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Autonomous Distributed Control of Traffic Signals with

Cycle Length Control†

Masao Sugi∗, Hideo Yuasa∗∗,

Jun Ota∗∗∗ and Tamio Arai∗∗∗

A new method is proposed for controlling a large number of traffic signals, which are represented by nonlinear

oscillators, each governed by a reaction-diffusion equation at a node of a graph. The behavior of each signal

is determined only by the states of its neighbors, with the system as a whole being also organized globally. In

this report, cycle lengths of the signals are controlled according to the traffic condition. Along with the control

of offsets and splits, which are also explained here, the system can achieve high performance in dynamic traffic

conditions. The simulation results are exemplified to show the validity of the method.
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1. Introduction

Growing number of automobiles deteriorates traffic con-

ditions and brings forth increased congestion and more

frequent accidents. The control of traffic signals [2] has

been researched as one of the countermeasures to improve

such situations.

In the traffic signal control, three parameters, the cy-

cle length (i.e. period of the signal), the split (duty ratio

of the green light duration for each direction) and the

offset (difference between the onset times of green lights

of neighboring signals), are determined according to the

traffic conditions. There are two schemes in the traffic

control; the isolated control and the coordinated control.

The former deals with only one signal, and controls cy-

cle length and split of the signal. Its neighbors are not

taken into account. The latter aims at coordinating mul-

tiple signals neighboring one another on the same road,

and controls the offsets among them, along with the cycle

lengths and the splits. This can be expected to achieve
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more effective performance than the isolated control. Ex-

tension of the coordinated control from one single road to

network is often called the wide area control, which can

achieve higher performance than the usual coordinated

control on a single road.

In the conventional traffic signal control method, a solu-

tion of an optimization problem obtained through off-line

planning gives the behavior of the signals, which are con-

trolled by a central computer. This method, however,

cannot follow dynamic changes of the traffic condition.

Recent studies [1, 6] propose real-time control method,

replacing the off-line planning in the above method with

the on-line one. Although this method can cope with the

dynamic changes of the traffic condition, application of

it to a large number of traffic signals is limited, because

the computation order for calculating the optimal set of

parameters over all of the signals will excess the power of

the central computer.

On the other hand, wide area control of traffic signals by

the distributed manner [4, 5, 7, 8, 10, 3] has been studied

in this decade. This method is more suitable for large size

environment with dynamic changes of traffic conditions.

There are several studies that deal with control of

a large number of traffic signals by the decentralized

method. Mikami et al. [7] and Misawa et al. [8] apply

the multi-agent reinforcement learning to control of the

split of each signal. The offsets and cycle lengths are not

controlled. Lee et al. [10] introduces a distributed fuzzy

controller to regulate three parameters. This method,

however, assuming no communication between the neigh-

boring signals, cannot control the offsets between the sig-
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nals. In Ref. [4] by Sekiyama et al., a traffic network is

modeled using nonlinear coupled oscillators with individ-

ual frequency of oscillations. The offset control method

using the entrainment phenomena and the split control

method are proposed. The cycle length and the offset of

each signal, however, cannot be controlled independently

of each other, since the both are treated inseparable in

that model. Nishikawa et al. [5] adopts oscillators with

a fixed common frequency, which is the common charac-

teristic to our oscillator model [3]. Although the control

of offsets is dealt with in a generalized manner in [5], the

splits and cycle lengths of the signals are not handled in

this paper. Thus, wide area control of traffic signals by

the decentralized method remains to be developed.

In a previous paper [3], we have also proposed a de-

centralized signal control method based on the oscillators

governed by a reaction-diffusion equation on a graph [9].

Each signal with a fixed common cycle length determines

the split and offset from its local traffic conditions. Re-

cently we have extended the previous method by intro-

ducing the control of cycle length. The results are shown

in this paper.

In section 2, the presumptions of this research are in-

troduced. The method for controlling the splits of signals

and the offsets between neighboring signals is explained.

In section 3, the concept of closed-loop constraints of the

offsets is argued. The cycle length control method is pro-

posed, aiming for relaxation of the closed-loop constraints

of the offsets. Some simulation results are discussed in sec-

tion 4. We conclude this paper in section 4. We conclude

this paper in section 5.

2. Autonomous decentralized control of
traffic signals

In this section, presumptions of this research are shown

at first. This section also describes the control method of

the splits of signals and the offsets between neighboring

signals, which are basically the same in the previous paper

[3]. Therefore the explanation here is kept at a minimum,

making the difference to Ref. [3] clear.

2. 1 Presumptions

In the present method, automobiles are assumed to

go straight in an intersection and turn neither right nor

left. The roads are limited to be bidirectional two-lane

road, and all the intersections are crossroads (see Fig. 1-

(a)). The cycle system of the signals is a 2-phase cy-

cle: “Phase1” for the traffic flows from east and west and

“Phase2” from north and south, as shown in Fig. 1-(b).

Each signal can measure the traffic volume (i.e., num-

Signal i Signal j

qi←j

qj← i

ji

Θi2 Θi1

0

a

b

θi

θ̇i = ωi

Phase2

Phase 1Phase1

a : b = σi : (1− σi)

(a) (b)

Fig. 1 (a) Traffic volume and oriented graph model. (b) Traf-

fic signal model.

ber of automobiles) from each of four directions, which is

shown in Fig. 1-(a). The traffic volume is normalized into

q ∈ [0, 1] using the maximal volume. As shown in Fig. 1-

(a), two neighboring signals i and j share the information

on qi←j (flow volume from j to i) and qj←i (volume from

i to j).

