed of high gain feedbacks of hierar-
chical structures derived from backstepping techniques, and the degree of it is independent of the degree of the
controlled system. It is shown that the resulting control system is uniformly bounded, and that the tracking error
converges to an arbitrarily small residual region. Finally, several simulation studies also show the effectiveness

of the proposed method.
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1. Introduction

In most of the studies of model reference adaptive con-
trol, it is assumed that an upper bound on the degree
of the controlled system is known ). However, that as-
sumption may become too restrictive for many practical
processes, since reasonable upper bounds on the degrees
of those processes cannot be specified a priori. Hence, the
study of model reference adaptive control for processes
with unknown degrees has been of great importance from
both theoretical and practical point of view.

Recently, several attempts have been made to introduce
sliding mode control or high gain feedback control tech-
niques into adaptive control schemes, and to construct
robust adaptive systems 23 Utilizing those techniques,
we proposed design methods of model reference adaptive

control for processes with unknown degrees 3, 4)

, robotic
manipulators with unknown nonlinear elements 5)s 6), and
distributed parameter systems of infinite degrees .8,
However, those methods are effective for processes with
relative degree 1 only. When the relative degree is greater
than 1, the derivatives of the output are also needed.

In order to solve those problems, simple adaptive
control (SAC)® and VS-MRAC'® schemes were pro-
posed. In SAC schems?, parallel feedforward compen-
sators (PFC) are introduced in the control loop so as to

make augmented systems (composed of controlled process
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and PFC) almost strictly positive real (ASPR), when rel-
ative degrees of controlled processes are greater than 1.
However those approaches did not directly overcome the
obstacle of relative degrees for original processes. VS-
MRAC schems'® were proposed for the processes with
arbitrary relative degrees using only input and output
measurements. But, in that method, equivalent controls
of sliding surface are needed for implementation, which
are not really available, and then it was suggested that the
equivalent controls are replaced by average ones for prac-
tical implementation. Therefore, global stability could
not be assured, and convergence properties were not fully
investigated in that approach. On the contrary, we pro-
posed a design method of model reference adaptive control
for nonlinear systems with unknown degrees and uncer-
tain relative degrees 1 or 2 Y by extending universal con-

12) " But it was not clear whether those

trollers of Morse
strategies could be applied to general relative degree cases.

In the present paper, we partially extend the previous
results ¥~ ®): Wto the general relative degree case, that
is, the relative degree of the process is known, but greater
than 1 or 2. From only input-output measurement, the
stable model reference adaptive control systems can be
constructed for nonlinear systems with unknown degrees
and with known relative degrees by utilizing high gain
feedbacks of hierarchical structures derived from back-
stepping techniques 13) Tt is shown that the degree of
the present adaptive controller is independent of the de-

gree of the controlled process, and that the tracking error
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converges to a small residual region whose amplitude can

be prescribed arbitrarily.
2. Problem Statement

We consider a single-input single-output nonlinear sys-
tem described as follows :
d
7 2(1) = Az(t) +bu(?) + Gf(y(t), 1) (1)
y(t) = ez (t) )

where z(t) € R", A € R"*", b,c € R"; G € R™™;
fly(®),t) (¢ R™) is an unknown nonlinear term or dis-
turbance. For that controlled system (1), (2), only the
input u(t) and the output y(t) are assumed to be mea-
surable, but the state z(¢) and A, b, ¢, G, f(y(t),t) are
unknown. Also, the degrees n and m are unknown. The
following assumptions are introduced.

Assumption 1.
1) The zeros of ¢ (sI — A)™'b lie in C™.
2) The relative degree of ¢” (sI — A)™'b, denoted as n*, is
known a priori. And the sign of the high frequency gain bo
of ¢T(sI — A)~'b is also known. In the following context,
it is assumed that by > 0 without loss of generality.
3) For uniformly bounded yu, and e =y — yum, f(y,t) =
flym + e, t) is evaluated in the following:

1f @), DIl < fo+ fr- Fle®)  (F(0)=0) (3)
F(e(t))” < fa-e(t)- d(e(t))  (6(0)=0)  (4)
e(t) =y(t) —ym(?) (4)

where f; (0 < fo, f1 < 00, 0 < f2 < 0o ) are unknown pa-
rameters, which are determined by f(y,t) and yu; F(e)
and ¢(e) are known functions; ¢(e) is n*-times differen-
tiable with respect to e.

