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Adaptive Estimation of Component Proportion in a Pixel of a

Multispectral Image
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Spectral unmixing is a method by which to estimate the proportion of each component in a pixel using mul-
tispectral data. In conventional analysis of remotely sensed images, each pixel is classified into a single object
category. However, the actual land surface corresponding to a pixel does not necessarily consist of only one
category of object. Therefore, estimating the proportion of components that exist in a pixel is often useful. The
most commonly used method of spectral unmixing assumes that the component spectra are determined from
training data. However, available training data do not always correctly represent the spectral characteristics of
the categories within the objective area. In such cases, large errors may appear in the results of unmixing.

We herein propose the adaptive spectral unmixing method, which estimates suitable component spectra from
the actual observed data and thus requires no training data. By adaptively estimating the component spectra
from the set of observed data in the objective area, we can correctly estimate the proportion of components
even if the spectral characteristics change with the location of objective area. In the proposed method, the
spectral reflectance of pixels is expressed by vectors in multi-dimensional space, which can be written as linear
combinations of component spectra weighted according to component proportion. We determine the component
spectra by finding the minimum volume of simplex containing all of the reflectance vectors, where the vertices
of the simplex correspond to the component spectra.

We estimated the degree of errors by numerical simulation and compared the performance of the proposed
adaptive method to that of the conventional method. We confirmed that the proposed method of adaptive un-
mixing provides better results than the conventional method when the spectral characteristics change with the

location of the objective area.
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1. Introduction

In remote sensing, objects on the land surface are recog-
nized based on multi-spectral images acquired by aircraft
or earth observation satellites. In many cases, the im-
ages are classified, and each pixel is assigned to a single
category based on the spectral characteristics of objects.

When pixels are classified, we assume that the land sur-
face area that corresponds to a pixel is covered by only one
category of object. However, when a pixel corresponds to
a large area on the land surface, several categories of ob-
jects often exist within the pixel. In such cases, we cannot
determine the specific category for a small fraction of the
pixel. Moreover, mixed pixels often demonstrate interme-
diate spectral characteristics of component spectra and
may be misclassified as not belonging to any of the com-

ponent categories.
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On the other hand, spectral unmixing is a method in
which more than one category is assigned to a pixel and
the proportion of each component that exists in the pixel
is estimated V). Usual methods of spectral unmixing are
based on the linear mixing model, which assumes that the
component spectra are added linearly to compose the ob-

D~3), However, this method often exhibits

served spectra
large errors when applied to actual observed data. The
main reasons for these large errors may be that the 1)
mixing process of real objects cannot be assumed to be
linear, and 2) the component spectra used to estimate the
proportions of the components are not suitable for unmix-
ing. In the present paper, we focus on the latter of the
above problems.

In the conventional method of spectral unmixing, we
estimate the component spectra using the provided train-
ing data for each category and estimate the proportion
in a pixel. However, if the provided training data do not
correctly represent the objective category, the estimated
spectra will not agree with the spectral characteristics in
the pixel, and the result of unmixing will not be accu-
rate?). This problem of a lack of representativeness in

training data causes both unmixing error and misclassi-
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fication¥. In the present paper, we propose a method
of adaptively estimating the component spectra from ob-
served data in order to solve the problem of representa-
tiveness in training data.

Several methods for estimating the component spec-
tra from observed mixture spectra have been investi-
gated. One such method was first studied by Lawton
and Sylvester », and a criteria of entropy was introduced
by Sasaki et al. 6), However, these methods do not pro-
vide correct results when applied directly to the remotely
sensed images, because few of the component objects in
remote sensing have specific peaks in the spectra.

In recent studies on remote sensing, methods have been
proposed for spectral unmixing without known compo-

7):8) However, neither the influence of in-

nent spectra
sufficient representativeness of training data nor the ef-
fectiveness of adaptive estimation has been clarified. In
the present paper, we focus on the fact that insufficient
representativeness of training data is one of the essential
reasons for error of unmixing and propose a method to
solve this problem. We propose a method for adaptively
estimating the component spectra from observed data and

demonstrate the effectiveness of the proposed method.

2. Spectral Unmixing for Multispectral
Image

First, we describe the problem of ordinary methods of
spectral unmixing, which estimates component spectra
from training data.

2.1 Spectral unmixing based on linear mixing

model

Ordinary methods of spectral unmixing are based on
the linear mixing model. Let us assume that there are
N categories of objects that exist in the image, which
is composed of M pixels. When a multispectral image
is observed at L wavelengths, where A1, --, Az, the ob-
served spectrum of the i-th pixel is expressed as x; =
(xi1,--+,xir) fori =1,---, M, where t denotes the trans-
pose of a matrix.