2. 2 Traffic signal model

In this paper, the state of a signal i is described by

two variables: the phase angle θi ∈ [0, 2π) and the split

σi ∈ [0, 1], which is shown in Fig. 1-(b). Here the split σi

is defined as,

σi =
τphase1

τphase1 + τphase2
, (1)

where τphase1 and τphase2 are the time duration of

“Phase1” and “Phase2”, respectively.

The actual phase of a signal i is determined using the

phase angle θi and the split σi. Let us first define the

phase switch points Θi1 and Θi2, shown in Fig. 1-(b), i.e.,

Θi1 = (
1

2
− σi)π, Θi2 = (

1

2
+ σi)π. (mod 2π) (2)

Then the phases are determined by Θi1 and Θi2;

Phase1: sin θi ≥ sin Θi1, θi �= Θi2,

Phase2: sin θi ≤ sin Θi2, θi �= Θi1.
(3)

The connection (i.e. neighboring relation) of traffic sig-

nals is modeled as an oriented graph G = (V, E). It is

noted that the direction of each link does not represent

that of traffic flow on the link. All the traffic flow is bidi-

rectional. We define a function defined on a link (i, j)

as,

sign(i, j) =

8<
: 1, if i is the end point of (i, j),

−1, if i is the origin of (i, j).
(4)

Using this function, the differences, ρ(i,j) and φ(i,j), of

splits and phase angles, respectively, between neighbor-

ing signals i and j, are defined as,

ρ(i,j) = sign(i, j)(σi − σj), (5)

φ(i,j) = sign(i, j)
h˘

θi − ξ(i, (i, j))
¯

− ˘θj − ξ(j, (j, i))
¯i

, (6)

where ξ(i, (i, j)) is a function defined on a node i and a
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link (i, j),

ξ(i, (i, j)) =

8>>>><
>>>>:

Θi1, if a road (i, j) goes

east and west,

Θi2, if a road (i, j) goes

north and south.

(7)

It is noted that the difference of phase angles φ is defined

using angles measured from the phase switch point (Θi1

or Θi2) as the reference point, instead of the origin, all of

which are shown in Fig. 1-(b).

From now on, the variables with subscript (i, j)

(e.g. ρ(i,j), φ(i,j) and so on) is regarded to be defined

on the link (i, j). Because we model road network as

a simple graph, not a multiple graph, (i, j) and (j, i)

means the same link. Therefore the reciprocal relations,

ρ(i,j) = ρ(j,i) and φ(i,j) = φ(j,i), hold. On the other hand,

the reciprocal relation does not hold on the variables with

subscript i← j, which represents the value related to the

traffic flow from the signal i to j.

2. 3 Split control

We introduce the following dynamics of σi governed by

the gradient system,
dσi

dt
= − ∂

∂σi
(W0 + W1), (8)

where the potentials W0 and W1 are given as,

W0 =
X
i∈V

α

 
σi − qi←w(i) + qi←e(i)X

j∼i

qi←j

!2

, (9)

W1 =
X
i∈V

X
j∼i

β(qi←j + qj←i) · (ρ(i,j))
2. (10)

In the above, w(i) and e(i) denote the west and east

neighboring signals of i, respectively. i ∼ j denotes that

the signal j is a neighbor of i. α and β are parameters to

control the speed of convergence.

2. 4 Offset control

In order to control the offsets (second as a unit) of sig-

nals, we control the difference of phase angles (radian as a

unit). We introduce the following gradient system to the

oscillators’ phase angles,

dθi

dt
= ωi − ∂V

∂θi
, (11)

V =
X
i∈V

X
j∼i

˘− γ(i,j) |qi←j − qj←i| ×
cos(φ(i,j) −D(i,j))

¯
, (12)

where ωi is the oscillation frequency that gives the cycle

length of the signal i. γ(i,j) is a parameter to control the

speed of convergence.

D(i,j) in (12) is the desired value of the difference of

phase angles. When ωi = ωj holds, the difference of the

phase angles φ(i,j) will converge into D(i,j). Here D(i,j) is

defined. First we consider only one direction from the two

counter-directional traffic flows on the road (i, j), and give

the desired phase angle difference for this direction. Let

us denote the desired difference corresponding the flow

i← j as Di←j , and the one corresponding the flow j ← i

as Dj←i. Using vmax, the maximal speed of the automo-

biles, and L(i,j) = L(j,i), the distance between signals i

and j, Di←j and Dj←i are given as,

Di←j = −sign(i, j)
ω̄(i,j) L(i,j)

vmax
, (13)

Dj←i = −sign(j, i)
ω̄(j,i) L(j,i)

vmax
. (14)

where ω̄(i,j) is the mean value of the oscillation frequencies

of i and j,

ω̄(i,j) =
ωi + ωj

2
. (15)

When ωi = ωj = ω̄(i,j) holds, the actual offset between

signals i and j is given as φ(i,j)/ω̄(i,j). Therefore (13) and

(14) show that the desired offset is given as L(i,j)/vmax,

the necessary time to pass through the road (i, j).

Next, using the desired phase angle differences of two

counter-directional traffic flows (i.e. Di←j and Dj←i), we

define the desired phase angle difference between i and j

with both of two traffic flows taken into account as,

D(i,j) =

8<
:Di←j , (qi←j ≥ qj←i)

Dj←i. (qi←j < qj←i)
(16)

Equation (16) means that D(i,j) chooses the desired

phase angle difference suitable for the direction with larger

traffic volume, comparing the two counter-directional

traffic flows on the road (i, j).