A scalar function yu () is defined as a reference signal.
For that reference signal, it is assumed that

Assumption 2. yu (1), ym(t), -+ -, yg\;*)(t) are uni-
formly bounded.

Then the control problem of this paper can be stated
as follows : Given a nonlinear system (1), (2) with un-
known parameters, unknown degrees m and m, an un-
known state z(t), and a known relative degree n*, and
given a known reference signal yus(t), determine a suit-
able controller such that the tracking error e(t) converges
to a small residual region.

Remark 1.

ment in Assumption 1-3 is given by

A typical example of the nonlinear ele-

1 (g, I < M - [y[™ (0 <M < o0)

for which, it follows that F(e) = |e|™ and ¢(e) = e*™ .
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3. System Representation

In the present section, we derive an input-output repre-
sentation of the controlled system (1), (2) by utilizing the
zero dynamics of ¢” (sI — A)™'b. The following lemma is
obtained.

Lemma 1. On Assumption 1-1 and 1-2, the controlled

system is represented as follows :
L yt) = By(t) + bougs 1 (8) + £y(1))
+L(f(y, 1)) + €(t) (6)
Dt i(t) = Nt o(t) +ugae (1), (7)
(1<i<n —1) (ugolt) = u(t))
where 6, by are unknown system parameters; A; are arbi-

trary positive constants (known); €(¢) is an exponentially

decaying term; L(v(t)) is defined by
L(w(t)) = Go(s)v(t) (Go(s) € RH™) (8)

The proof is easily obtained by utilizing Assumption 1-1
and 1-2, and by extending Lemma 1 in 11).

4. Nonlinear adaptive control

4.1 Preliminary
The next lemma is also needed for stability analysis of
the adaptive systems.

Lemma 2. The following inequality holds.

/ L) + L, 7)) + ()}

t
< L o(r)?dr + CLot + CLy e(r)dr
2C J, o

t t
+CLs / F(e(r))’dr + CL3 / e(r)’dr  (9)
0 0
where Lo ~ Lz > 0 are unknown system parameters de-
termined by L(y(t)), L(f(y(t),t) and ya(t); C(> 0) is an
arbitrary constant (known).
The proof is derived from Assumption 1-3, and Lemma
3in 11).
4.2 Construction Method I
The design procedure consists of n* steps derived from
backstepping techniques .
Step 1) Define 21(t) by
21(t) = e(t) = y(t) — yum(t) (10)
and take the time derivative of it by using Lemma 1.
21(t) = Oy(t) — gar(t) + bousns—1 (1) +w(t)  (11)
w(t) = L{y(t) + L(f(y(?), 1) + €(t) (12)
If n* = 1, then upn~—1(t) = w(t). In that case, the

design procedure is completed by setting u(t) = ai(t),
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and z2(t) = 0 in the following context. Otherwise, when

n* > 2, introduce new variables z2(t) and a4 (f) such that

22(t) = upnr—1(t) — a1(t) (13)
ar(t) = —kii ()2 (t) — k2 (t)p(21 (1))
—k13(t)y(t) + kra(t)gar (t) (14)

where ky;(t) (1 < j < 4) are tuning parameters defined
by

kn (1) = gu N0l 11 (0

F1a() = g N[ [[2(0)] 1621 (8) 21 (1)

Fis(®) = g N[0 Jy(0)z (1)

F1a(t) = —guaN[||2(O)]| e ()21 (1) (15)

(911 ~ g1a > 0)

1 if ||z(¥)|| > € (Case I)

NJ||= = 16
=0l { 0 if ||z(t)|]| < € (Case II)( )
€ >0 17
Z(t) = [2’1 (t)7 22(t)7 Tty Znt (t)]T (18)

zi(t) (3 <i < n™) are signals to be determined later, and
€*(> 0) is a design parameter which prescribes the mag-
nitude of the output e(t)(= z1(t)). For stability analysis,

we define a positive function Vi(t) by

Vi) = a0 + Sk~ k(0 o (19)

k‘13 = 9/1)0, k’14 = 1/b0 (20)
where k11 and k12 are positive constants to be determined
later. We take the time derivative of Vi(¢) along its tra-
jectory when ||z(¢)|| > ¢* (Case I).

Vi(t) = bozi (t)z2(t) + 21 (t)w(t)
—b0k1121 (t)2 - b0k1221 (t)¢(21 (t)) (21)
Here, we integrate Vi(r) over an interval ¢t < 7 < ¢

{to < 7 <t :|l2(7)]] > €} = Case I), then obtain
the following inequality by utilizing Lemma 2.