When the mixing process of a spectrum can be ex-
pressed as a linear combination of component spectra
weighted according to component proportion, the ob-

served vector x; can be written as linear combinations

of s; as
T; =cCi181 + Ci282 + - + CiN SN, (1)
where s; = (sj1,---,s;.)" for j = 1,---, N are the com-

ponent spectra, and c¢;; are the proportions of component

j in pixel i. We can write this relation in matrix form as

z; =S¢, (2)

where S is a matrix in which the columns are compo-
nent spectra s;, and ¢; = (ci1,---,cin)" is a proportion
vector. The proportion of each component corresponds
to the amount of area that the category of object occu-
pies in a pixel. Therefore, the proportion vectors ¢; are

constrained by the following relations:

N

D e =1, ®3)
Jj=1
Cij 2 0. (4)

Spectral unmixing is a processing of determining ¢; for
given x; by using the component spectra S. The conven-
tional method assumes that the component spectra S are
known. If the vectors s; are linearly independent, then
the proportion of each component ¢; can be determined

using the generalized inverse matrix as 2
c; = (S’ﬂs’)il Sta:i. (5)

When we use actual observed data, the estimated com-
ponent proportion vector ¢; often does not satisfy con-
straints (3) and (4). In such cases, we should determine
the proportion vectors ¢; such that the difference between
the observed vector x; and its estimation S e¢; is mini-
mized. Therefore, we estimate the component proportion
by taking the vector ¢;, which satisfies the following con-
dition:
|z; —Sc¢i| — min (6)

under restrictions (3) and (4) V2.

2.2 Problems in the estimation of component

spectra using training data

In order to estimate the component spectra using the
above method, we must know the component spectra S
beforehand. In actual applications, the component vec-
tors s; are usually derived from a set of training sam-
ples that are extracted from known areas in the image.
However, the component vectors do not always correctly
agree with the spectral characteristics of the components
within the object area. There are several possible reasons
for this?. For example, the training data may not cor-
rectly represent the object categories. Moreover, the spec-
tral characteristics may have large variation, even within
the same category. Furthermore, the observed spectral
data may have been affected by large measurement er-
rors. Therefore, if the spectral characteristics of the train-
ing area differ from those of the objective area, they may
cause large errors in the results of the estimation of com-

ponent proportion.
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3. Adaptive Estimation of Component
Proportion in a Pixel

When the spectral characteristics change with the loca-
tion of the objective area, we must use appropriate compo-
nent spectra for the objective area in order to accurately
estimate the component proportion. However, it is almost
impossible to obtain the necessary training data for each
of the different objective areas. Therefore, we attempt to
adaptively estimate the component spectra from observed
data and use them to estimate the component proportion.

Our purpose is to estimate the component vectors s;
from observed vectors x; in a image that contain several
categories of unknown proportion in each pixel. After the
component vectors s; have been determined, the compo-
nent proportion vector ¢; should be estimated by a con-
ventional method according to equation (5) or equation
(6).

3.1 Principle of estimation of component spec-

tra

An observed vector is expressed as a linear combination
of N component vectors, as shown in equation (1). Since
the results should always satisfy the constraints of equa-
tions (3) and (4), all of the observed vectors x; that can be
considered as points in a multidimensional space should
exist inside of the N—1 dimensional simplex, the vertices
of which are defined by the component vectors s1,---,sn.
If a pixel consists of one category of object, the observed
vector corresponds to one of the vertices of the simplex
and is equal to a component spectrum. However, since we
do not know where the pure pixel exists in the image, the
component spectra are unknown. We estimate the com-
ponent spectra by finding the vertices of simplex in the
multidimensional space, as shown in Fig. 1.

Let us assume an N—1-dimensional simplex Xo, the ver-
tices of which correspond to component vectors. When
the vertices ai,:--,an are given, we can calculate the

volume of the simplex as follows ¥

1 11 -1
———— abs R 7
(N—1)! ar a» - a Q)

where “abs | - |” refers to the absolute value of the deter-

|77
minant. We denote the volume of the simplex Xy as Qo.
Each observed vector will exist inside the simplex Xo, and
pure pixels correspond to the vertices of Xo.

Next, we consider any N—1-dimensional simplex X that
includes all of the observed vectors inside of it. When we
express the volume of the simples X as @, the relationship

Q > Qo always holds. Then, @ will take the minimum

observed spectra component spectra

feature space

sj2

Fig.1 Estimation of component spectra by finding the ver-
texes in multidimensional space

value (= Qo) when the simplex X is equal to the simplex
Xo, where the vertices of the simplex correspond to the
component vectors.

Therefore, we can estimate the unknown component
vectors by finding the minimum volume of the simplex
that includes all of the observed vectors.