2. 5 Modification of control method in [3]

Here we state the difference between the previous paper

[3] and the present paper.

Instead of the ωi in (11), we have supposed that the

signals have a fixed common frequency of oscillation ω in

the previous paper [3]. Furthermore, V in (12) have been

given in [3] as,

V =
X
i∈V

X
j∼i

˘−γ(qi←j+qj←i) cos(φ(i,j)−D(i,j))
¯
.(17)

D(i,j) in (16) have been given in [3] as the weighted inte-

rior division of Di←j and Dj←i, i.e.,

D(i,j) =

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

0, (qi←j = qj←i = 0)

qi←jDi←j + qj←iDj←i

qi←j + qj←i
,

(|Di←j −Dj←i| ≤ π)

π +
1

qi←j + qj←i
×

h
qi←j{Di←j + sign(i, j)π}

+ qj←i{Dj←i + sign(j, i)π}
i
.

(|Di←j −Dj←i| > π)

(18)
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(a) (b)

Fig. 2 Analogy to mass-spring-dashpot mechanical systems.

The three branches of the right term in (18) are due to

the property of the toroidal mod 2π space, where the in-

terior division between two points appears on the shorter

side of the two arc between the two points.

These modifications are necessary for the control of cy-

cle length. The reason of this will be described in the next

section.

3. Closed-loop constraints on offsets and
cycle length control

3. 1 Outline of the cycle length control

In any given loop (or circuit) on a graph, the sum of the

offsets between neighboring signals is equal to the integer

multiple of the cycle length. This is known as closed-loop

constraint on offsets [2] in traffic engineering. In general,

for n links on a loop, the number of the links with linear

independent offsets is only n − 1. If we determine the

respective offsets of the n − 1 links, the offset of the last

one link is automatically determined. This means that we

cannot design the desired offsets of all of the links arbi-

trarily.

In the oscillator model, the closed-loop constraint on

offsets means that the sum of the difference of the phase

angles is equal to 2nπ for n ∈ Z. Although the phase angle

difference φ(i,j) in (6) (or phase angles θi) always satisfies

the closed-loop constraint, the desired difference D(i,j) in

(16) does not always. When the sum of D(i,j) on a loop

does not satisfy the closed-loop constraint, the difference

of phase angles φ(i,j) cannot converge to its desired value

D(i,j). The offsets cannot be controlled appropriately in

this case.

For this problem, we control the cycle lengths of the sig-

nals on a loop into the appropriate value so that the sum of

the desired offsets on the loop can satisfy the closed-loop

constraint. In fact, if the cycle length of a loop is equal

to the quotient of the sum of the desired offsets on the

loop divided by any positive integer, the closed-loop con-

straint is satisfied. Because the desired offsets will change

according to the traffic conditions, the cycle length will

be changed. By controlling the cycle length, all of the off-

set values on a signal network can be converged into their

respective desired values, and the traffic efficiency will be

improved than in the case with fixed cycle length.

Analogy to mass-spring-dashpot mechanical systems(1)

in Fig. 2 makes the concept of cycle length control clear.

The distance between the material points in the mass-

spring-dashpot systems corresponds to the offset of the

signals. The natural length of the spring corresponds

to the desired offset. In a mechanical system shown in

Fig. 2-(a), each distance between two neighboring mate-

rial points will converge into the natural length of the

spring as t → ∞. This corresponds to the case in which

the graph has no loop and there are no closed-loop con-

straints on offsets. In a system confined to a rigid box,

shown in Fig. 2-(b), each distance between neighboring

material points will never converge to the spring’s natu-

ral length as t→∞, except that the total of the natural

length of the springs is equal to the length of the box. This

corresponds to the case we must take the closed-loop con-

straint on a loop into consider. In this context, our cycle

length control method means for changing the length of

the box to the sum of the natural lengths of springs.

Although the closed-loop constraint exists on each loop

on the graph, the possible loops on a graph are gener-

ally too many to take all of them into account. Here, we

consider only the bounded faces, shown in Fig. 3-(a).

In elaborating the model, we must settle the conflict

between the common cycle length and the local optimal

cycle length of each loop dependent on the shape and size

of the loop. For controlling the offsets between the neigh-

boring signals, ωi 	 ωj for all signals is required. We

choose a common cycle length that is “reasonable” for

most of the loops on the graph.

In this paper, we introduce a new kind of agent “loop

manager,” which corresponds to each of the bounded faces

of the graph, as shown in Fig. 3. Each loop manager

l∗ changes Ωl∗ , the frequency of oscillation of the loop,

so that the sum of D(i,j) on the loop l∗ may satisfy the

closed-loop constraint. At the same time, each loop man-

ager l∗ smoothes off the value of Ωl∗ , changing it toward

the average value of the neighboring loops (i.e. loops

which share at least one link of G with the loop l∗). As a

result, homogenized value of the frequency of oscillation

is obtained. Each signal uses the homogenized value for

its frequency of oscillation.

Let us denote the dual graph of G as G∗ = (V ∗, E∗).