Va(t) — Va(to)
t
S (L + CLl - bok‘u) Zl(T)QdT
20 "

bo

kl? i 2
—|—(CL2 — fg )/to F(Z1(T)) dr + CLo(t — to)

t

+bo / tzl(r)zg(r)dT—FCLg / e(r)’dr (22

to to

Step 2) Take the time derivative of z2(¢).
Z2(t) = —AMugne—1(t) + upme—2(t) —a(t)  (23)

a1 (t) = Bi(t) + 11 (H{0y(t) + bousn=—1(t) + w(t)}
(24)

) = SRR 0+ D0 — i)
(25)
n =52, (26)
K () = [k (t), kio(t), kaa(t), ka(t)]” (27)
VP (1) = [ya (1), gur ()" (28)

If n* = 2, then ug,»—2(t) = u(t). In that case, the
design procedure is completed by setting u(t) = a(t),
and z3(t) = 0 in the following context. Otherwise, when
n* > 3, following variables z3(t) and «2(t) are intro-
duced.
23(t) = upn+—2(t) — aa(t) (29)
as(t) = Mugar—1(t) + Bi(t) + 62 ()1 (1)y (1)
05 {1 (Byupne —1(t) — 21 (1)}

—ka1 (81 (1) 22(t) — kaa (t)22(1) (30)
where 6P (t), 1382)(t), ka1 (t), ko (t) are tuning parameters
defined by

5(2)

67 (1) = —ga N1 9 (D)2 ()

b (1) = =g 11O s (e —1(8) — 21 (6)}22(8)

’;21@) = gaaN[[l2(®)]| ]71 (£)*22(2)*

s (8) = g Nl 22(1)? (31)
(B1(t) is a variable composed of the same elements as those

in (31(t), an analytic function of its components, and sat-

isfies the following statement.
2O{01(t) = B1(1)} <O when [lz()]| > (32)

For stability analysis, a positive function Va(t) is intro-
duced.

Va(t) = Va(t) + 522 (1)?

3 2 — 9 0) /o (33)

o1 =0, tha2 =bo, P23 = ka1, Pas = koo,

Un (1) = 07 (8), daa(t) = b (1),

Pos(t) = kor (1), ou(t) = koo(t) (34)
where ko1, koo are positive constants to be determined

later. Considering (23)~(32), then Va(7) in Case I (o <

T <t:||lz(1)]| > € ), is evaluated as follows:

Va(t) — Va(to)

1 t
< (5@ +20L1 = bokn) / 21(r)dr

to

+(2CL, —

bO k12 ’ 2
) [ Py

to

+2CLo(t — to) + (% — ko1) / Y1 (7) 22 (7) dr

to
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t
—kgg/ 22(7’)2(1’7‘
to

+ /t : 20(7)23(7)dr + 2CLs /t :E(T)Qdf (35)

Step i) (3 <i < n*—1) Define z;(t) and take the time

derivative of it.

Zl(t) = Ufn*—it1 (t) — Ozi_1(t), (36)
2i(t) = —Aic1ugnr—it1(t) + upne—i(t) — di-1(t)
(37)
di—1(t) = Bi—1(t)
+Yi—1 ({0 () + bousn=—1(t) + w(t)}
(38)
Bialt) = %u( T+ SR

- 801.;,
30 B 0+ g )

B} + 3“;, )
) (39)
Ba, 1 -1
yiea(t) = Z a5 1 (40)
Kioa(t) = [Ki2(t)",6" (), (1),
im0 (), ko 28] (41)
u(fn*7i+2)( ) = [ugne—1(t), oy Upne—iga ()] (42)
(20 = e 1<t>) (43)
Y0 =y (), gue(8), -, i @1 (44)
For z;(t), new variables z;y1(t), o;(t) are introduced in the
following;:
zig1(t) = upne—i(t) — ai(t) (45)
@i(t) = Xic1upnr—ip1(t)
+Bica (1) + 69 (8yimr (Dy(2)
b8 (#)vi -1 (Dupne 1 (2)
—kir (£)yio1 (£) 2 (1)
—I;:.;g(t)z.; (t) — Zifl(t) (46)
6 (1) = —gu NIl -1 ()= ()
by (1) = =g U= i (s (620
I?:.;l(t) = giaN[ Izl 1vi-1 (1) z:(2)*
kio(t) = guaN[ll2(0)][]2: (1)’ (47)

Bi—1(t) is a variable composed of the same elements as

those in 3;—1(t), an analytic function of its components,

and satisfies the following statement.
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z(t){Bi1(t) —

57

B} S0 when [|=(t)] > ¢ (48)

For stability analysis, a positive function V;(t) is intro-
duced.