3.2 Algorithm of estimation ')

We estimate the component vectors by a non-linear op-
timization technique. Although the dimension of the ob-
served vectors becomes large as the number of bands in-
creases, the observed vectors can still be expressed in an
N-dimensional space, which is defined by the component
vectors 8i1,--+,8n. Therefore, we derive N basis vectors
from the observed vectors and express all of the observed
vectors in the feature space spanned by the basis vectors.
Using this method, we can also process several hundred
dimensional hyperspectral data in the same sequence.

When the number of components is N, we express the
component spectra s; as a linear combination of orthonor-

mal basis vectors vi,---,vn, as follows:
s; =tj1v1 +tjpv2+---+tivvn, (8)

where t;;, are coefficients of basis vectors. We calculate

the second moment matrix as
M
R=) mz/M (9)
i=1

and use its eigenvectors as the basis vectors %) where
M is the number of observed vectors. The eigenvectors
span a feature space in which the component spectrum s;

and the observed vector x; are represented by the points
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Fig.2 Observed vector and component vector expressed in a
feature space

t; = (tj1, -, t;n)" and 7; = (ri1,- -, rin)", respectively,
where
t]‘ = VtSj, (10)
r; = Vtiﬂi, (11)

and V = (v1,---,vn).
From equations (2), (10), and (11), we obtain

r; = VtSci = Tci, (12)
where T = (t1,---,tn). This means that we can express
the vector r; as a linear combination of ¢1,---,tn as

r; = citt1 + cioto + - - - +cintn. (13)

Since the coefficients c;; are restricted by equations (3)
and (4), r; exists inside of the N —1-dimensional simplex
defined by ¢1,---,tn. In the case in which the number
of categories is three, the inside of the triangle shown in
Fig. 2 corresponds to the existing region of the observed
vectors.

Next, we find the minimum volume of simplex, which
includes all of the points ;. We define an object func-
tion U and find the vectors ti1,---,tx that minimize the

function U. The object function is defined as
U=Q+ P — min, (14)

were @ is the volume of the N—1-dimensional simplex and
P is the penalty function that expresses the nonnegative
constraints of the component spectrum and the propor-

tion. We used the penalty function P as®:

P=v{) Y Fls)+> Y Fle)}, — (15)

j=1 i=1 i=1 j=1
where 7 is a scaling factor and F(-) is the function of

Fz) 0 ifx>0 (16)
xr) =
22 ifz <O.

After the vectors t; are determined, component spectra

s; can be calculated by equation (8).

sensor

Fig.3 Angles of incidence and reflection, which change with
viewing angle

4., Consideration of Accuracy by Nu-

merical Simulation '

We assumed the situation in which the spectral char-
acteristics change with the location of the objective area
and considered the estimation error of component propor-
tion. We used a simple model of reflectance variation
and evaluated the accuracy of the proposed method by
numerical simulation.

Since the reflectance of objects usually changes with the
incident and reflected angles, the reflectance will change
with the viewing angle of the sensor, as shown in Fig. 3.
In such cases, training data that have been acquired from
a specific region in the image may not accurately repre-
sent the characteristics throughout the entire image. We
assume different variation ratios r; for different categories

i and introduce the variation model as?
S0i = (14 1) si. (17)

The spectral reflectances of five objects (four types of
plant leaves and stone) measured by a spectrometer 12)
were used as component spectra. The spectral range was
from 510 to 750 nm, and the number of spectral bands was
49. We generated the observed spectra by linear combi-
nations of various proportion of components and added a
normally distributed level of random noise, the standard
deviation of which was set to 0.5% of the reflectance. We
evaluated the cases in which the numbers of categories
are three, four, and five, respectively, and compared the
results of estimation. We compared the accuracies of com-
ponent proportion obtained by the conventional method
to that obtained by the proposed method.

For three categories, Fig. 4 shows the 31 observed spec-
tra generated from the assumed components: stone, fallen
leaves, and young leaves. The estimated vertices in the
feature space are shown in Fig.5, where the observed
spectra are included within the triangle. We used the
“simplex method” for numerical processing of nonlinear

optimization. The scale parameter of the penalty function
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Fig.4 Observed spectra
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Fig.5 Estimation of component spectra in a feature space

was set to v = 1 for the first iteration and was multiplied
by ten for each iteration until v = 10%°.

The estimated component spectra and the assumed true
spectra agreed well, as shown in Fig. 6. An example of es-
timated component proportion is shown in Table 1. The
reflectances of objects changed in the three different pat-
terns, and the proportion of components were estimated
for two cases: (stone, fallen, young) = (33%, 33%, 34%)
and (25%, 25%, 50%). The error of estimation was re-
duced when the component spectra were adaptively esti-
mated and used. On the other hand, there were errors of
up to 10% when the conventional method was used.