The network of the loop managers G̃∗ is defined as,

G̃∗ = (Ṽ ∗, Ẽ∗) :=
“
V ∗\{v∗inf}, E∗\E∗(v∗inf)

”
(19)

(1) Strictly speaking, the dynamics of the gradient system

is different from that of the mass-spring-dashpot mechanical

system. There is no overshoot in the gradient system.
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v1l∗

v2l∗

l∗

v3l∗

Bounded face

Unbounded face

(a) (b)

Fig. 3 (a) Bounded and unbounded faces of a graph. (b)

Numbered nodes vi
l∗ on the loop l∗.

where v∗inf ∈ V ∗ is a node on G∗ corresponding to the

unbounded face on G, and E∗(v∗inf) ⊂ E∗ is a set of links

that are connected to the node v∗inf . We use a subscript

“∗” for representing a loop on G hereafter. It is noted

that a loop on G corresponds to a node on G̃∗. In this

paper, we design the dynamics of loop managers using the

reaction-diffusion equation on a graph G̃∗.

Hereafter we call the graph G̃∗ as “dual graph of G,”

instead of the graph G∗. The term “loop” is regarded as

equivalent to a bounded face without notice.

While the reaction-diffusion equation on the dual graph

G̃∗ gives the dynamics of the oscillation frequency at

nodes on G̃∗ (i.e. oscillation frequency at every loops on

G), what is necessary for us is the dynamics of oscilla-

tion frequency at nodes on G. The transformation from

the oscillation frequency on G̃∗ to the one on G is there-

fore necessary. In this paper, we introduce the reaction-

diffusion equation of oscillation frequency at nodes on G,

in which the desired oscillation frequency of each node is

determined by the frequencies of the loops nearby.

Figure 4 shows the schematic view of the present

method for controlling the cycle lengths of the signals.

The left figure of Fig. 4 represents the relations between

the signals and the loop managers. As mentioned previ-

ously, the network of the loop managers composes a dual

graph of the network of the signals. The right figure shows

the communication between the signal i1 and the loop

manager l∗1 . The signal i1 informs the respective values

of its phase angle θi1 , split σi1 , the traffic volumes qi1←i2

and qi1←i3 to the loop manager l∗1 . The loop manager l∗1 ,

considering these values, determines Ωl∗1 , the oscillation

frequency of the loop, and informs it to the signal i1. The

signal i1 then changes its own oscillation frequency ωi1 ,

referring to the value of Ωl∗1 .

It is noted that the communication between the signals

and the loop agents is not limited to one to one. The loop

manager communicates with all of the signals on the loop

(e.g., i2 and i3 in Fig. 4). Similarly, each signal communi-

l∗1 l∗2

l∗3

i1i2

i3

qi1← i3

qi1← i2

Ωl∗1

, qi1← i3qi1← i2

,θi1 σi1

Loop manager
Ωl∗1

l∗1

Signal i1
,,ωi1 θi1 σi1

Fig. 4 Schematic view of the present method for the control

of the cycle length. Left: Relations between the sig-

nals and the loop managers. Right: Communication

between signal i1 and loop manager l∗1 .

cates with all of the loop managers concerned with itself

(e.g.. l∗2 and l∗3 in Fig. 4).

3. 2 Solution of cycle length satisfying closed-

loop constraints

Let us obtain the local optimal solution of the loop’s

frequency of oscillation for the sum of D satisfying the

closed-loop constraint.

From here, we refer to the clockwise orientation cir-

culating the loop l∗ as positive orientation of l∗. The

set of the nodes (i.e. signals) on the loop l∗ is de-

noted by V (l∗) ⊂ V . The elements vi
l∗ ∈ V (l∗) (i =

1, 2, . . . , |V (l∗)|) are numbered in accordance with the

positive orientation of l∗, as shown in Fig. 3-(b).

Let us denote the frequency of the loop l∗ by Ωl∗ , which

is assumed to be common to all signals on the loop l∗, i.e.,

ωvi
l∗

= Ωl∗ , i = 1, 2, . . . , |V (l∗)|. (20)

For the neighboring nodes vi−1
l∗ , vi

l∗ ∈ V (l∗), the following

relation holds,

ω̄
(vi−1

l∗ ,vi
l∗ )

= ω̄
(vi

l∗ ,vi−1
l∗ )

= Ωl∗ ,

i = 1, 2, . . ., |V (l∗)|, (21)

and the closed-loop constraint is represented by,

|V (l∗)|X
i=1

(θ
vi−1

l∗
− θvi

l∗
) = 2nπ, n ∈ Z, (22)

where v0
l∗ ≡ v

|V (l∗)|
l∗ .

Our aim is to obtain the condition of D(k,h) (k, h ∈
V (l∗)) for satisfying the closed-loop constraint. Let us

first introduce φ(k,h) to rewrite (22). Substituting (7) and

(2) for the term of ξ in (6), the relation between θ and φ

is derived as,

φ(i,j) = sign(i, j)
˘
(θi − θj)−∆

`
i, j, (i, j)

´¯
(23)

where ∆
`
i, j, (i, j)

´
, a function defined on two nodes

i, j ∈ V and a link (i.e. road) (i, j) ∈ E, is a correction
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term,

∆
`
i, j, (i, j)

´

=

8>>>>><
>>>>>:

−(σi − σj)π,

if the link (i, j) extends east and west,

+(σi − σj)π,

if the link (i, j) extends north and south.

(24)

The transformation of the phase angle differences from

θi−θj (the difference in the original frame of reference) to

φ(i,j) (the difference with the phase change points as the

reference points) brings the correction term ∆
`
i, j, (i, j)

´
,

which is shown in Fig. 5. While (22) is represented by

θi − θj , the actual parameter of offset control in (12) is

φ(i,j). This is the reason why the correction term is nec-

essary. The value of the correction term ∆
`
i, j, (i, j)

´
depends on σi and σj , the splits of i and j. It is noted

that ∆
`
i, j, (i, j)

´
= 0 and φ(i,j) = θi − θj hold when

σi = σj .