Vi(t) = Vi: () + %Zi(t)Q
4
+% Z{%‘j —i; (1)} 9 (49)
i1 =0, Pia =bo, Yis = ki, Yia = ki2,
Pin(t) = 09 (1), dialt) =5 (2),
Pis(t) = ki (), ia(t) = kia(t) (50)

where k;1, ki2 are positive constants to be determined
later. Considering (36)~(48), then V;(7) in Case I ({0 <
T <t:]|2(1)]] > €*), is evaluated in the following:

Vi(t) -

1 . ' :
< (% +iCLy — bok‘u)/ z1(r)dr

Vi(to)

GO, — k1) / F(a (7)) dr
f2 7,

+iC Lqg (t — to)

+Z<% k) [ a7 0
—Zkﬂ/ 7') dr

+ /t: 2i(T)2i41(7)dT 4+ iCLs /t: e(r)dr (51)

Step n*) Define z,+(t) and take the time derivative of
it.

e () = wpr (1) — ane_1 (1) (52)
e (8) = —Amerup1(8) + ult) — Gme 1 (£)  (53)
Gpr—1(t) = Bnr—1(1)
Fyne 1 (O{0y(t) + bousn- 1 (t) +w(t)} (54)
B 1 (t) = aa"(2§1 P (t) + 80‘"*: Koeoa(t)
+ Z E)an* 1{ Aj—1tpns—jp1(t) + wpn—; (1)
aan* 1 <(n*=1
—Bi-1(t)} + WY]\(/I ()
6 n*—1 .
~ (1) (55)
_ Ban*_l n Qnp*—1
Pne () = =57 — — o2, - 1(t)  (56)

R () = (Koo (), 0770 (0), 50 0),
Fnr—1,1(8), knr—1,2()]7 (57)

u(8) = [ (O, ups ()] (58)
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Vi W) = [yu (), gu (@), -, w01 (59)
Note that the actual control input u(t) appears in Z,= (t).
u(t) is determined in the following.
u(t) = Apx_1upr (t) + Boe 1 (t)
—zpe 1 (1) + 07 () ne 1 (£)y(2)
D5 (1) e -1 (£ —1 (1)
—kon 1 (8) Y 1 ()2 () — knw2(t) 20 (1) (60)
where 8 (), b (#), fene1(t), kne2(t) are defined by
6" (1) = —gues N0 e -1 (Dy(8) 20 (1)
bo' () = —guea NUION e o1 (Ot -1 (D2 ()
ka1 (t) = guea N2l 1ns—1(8)> 20 (2)°
knva(t) = gu=aN[||2(&)|12n- (£)* (61)
,Bn*,l( t) is constructed in the same way as B,;l(t)

((32) (48)).

Vi« (1) is introduced.

For stability analysis, a positive function

Ve (8) = Voo 1 (t) + %zn*(t)Q
DY LRSI R €

where s, ¥n+;(t) (1 < j < 4) are defined by (50)
(i = n*), and Ynx3 = kn*1, ¥nxa = kn=2 are positive
constants to be determined later. Considering (52)~(61),
then V,«(7) in Case I (to < 7 < t: ||z2(1)]] > €), is

evaluated as follows:

Ve (£) — Viue (t0)

1 . ’
S (% +n CLl — bok‘n)/ 21(7')2([7'

b0k12 ’ 2
2 | e

-|—n* CLO (t — to)

+Z(% k) [ s
—Zkﬂ/ 7') dr

+n"CL3 /t e(r)’dr (63)

to
Step n* + 1) Stability Analysis Note that e(t) €
£?, and let V(t) be defined by

—|—(n* CL2 —

V() = Vie (£) + 0" CLs / " e(r)dr (64)

Here we set the parameter k;; (1 <i<n*, j =1,2) such
that

1. -
k11 > (== +n"CL1 4+ k11)/bo

2C

k12 > n*CLafa/bo
ki > n*CLo/e™
% kja >n*CLo/e"> (2<j<n*)  (65)
where C' is an any positive constant. Then, V(7) in Case
I(to <7 <t:|z(r)|| > €), is evaluated in the following:

V(t) = V(to)