The relationships between the true and estimated pro-
portions for various types of component ratios are shown
in Fig. 7. The estimated value obtained by the conven-
tional method has large errors, as shown in Fig. 7(a). On
the other hand, most of the estimated results obtained
by proposed estimation were positioned along the diago-
nal line, as shown in Fig. 7(b), which indicates that the
estimated value agrees well with the true value. Thus,

the proposed method of adaptive estimation of compo-
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Fig.6 Estimated component spectra and true spectra

Table 1 Results of conventional estimation and adaptive es-
timation when the number of categories is three

method of

variation of category [%]

reflectance estimation stone | fallen | young

(true value) | 33.0| 33.0| 34.0
stone: 0% | 1 | conventional | 31.3 | 34.9 33.8
a | fallen: 1% adaptive 32.8| 33.2| 33.9

young: 2% (true value) | 25.0 | 25.0| 50.0
2 | conventional | 22.6 | 27.2 50.1
adaptive 24.8 | 25.0 50.2

(true value) | 33.0| 33.0| 34.0
stone: 1% | 1 | conventional | 29.3 | 37.3 33.4
b | fallen: 2% adaptive 32.8 | 33.2 33.9
young: 4% (true value) | 25.0 | 25.0| 50.0
2 | conventional | 20.3 | 29.8 49.9
adaptive 24.8 25.0 50.2

(true value) | 33.0| 33.0| 34.0
stone: 3% | 1 | conventional | 25.4 | 42.3 32.2
¢ | fallen: 5% adaptive 32.8 | 33.2 33.9
young: 7% (true value) | 25.0 | 25.0 | 50.0
2 | conventional | 16.2 | 34.7 49.2
adaptive 24.8 | 25.0 50.2

nent spectra enables accurate estimation of the compo-
nent proportion in a pixel without the influence of the
variation of the spectral characteristics in an image.
Table 2 shows the result of estimation when the num-
ber of categories is four and 37 spectral data were gener-
ated and used. The relationship between the true value
and the estimated value is shown in Fig. 8. The result for
five categories and 45 observed spectra is shown in Fig. 9.
Although the error of estimation increased with the
number of categories, the proposed method always gives
better results than the conventional method. In the
present experiment, we obtained stable results when the
number of categories N was up to five. However, the

process of optimization will become difficult for large N,
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Fig.7 Correspondence of the true value and the estimated

value of component proportion when the number of
categories is three

Table 2 Results of conventional estimation and adaptive es-
timation when the number of categories is four

variation of method of category [%]
reflectance estimation stone | fallen | young | yellow
(%] (true value) | 40.0 | 30.0 | 20.0 | 10.0
stone: 0 | 1 | conventional | 38.0 | 29.9 | 20.2| 11.9
a | fallen: 1 adaptive 39.8| 30.0| 19.6 | 10.3
young: 2 (true value) | 25.0| 25.0| 25.0| 25.0
yellow: 3 | 2 | conventional | 21.6 | 24.3 | 25.5| 28.6
adaptive 26.4 | 25.2 | 24.7| 24.1
(true value) | 40.0 | 30.0 | 20.0 | 10.0
stone: 1| 1 | conventional | 34.9 | 29.2 | 20.5| 154
b | fallen: 2 adaptive 39.8| 30.1 | 19.6 | 10.3
young: 4 (true value) | 25.0| 25.0| 25.0| 25.0
yellow: 8 | 2 | conventional | 17.0 | 23.2 | 25.8 | 34.0
adaptive 26.4 | 25.2 | 24.7| 24.1
(true value) | 40.0 | 30.0 | 20.0| 10.0
stone: 3 | 1 | conventional | 30.6 | 28.7 | 20.9 | 19.8
c | fallen: 5 adaptive 39.8| 30.0 | 19.6| 10.3
young: 7 (true value) | 25.0 | 25.0 | 25.0| 25.0
yellow: 9 | 2 | conventional | 12.7 | 22.6 | 26.4 | 38.3
adaptive 26.4| 25.2 | 24.7| 24.1
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Fig.8 Correspondence of the true value and the estimated
value of component proportion when the number of
categories is four

because a total of N? parameters must be optimized.
5. Conclusions

We have proposed a method of spectral unmixing that
accurately estimates the proportion of components in a
pixel. This method does not use training data and adap-
tively estimates the component spectra from observed
data and uses them for unmixing. We have shown that
the components in mixed pixels can be accurately esti-
mated when the spectral characteristics change with the
location of objective area. The results of numerical simu-
lation show that the accuracy of estimation is improved in
cases where insufficient representativeness of training data
causes large errors when using the conventional method.
The application of this method to a remotely sensed ac-
tual observed image and the estimation of the number
of categories from observed data are problems for future

study.
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value of the component proportion when the number
of categories is five
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