We obtain the following formula from (23) and (22),

|V (l∗)|X
i=1

n
sign(vi−1

l∗ , vi
l∗) · φ

(vi−1
l∗ ,vi

l∗ )

+∆
“
vi−1

l∗ , vi
l∗ , (vi−1

l∗ , vi
l∗)
”o

= 2nπ, n ∈ Z.

(25)

In deriving the above equation, we used sign(i, j)2 = 1 for

∀(i, j) ∈ E. Replacing φ
(vi−1

l∗ ,vi
l∗ )

in (25) with D
(vi−1

l∗ ,vi
l∗ )

,

we obtain the condition that the desired difference of

phase angles D should satisfy,

|V (l∗)|X
i=1

n
sign(vi−1

l∗ , vi
l∗) ·D

(vi−1
l∗ ,vi

l∗ )

+∆
“
vi−1

l∗ , vi
l∗ , (vi−1

l∗ , vi
l∗)
”o

= 2nπ. (26)

It is noted that (26) does not always hold, while (25) al-

ways does. When (26) holds, the difference of phase angle

φ converges to its desired value D.

From (16), (13), and (14), we get

sign(i, j)D(i,j) =

8>>><
>>>:
− ω̄(i,j) L(i,j)

vmax
, (qi←j ≥ qj←i)

+
ω̄(j,i) L(j,i)

vmax
. (qi←j < qj←i)

(27)

Substituting (21) for (27), the following equation is ob-

Rotate

Θi1

θi

0

θi
θj

Θi1

Θj1

θi − θj
0

φ(i,j )

Θj1(= Θi1)

0 (i)

0 (j)

θi
θj

Θj1

θj
0

Fig. 5 Relations between two kinds of phase angle differences;

θi − θj and φ(i,j).

tained,

sign(vi−1
l∗ , vi

l∗) ·D
(vi−1

l∗ ,vi
l∗ )

=

8>>>><
>>>>:
−

Ωl∗ L
(vi−1

l∗ ,vi
l∗ )

vmax
, (q

vi−1
l∗ ←vi

l∗
≥ q

vi
l∗←vi−1

l∗
)

+
Ωl∗ L

(vi
l∗ ,vi−1

l∗ )

vmax
. (q

vi−1
l∗ ←vi

l∗
< q

vi
l∗←vi−1

l∗
)

(28)

Equation (28) shows that the desired phase angle differ-

ence D in the oscillator model is proportional to the fre-

quency of oscillation Ω. Thus, when a fixed desired offset

(see Sec. 2. 4) is given, we can still change the correspond-

ing desired phase angle difference in the oscillator model

by changing the frequency of oscillation of the signals.

Substituting (28) for (26), we obtain the condition of

Ωl∗ for the sum of the desired phase angle differences D

satisfying the closed-loop constraint, as,

Ωl∗

vmax
Λl∗ +

|V (l∗)|X
i=1

∆
“
vi−1

l∗ , vi
l∗ , (vi−1

l∗ , vi
l∗)
”

= 2nπ,

n ∈ Z, (29)

where Λl∗ is defined as,

Λl∗ =

|V (l∗)|X
i=1

χ
“
q

vi−1
l∗ ←vi

l∗
, q

vi
l∗←vi−1

l∗

”
· L

(vi−1
l∗ ,vi

l∗ )
.

(30)

In (30), χ is a function that gives a sign,

χ
“
q

vi−1
l∗ ←vi

l∗
, q

vi
l∗←vi−1

l∗

”

=

8><
>:
−1,

“
q

vi−1
l∗ ←vi

l∗
≥ q

vi
l∗←vi−1

l∗

”
+1.

“
q

vi−1
l∗ ←vi

l∗
< q

vi
l∗←vi−1

l∗

” (31)

As shown in Fig. 6, χ is positive when the orientation of

the main traffic flow (i.e. the larger one of the two counter-

directional traffic flows) on the link (vi−1
l∗ , vi

l∗) is the same

as the positive orientation of the loop l∗. When they are

opposite to each other, χ is negative.
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Λl∗ is the sum of the product of the length of links

and the sign χ along the loop l∗. |Λl∗ | attains the largest

value when all the link have the main traffic flows with the

same (positive or negative) orientation, forming a circu-

lating traffic flow over the loop. When the links does not

share one and the same orientation, |Λl∗ | attains a smaller

value. When Λl∗ = 0 and ∆ = 0 hold at the same time,

(26) is satisfied for arbitrary Ωl∗ . On the other hand, (26)

is not satisfied for any Ωl∗ when Λl∗ = 0 and ∆ �= 0 hold.

Equation (29) is rewritten as,

Ωl∗

=

8>>>>>>>>>>>><
>>>>>>>>>>>>:

vmax

Λl∗

"
2mπ −

|V (l∗)|X
i=1

∆
“
vi−1

l∗ , vi
l∗ , (vi−1

l∗ , vi
l∗)
”#

,

(Λl∗ > 0)

vmax

−Λl∗

"
2mπ +

|V (l∗)|X
i=1

∆
“
vi−1

l∗ , vi
l∗ , (vi−1

l∗ , vi
l∗)
”#

,

(Λl∗ < 0)

(32)

where m = 0, 1, 2, . . .. When (32) holds, the closed-loop

constraint in (26) is satisfied.