—im/ (r) dT—Zkﬂ/ z(1)°d

+n CLg (t — to)

ki1 >

—(n*CLo/E*Q)/ {llz(0)II” = €?}dr <0 (66)

On the other hand, when ||z(t)|| < €* (Case II), tuning pa-
rameters ki; (t), 6 (t), l;(()i)(t) are constant. Therefore, it
is shown that V() € £°°, and that z; (t) €L Ko« (t) =
[Kne 1 (87,007 (1),65 (1), kne1(t), knea(t)]T € L,
F(z1(t)), f(z1(t),t) € L. Note that a1(t) € £~ and
Upnr—1(t) = 22(t)+a1(t), then it follows that wr,»_1(t) €
L°%°. Repeating the similar procedure, it is also shown
that as(t) ~ an*—1(t)€ L%, ufpr_2(t) ~usp(t)e L,
and that u(t) € L. Hence, it is proved that the resulting
control system is uniformly bounded. Next, we analyze
the convergence property of z(t). First, from above facts,
it follows that 2;(t) € £ (1 <i < n*). Since ki (£) > 0,
i (t) € £, and ko) > 0, kin(t) € £° (2 < i < %),
we say that ki1(00), kiz(c0) (2 < i < n*) exist. Hence,
it is shown that ||z(t)||(N[||lz(#)]|])"/? € £2. Considering
that 2;(t) € £, we see that

Jlim (L@ N[l=()]]] =0 (67)
and derive the following statement.
2(t) = S(€) ={z= (21, -+, 2a0) 1 |l2ll <€} (68)

This concludes Construction Method I. The next theorem
is one of the main theorems of this paper.

Theorem 1. Consider a controlled system (1), (2)
with Construction Method I. Suppose that Assumption
1 and Assumption 2 can be met. Then it follows that all
the signals in the resulting adaptive control system are
uniformly bounded, and that the state variables z1(t) ~
zn+ (t)(where 2z1(t) = e(t): output error) converge to the
residual region defined by S(e*) (68), where €* is an arbi-
trary positive constant.

Remark 2. The relations of each signals are depicted
in Fig. 1. First, 21(t) = e(t) is defined, then a;(t) is de-
termined from z1(t), and z2(t) is derived from wfn=—1(t)
and ai(t). Similarly, az(t), z3(t), -, an—1(t), zn=(t)
are obtained in sequence, and finally, the actual control

input u(t) is determined. The design parameter €” is a ar-
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Uy 1 2 i 1

s+ A
+
a‘ ?

Fig.1 Design procedure of adaptive controller

bitrary positive constant, but it cannot be equal to zero,
that is, the magnitude of n*-dimensional state vector z(t)
where e(t) = z1(t) is included, can be made arbitrarily
small, but cannot be made 0. For smaller output errors,
€ should be set smaller, but it may give rise to large
control inputs, since necessary control parameters (65)
become large. Hence, €" should be chosen properly con-
sidering the magnitudes of both output errors and control
inputs.

Remark 3. By setting the positive constant C' prop-
erly in (65), either k;1 or kj2 (2 < 7 < n*) can be made
arbitrary positive constants. Hence, either k;1 () or kj2(t)
(2 < j £ n*) may be any positive constants. Tuning pa-
rameters 6 (¢) and Béi)(t) are current estimates of 6 and
bo at step i) (2 < i < n*). Then, 2(n* — 1) different es-
timates are needed for two system parameters 6 and bo.
Thus, the minimal number of tuning parameters in the
present Method I is 3n* + 1. In the next section, it will
be shown that this number can be made less.

Remark 4. One way to obtain §;(¢) from 3;(t) is to
replace NJ||z(t)||] in Bi—1(t) with 1. Then, the resulting
Bi(t) is analytic, and satisfy 8;_1(t) = 8;_1(t) in Case L

Remark 5. 3" ~V(t) ~ g(t) are included in
uf1(t) ~ ufn+—1(t). This is an extension of indirect con-
figuration of time derivative of output signals in 12). In
each steps, high-gain feedback techniques are applied for
relative-degree 1 systems by utilizing virtual input a;(t).
Then, overall systems are constructed by high-gain feed-
back control schemes of hierarchical structure depicted in
Fig. 2.

4.3 Construction Method II

Contrary to the previous Construction Method I, in the
present Construction Method II, the necessary current es-
timates of 6 and by are 6(t) and bo(t) only, instead of

L
J S+A.,
+

A
R

A (z)—| .
A, (2,,2,) — | % g s
* s z >
3 22

A (5 lz,) —

P

u—-=

Fig.2 Configuration of overall system

2(n* — 1) estimates 8@ (¢) and 5" (t) (2 < i < n*). The
design procedure is composed of n* steps, too, but several
auxiliary signals are added.

Step 1) Same as Construction Method I.

Step 2) Take the time derivative of z2(¢). If n* = 2,
then the procedure is completed. On the other hand,
when n* > 3, define 23(t) by (29), and determine az(t) in
the following:

as(t) = Mtgne—1(£) + Bi (£) + 0E)m D)y (2)
+i70{71 (Bupnc—1(t) — 21(1)}

. — oo ()1 (£)%22(2) — foaa (£) 22(2) (69)
’%21@) = gu N[z 171 (£)*22(t)?
feas(t) = goaN[|l2(t)]]22(2) (70)

Adaptive laws of 6(t) and bo(t) are to be determined later.
Define Va2 (t) by

Valt) = Vi(t) + 5oa(0)” + 5 ke — ko (0 /2

30— 00F /22 + 5 {bo — bo(t)} /s
(921 ~ g2a > 0) (71)

and determine variables T92(t), 752 (¢) in the following:
To2(t) = —g2271()y(t)22(t) (72)
T2(t) = —gaa{n1 (H)usne—1(t) — 21(8)} (73)

Then Va(7) in Case I (to < 7 < t: [|z(7)|| > €), is evalu-

ated as follows:

Va(t) — Va(to)

t
< (L +2CL, — bok‘ll) Z21 (T)QdT
2C to
t
+(2CLs — bo;m)/ F(a(r)) dr
2 to

+2CLg (t — to)

+(% —k21)/ 71 (1) 22(7) 2 dr

to
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t
—k22 / z2 (7')2dT
to

t t
+/ zo(7)z3(T)dT + 2CL3/ e(r)dr
t to

0

t / {6 — 0 H{—0(r) + roa(r)}dr /g2

+ /tt{bo — bo(r)H—=bo(r) + a(r)}dr/gas  (74)
Step 3) OTake the time derivative of z3(t).
23(t) = —Agtpne—2(t) + wpmr_s(t) — Ga(t)  (75)
da(t) = Ba(t) + v2(0){0y(t) + bousn—1(t) +w(t)}

Oay Oag »

+¥9(t) + 8—270170 () (76)
Ko(t) = (ka1 (t), kra(t), kia(t), kra(t),
ko (), koo (1)) (77)

B2(t) is defined similarly to (39), but K»(t) is different
from the previous (41). All other variables are defined in
the same way as Method I. If n* = 3, then the procedure
is completed. For n* > 4, introduce z4(t) and as(t)
as(t) = Aougnr—a(t) + Ba(t)
+H0(E)v2(t)y(t) + bo (D)2 (D -1 ()
—ka1 (t)v2(8)2a () — kaz(t)2a(t) — 22(1)

Baz 602
+ % To3(t) + %, To3(t) (78)
’%31@) = ga1 N[ [|l2(t)[|]v2(t) 23 (t)*
kax(t) = gaaN[|l2(t)||]2a(t)? (719)

Also, (32(t) is the same as the previous one. For stability

analysis, a positive function V3(t) is introduced.

Vat) = Va(t) + 32a(t)”

+ i{kgj — ke (0 s (30)

By setting Tog(t)ijlg(t) in the following;:
To3(t) = To2(t) — ga272(t)y(t)2a(?) (81)
T3(t) = To2(t) — gas V2 (B)ugn= —1(t)zs(t) (82)

then Va(7) in Case I (to < 7 < t: ||2(7)|| > €), is evalu-

ated as follows:

Va(t) — Va(to)

t
< (L +3CLy1 — bokll) 21 (T)Zd’r
2C "
bokia. [*
+(3CLy — 2 f“) / F(z(r))%dr
2 t0

+3C Lo (t — to)

3 t
1 .
+> (g k) [ rsrar
e

3 t
— ij2 / Z]‘(T)QC[T
i=2 to

¢ t
—|—/ 23(7)za(7)dT + 30L3/ E(T)QdT
to to

t Oay ~
—|—/t0 % {103(7) — 6(7)}23(7)dT

t Oay A
+ /to o, {m3(7) — bo(7)}23(7)dT

4 / (0 — B} {—b(r) + 7o3(r)}dr [ gos

+ / {bo — bo(r)H—bo(r) + ma(r)}dr/gas  (53)