Equation (32) has multiple solutions of Ωl∗ . The inter-

val between adjacent solutions is 2vmax
|Λl∗ | π. When the total

length of the loop is large and the main flows form a cir-

culating flow along the loop, (32) has many solutions of

Ωl∗ and the interval between the solutions is narrow.

It is noted that a solution with Ωl∗ < 0 makes no sense

in (32). When Λl∗ = 0 and ∆ = 0 hold together, the

closed-loop constraint in (26) is satisfied for arbitrary Ωl∗ ,

which is mentioned previously.

As it is mentioned in Sec. 2. 4, while the previous paper

[3] gives the desired phase angle difference D(i,j) as (18),

the present paper gives D(i,j) as (16). This is due to the

inconvenient property of the function in (18).

In the cycle length control, first we consider the closed-

loop constraints on the desired phase angle difference

D(i,j). Then we choose the appropriate value of the oscil-

lation frequency Ωl∗ so that the sum of D(i,j) is satisfied.

Now le us consider D(i,j) as a function Ωl∗ . In order to

solve the closed-loop constraint on the loop, the range of

D(i,j) is required to be [0, 2π). Here let us inspect (18).

Since D(i,j) is defined as the weighted interior division of

Di←j and Dj←i with qi←j and qj←i as respective weight

coefficients, when qi←j 	 qj←i, the range of D(i,j) is lim-

ited to a small fan-shaped region around D(i,j) = 0 or

D(i,j) = π (whether 0 or π is determined by the ratio of

L(i,j) and vmax). This means that the value of D(i,j) can-

not be changed arbitrarily and therefore the closed-loop

v1l∗

v2l∗

l∗

v3l∗

qv 1
l∗ ←v2

l∗

qv2
l∗ ←v1

l∗

χ = −1

χ = +1

Fig. 6 Values of χ, determined by the orientation of the main

traffic flow on the link with respect to the loop’s posi-

tive orientation.

constraint is often not satisfied even how much we change

the value of Ωl∗ . In the case of D(i,j) defined in (16),

which we use here, D(i,j) is positive or negative propor-

tional to Ωl∗ (the sign of the coefficient is determined by

the main traffic flow on a road). Therefore the range of

D(i,j) is always D(i,j) ∈ [0, 2π). We can solve the closed-

loop constraint on offsets by changing the cycle length

Ωl∗ .

3. 3 Dynamics of loop managers

As mentioned in the previous subsection, (32) has a se-

ries of solutions with a constant interval. To determine the

most appropriate among them, the following procedures

are introduced. We first define a cosine-curved function

for the local reaction potential as,

U0(Ωl∗) =

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

−k0vmax

Λl∗max
cos

"
Λl∗

vmax
Ωl∗+

|V (l∗)|X
i=1

∆
“
vi−1

l∗ , vi
l∗ , (vi−1

l∗ , vi
l∗)
”#

(Λl∗ > 0)

−k0vmax

Λl∗max
cos

"
−Λl∗

vmax
Ωl∗−

|V (l∗)|X
i=1

∆
“
vi−1

l∗ , vi
l∗ , (vi−1

l∗ , vi
l∗)
”#

(Λl∗ < 0)

(33)

where k0 is a convergence factor, and Λl∗max is a maxi-

mum value of Λl∗ ,

Λl∗max =

|V (l∗)|X
i=1

L
(vi−1

l∗ ,vi
l∗ )

. (34)

Governed by the gradient system of U0(Ωl∗), Ωl∗ may

attain one of the minima of U0(Ωl∗), each of which cor-

responds to one of the solutions of (32). The allowed os-

cillation frequency of signals should be, however, neither

too high nor too low to be realistic. In the present model,

we introduce the allowed maximum and minimum, Ωmax
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and Ωmin, respectively, to define an allowed band for Ωl∗ .

A penalty function is introduced to let Ωl∗ remain within

the allowed band [Ωmin, Ωmax].

We must consider then the case that (32) does not have

any solution of Ωl∗ within [Ωmin, Ωmax]. This will happen

when the total length of the loop is short or the main

traffic flows on the links do not obviously form a circu-

lating flow along the loop. In this case, Ωl∗ will converge

to a “pseudo” minimum, Ωmin or Ωmax, composed of the

penalty function and U0(Ωl∗). To avoid this, we introduce

the following function as a potential,

U1(Ωl∗) =

8>>>>><
>>>>>:

k0vmax

Λl∗max
(Ωl∗ − Ωmax) , (Ωl∗ > Ωmax)

0, (Ωmin ≤ Ωl∗ ≤ Ωmax)

k0vmax

Λl∗max
(Ωmin − Ωl∗) , (Ωl∗ < Ωmin)

(35)

In (35), there are no reaction term in the allowed band.

Therefore Ωl∗ in the allowed band is governed by the dif-

fusion term.

Next we consider the case that (32) has one or more

solutions of Ωl∗ within [Ωmin, Ωmax]. We employ the fol-

lowing potential function as,

U2(Ωl∗) =

8>>>>>>>>>><
>>>>>>>>>>:

k0vmax

Λl∗max
(Ωl∗ − Ωltop) + U0(Ωl∗top),

(Ωl∗ > Ωl∗top)

U0(Ωl∗), (Ωl∗bottom ≤ Ωl∗ ≤ Ωl∗top)

k0vmax

Λl∗max
(Ωl∗bottom − Ωl∗) + U0(Ωl∗bottom),

(Ωl∗ < Ωl∗bottom)

(36)

where Ωl∗bottom and Ωl∗top are

Ωl∗bottom = max

»„
Ωl∗min − vmax

|Λl∗ |π
«

, Ωmin

–
, (37)

Ωl∗top = min

»„
Ωl∗max +

vmax

|Λl∗ |π
«

, Ωmax

–
. (38)

In the above equations, Ωl∗max and Ωl∗min are the re-

spective maximal and minimal solutions of (32) within

[Ωmin, Ωmax]. The ordering of values of Ωl∗max, Ωl∗min,

Ωmax, and Ωmin determines the values of Ωl∗top and

Ωl∗bottom. Two examples of U2(Ωl∗) are shown in Fig. 7.