Step i) (4 < i < n" —1) Define 2(t) similarly, and
take the time derivative of it.
Zi(t) = = Xic1ugns—it1(t) + upne—i(t) — qiz1(t)
(84)
&i—1(t) = Bi—1(t) +7i-1(){0y(t) + bousn=—1(t)
+w(t)} + 70i-1 (DO(E) + iz ()b 2)

(85)
Kioa(t) = [Kia ()" ki (8), ki 2] (86)
)= B a0 @)
(792@) - 8(;;) (88)
Yoio1 () = ag,}: = () 8;;;1 (89)
(’Yb? (t) = ZZ‘(?) (90)

Bi_1(t) is similar to (39), but the definition of K;_,(t) is
different from (41). All other signals are defined in the
same way as Method I. Introduce variables z;41(t) and
Ozi(t)
ai(t) = Nic1tpne—iga(t) + Biz1 (1)
+0(t)7i-1(£)y(#) + bo(t) i1 (B)usn=—1(t)
—host (8)7im1 (8) 2 (t) — io (1) 2 (2)
—2zi—1(t) + voi—1(t)70:(¢)

Fpi—1(t)7wi (1) + @i (1) (91)
’%il(t) = ga N[z ]vi-1(t)*z(t)?
kio(t) = giaN[[|2(t)/|]2:(2)? (92)

@;(t) is an auxiliary signal to be determined later. A pos-

itive function V;(¢) is introduced.

Vilt) = Vis(t) + 5 (0)?
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2 Z{ku -

Then, setting 79;(t), 7v:(t) by

kij t)} /gw (93)

70i(t) = Toi-1(t) — g2svi-1(t)y(t)zi(t)
Toi(t) = Toic1(t) — gaayio1 (B)upnx—1(t)2:() (94)

Vi(r) in Case I (to < 7 < t:||2(7)]| > €"), is evaluated as

follows:
Vi(t) — Vi(to)

1 t
S (% =+ ZCLl — bokll)/ Z1 (T)Zd’]'
t

+GCLy — bO;Z”) / F( (7)) dr

+iCLo(t — to)

Ry
_Zkﬂ / (rdr

+ /t: 2(7)zig1 (T)dr +iCLs /t : e(r)’dr
n z_; /t: Yoj -1 (7){ros (r) — 0(r)} 2 (7)dr
+ Z; /t: Yo =1 () {75 (7) = bo ()} 2 (7)dr
+ /t:{e — B(r)H=0(r) + 70i(7) }dr/gos

+ /t :{bo — bo(r)H—bo(r) + i () }dr/gas

+Z /t 0 &; ()2 (r)dr (95)

Step n*) Define z,+(t) similarly and take the time

derivative of it.
Znx (1) = =Anx—1up1(8) + u(t) — dnr—1() (96)

Cnr—1(t) = Brr—1 () + Yur—1 (1) {0y (2) _
ot —1 () + w(E)} + Yon* 1 (£)(t)

Fume 1 (£)bo(t) (97)
Koo 1(t) = Koo (8)" kne1,1(8), ke 1,5(8)]"
(98)

Bnx_1(t) is defined similar to (55), but K, 1(t) is dif-
ferent from (57). The definitions of other signals are the
same as the previous case. The control input u(t) is de-
termined such that
ut) = Ans—rug1(t) + Bus—1(t) + 6(8)yns -1 (£)y (1)
+bo (t) =1 (£)t -1 (£)
—kner () yme -1 (1) 200 (1)
s (O (6) = 20021 (1)
FYon 1 (£)Ton= () + Yonx 1 (£)Ton= (1)

Tan- (1) (101)
l%n*l(t) = gt N[z (@)l Jyns—1(8)22n= (1)
kura(t) = gasaN[||2(1)] 120+ () (102)

@+ (t) is an auxiliary signal to be determined later. For
stability analysis, a positive function V,«(t) is intro-
duced.