The local reaction potential for Ωl∗ is given as,

U(Ωl∗) =

8>>>>>><
>>>>>>:

U1(Ωl∗), if the solution of (32)

does not exist in [Ωmin, Ωmax]

U2(Ωl∗), if the solution of (32)

exists in [Ωmin, Ωmax]

(39)

Ωl∗bottom = Ωmin

Ωl∗ top = Ωmax

Ωl∗

ΩmaxΩmin

Ωl∗max
Ωl∗min

vmax
|Λl∗ |
π

Ωl∗bottom = Ωmin −
vmax
|Λl∗ |
π

Ωl∗min = Ωl∗max

Ωl∗ top = Ωmax +
vmax
|Λl∗ |
π

Ωl∗

U2

U2

0

0

Allowed band

Fig. 7 Two examples of the potential U2. Top: The

case in which
“
Ωl∗min − vmax

|Λl∗ |π
”

< Ωmin and
“
Ωl∗max + vmax

|Λl∗ |π
”

> Ωmax hold. Bottom:

The case in which
“
Ωl∗min − vmax

|Λl∗ |π
”

> Ωmin“
Ωl∗max + vmax

|Λl∗ |π
”

< Ωmax hold.

We define the local diffusion potential for Ωl∗ to smooth

off the oscillation frequencies of the neighboring loops as,

Ud(Ωl∗) =
X

k∗∼l∗
k1(Ωl∗ − Ωk∗)2. (40)

where k∗ ∼ l∗ means that two loops k∗ and l∗ are neigh-

boring, and k1 is a convergence factor.

The reaction-diffusion equation of Ωl∗ composed of (39)

and (40) is defined as,

dΩl∗

dt
= − ∂

∂Ωl∗

X
l∗∈Ṽ ∗

n
U(Ωl∗) + Ud(Ωl∗)

o
. (41)

The first term of the right-hand side of (41) is a reaction

term representing the local demand of each loop, and the

second term is a diffusion term representing the coopera-

tion between the neighboring loops. Because the signals

have almost uniform oscillation frequencies, which is men-

tioned in Sec. 3.1, the second term of the right-hand side of

(41) should affect more strong than the first term. Thus,

the parameter k1 in (40) should be set at larger value than

k0 in (35) and (36).

3. 4 Dynamics of signals

Equation (41) is the equation concerned with Ωl∗ (the

oscillation frequency of the loops). We need the dynam-

ics of the frequency of the signals, i.e. the dynamics of

ωi. We describe the method for controlling the oscillation

frequency of the signals based on that of the loops.

At first, we define the set of loops that are “surround-
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ing” the node i ∈ G as,

Ṽ ∗(i) =
n

l∗ ∈ Ṽ ∗|i ∈ V (l∗)
o

. (42)

The dynamics of the signals are given as,

dωi

dt
= − ∂

∂ωi

X
i∈V

n
Υ(ωi) + Υd(ωi)

o
(43)

Υ(ωi) = ε0

(
ωi − 1

|Ṽ ∗(i)|
X

l∗∈Ṽ ∗(i)

Ωl∗

)2

, (44)

Υd(ωi) = ε1
X
j∼i

(ωi − ωj)
2, (45)

where ε0 and ε1 are the convergence factors.

Equation (44) shows that each signal moves its oscilla-

tion frequency toward the average value for the frequen-

cies of the surrounding loops. Equation (45) means that

the oscillation frequencies of the neighboring signals are

smoothed off. It is noted that the oscillation frequen-

cies of the loops are already smoothed off in (40). Since

the almost uniform value of the oscillation frequencies is

necessary for the present control method, we used the

smoothing operation twice.

4. Simulations

4. 1 Simulation environment

The environment used in this simulation is shown in

Fig. 8. There are 5 parallel roads in north and south

direction and 4 parallel ones for east and west with 20

signals. While our previous paper [3] has assumed the

squared environment i.e., all the signals have the same

distance between their neighbors, the distances between

the signals are different in Fig. 8. The automobiles come

from the outside. As for the traffic model, we use a dis-

crete model that is the same in the paper [3].

Although our previous paper [3] has assumed that the

traffic volume of each of the four directions is uniform in

all of the parallel roads (e.g., QE1 = QE2 = QE3 = QE4

in Fig. 8), the present paper does not assume it (e.g., the

arriving traffic volume from north in “Avenue 1” in Fig. 8

is different from the one in “Avenue 2”).

It is noted that Λl∗ in (30) is equal to 0 if traffic volume

of each direction is uniform in all of the parallel roads and

the environment is square, which are both assumed in [3].

In such situations, the splits of the signals will be almost

uniform over all the signals, therefore ∆ 	 0 holds in (24).

This shows that the closed-loop constraints on the offsets

will be satisfied for arbitrary frequencies of oscillations in

the case in [3].

The values of control parameters are shown in Table 1.