Ve (1) = Ve 1) + 3200 (1)
+% Z{km — ki (D} /gn (103)

We determine 7o, (), Ton= (t) and the adaptive law of 6(t)
and b(t) in the following:

Ton+ (t) = Ton=—1(t) = g22¥n 1 (1)y(t)zn= (1) (104)

Tonx (1) = Ton= -1 (1) — g23¥nr 1 (D)tupnx 1 (t)zn- (¢)

(105)
é(t) = N[llz()llIron=(t) (106)
bo(t) = N||z(t)[| 7o (¢) (107)

Then Vo«(7r) in Case I (to < 7 < t: ||2(7)]| > €), is
evaluated by

Vo () = Vi (o)

1

t
< (ﬁ +n"CL — bok‘u)/ z1(r)’dr

(" CLaf? — bO;Z”) / F(a(r)2dr

+n* CLO (t — to)

n Z(% k) [ @ e

—Zkﬂ/ ((7)%dT +n*CLs /te(T)ZdT

to

n*—1

+3 / 20517 (705 (F) = 7o (1)} 25 ()

n*—1

+3 / i1 () (7) = 7o ()} 25 ()7
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+ Z: /, 0 &; (7)z (t)dr (108)

Step n* + 1) Stability Analysis In this final step,

we determine &;(t) (4 < j < n*) in order to assure the
stability of the overall system. Define A« (¢) and evaluate

it as follows:

A (8) = > 51 (8) {705 (£) = 7om= (£) 25 (1)
+ > ot ({75 (£) = Tome (£)}25 (1)

+) " a;()z()

* *
n"—=1 n

=3 > i @gesm1 Oy )z (1)
§=3 k=j+1

) Wi (et (Bupne 1 (820 ()2 (1)

j=3 k=j+1

+) " a;()z()

=D 05102 (B g2 (Dy(t)2e (1)
k=4 j=3
n* k—1
AN w1 (D2 () goavk1 (g 1 ()2 (8)
k=4 j=3

+) a1zt (109)
Jj=4
Here, we determine &;(t) (4 <j<n") by

&(t) = = vor-1(t)zk(t)g287i-1(£)y (1)

Jj—1

- Z Yor—1(8)2k (1) g247j —1 (D -1 (1)

k=3

(110)
then we see that A,+(¢f) = 0, and that V,«(7) in Case
I(o <7 < t:|z(r)|| > €), can be evaluated in the
same way as Construction Method I. Note that new com-
ponents are not added in each step by introducing &; (¢).
Thus, the same conclusion is derived.

Theorem 2. Consider a controlled system (1), (2)
with Construction Method II. Suppose that Assumption
1 and 2 can be met. Then the same conclusion as Con-
struction Method I is derived.

Remark 6.
number of tuning parameters is n* + 5 for n* > 2, and
4 for n* = 1. The adaptive laws in Method I and IT are

In Construction Method II, the minimal

not different from each other essentially. However, it is
though that the good transient property is often attained
in Method II because of the few tuning parameters, al-
though there is no large difference between two response

curves in the numerical examples of the next section.
5. Numerical Example

Numerical simulation studies are performed to show the
effectiveness of the proposed methods. Let us consider
the following system as a controlled system (n = 52: un-

known, m = 1: unknown, n* = 3: known).

d
am(t) = Az(t) + bu(t) + Gf(y(t),t) (111)
y(t) = ' (1), (112)
—a1 0 0 0 0
0 —a2
A= 0
0 e 0 —as0 0 0
c1 c2 -+ Cs0 —as51 0
0 e 0 1 —as»
b=[11---1000]"
49

c=1000---01"

51

G=[00---0100]"

f(y(®), 1) = 0.5sin(y(t))
a;i=01-(i—1) e=1/i (1<i<50),
as1 = a2 = -1 (113)

Design parameters and a reference signal are in the fol-

lowing:
M=X=1 g;=10 ¢&=10°
dle) =e
(% + 1)3yM(t) — sint
(ym(0) = yar (0) = 3jur (0) = 0) (114)

Bi(t) (i = 1,2) are determined based on the way in
Remark 4. Fig.3 show the results where Construction
Method I is utilized. Fig.4 show the results where Con-
struction Method II is utilized.

6. Conclusion

In the present paper, we proposed design methods of
model reference adaptive control systems for nonlinear
systems with unknown degrees and with known relative
degrees. The key point of these methods are to utilize

high gain feedbacks of hierarchical structures derived from
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Fig.3 Simulation result (Method I, g;; = 10)
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Fig.4 Simulation result (Method II, g;; = 10)

backstepping techniques '®, when the relative degree is
greater than 1. Time derivatives of output error signals
and strictly positive real error dynamics are obtained in
those hierarchical structures. We showed that the result-
ing control system is uniformly bounded and that the
tracking error converges to a residual region whose am-
plitude can be made arbitrarily small by the design pa-

rameter € (> 0).
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