4. 2 Simulation results

For 0 < t ≤ 3000 (s), the frequencies of car arrival are

St.1
2

3

4

Ave.1 2 3 4 5

300m
178m

291m
163m

357m
300m

300m

300m

245m

417m

373m

QS 1 QS 2 QS 3 QS 4 QS 5

QN 1QN 2 QN 3QN 4 QN 5

QE 1

QE 2

QE 3

QE 4

QW 1

QW 2

QW 3

QW 4

Fig. 8 Simulated environment.

Table 1 Simulation parameters.

α 0.002 ε0 0.02

β 0.002 ε1 0.1

γ ω̄(i,j)/8.0 Ωmax 2π/45 (rad/s)

k0 0.0015 Ωmin 2π/240 (rad/s)

k1 0.08

set as shown in Fig. 9-(a), where “L”, “ML”, “M”, and

“S” in the figure denote the frequency of arrival, 0.383

(1/s), 0.172 (1/s), 0.138 (1/s), and 0.057 (1/s), respec-

tively. The traffic condition changes at t = 3000 (s), as

shown in Fig. 9-(a). It is noted that the inflow traffic

volumes from north and south in “Avenue 3” are turned

over at t = 3000 (s). Figure 9 also illustrates the loop with

circulating main traffic flows on the links by the symbols

“˘” and “¯”. The number of the loops with circulating

traffic flow also changes at t = 3000 (s). The behavior of

traffic signals and automobiles is calculated by the fourth

order Runge-Kutta method.

Figure 10 shows the number of automobiles existing in

the environment at time t. The proposed method is com-

pared to the following control methods,

• control of splits with a fixed frequency of oscillation

and offset (ω = 2π/120, φ = 0),

• control of splits and offsets proposed in our pre-

vious paper [3] with a fixed frequency of oscillation

(ω = 2π/120).

• control of splits and offsets in (16) with a fixed fre-

quency of oscillation (ω = 2π/120).

In Fig. 10, the present method, controlling all the three

parameters, shows the lowest number of existing automo-

biles. This shows that the present method achieves the

highest efficiency. The efficiency in the previous method

is comparable to that in the split control only. The pre-
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t < 3000 t ≥ 3000

Fig. 9 Traffic conditions at the simulation. (a) Inflow traf-

fic volumes at t < 3000 (s), where L=0.383 (1/s),

ML=0.172 (1/s), M=0.138 (1/s), S=0.057 (1/s), all of

which denote the frequencies of car arrival. (b) Inflow

volumes at t ≥ 3000 (s). The volume from the north

and that from the south in “Avenue 3” are turned over.

Symbols “˘” or “¯” indicate the loops with rotating

main traffic flows.
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Fig. 10 Simulation results of four different control methods.
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Fig. 11 Time evolutions of the mean value of Ωl∗ (frequency

of loops) and ωi (frequency of signals).

vious offset control method, therefore, is not effective in

such environments experimented here. In the case with

the present offset control method in (16) and fixed oscil-

lation frequency, the efficiency is slightly higher than that

in the split control only and that in the previous con-

trol method. New offset control method contributes to

improve the traffic efficiency.

Figure 11 shows the average values of ωi and Ωl∗ , fre-

quency of oscillation of signals and that of loops, respec-

tively. We can see that ωi follows after Ωl∗ quickly and

that both ωi and Ωl∗ shows stable behavior. The initial

value is 2π/120 = 0.524 (rad/s). At t = 600 (s), the

system’s frequency is converged to 0.0764 (rad/s). In re-

sponse to the change in traffic condition at t = 3000 (s),

the system’s frequency is enhanced, converging to 0.102

(rad/s) at t = 3700 (s).

Further we find in Fig. 10, the number of automobiles

in t < 3000 (s) is larger than that in t ≥ 3000 (s), indi-

cating that the efficiency of the former is lower than the

latter. For the traffic condition in t < 3000 (s), the loops

with circulating main traffic flows are three in number

(see Fig. 9-(a)). This means that the majority of loops do

not have solutions of the oscillation frequencies in (32).

In this case, the efficiency enhancement is not so much

as expected. In the condition for t ≥ 3000 (s), there ap-

pear six loops with circulating main traffic flows. Here a

significant improvement in the efficiency is actually seen,

indicating the effectiveness of the appropriate control of

the cycle length of the system.

5. Conclusion and future work

We have presented a decentralized method for control-

ling a large number of traffic signals. The model is ex-

tended to include the control of cycle length, along with

the control of splits and offsets, which have been presented

previously. The regulation of all the three parameters of

each signal has successfully led to the enhancement of the

efficiency of the system.

We explained the closed-loop constraint on a loop,

where the convergence of the offsets into the desired offsets

depends on the the cycle length of the signals. For this

problem, we proposed to control the cycle lengths so that

the desired offset will satisfy the closed-loop constraint.

The loop managers, corresponding the unbounded faces of

the graph one to one, have their own oscillation frequen-

cies. The loop managers are governed by the reaction-

diffusion equation on a dual graph. This method can con-

trol the cycle lengths of the signals according to the traffic

condition, keeping the uniformity as a whole.

The next task is the further extension of the model, al-

lowing for the traffic flows turning right or left, various

types of intersections, the roads with multiple lanes, and

so on. Since our model has no limitation on the degree of

each node, the present control method has the potential

for handling nodes with various degrees, along with the

4-degree nodes (i.e. crossroad intersections). Nishikawa

and Kita have proposed the extension of the offset con-

trol in [5], which is useful for us. As for the split and the



18                                                                                                                                                            

cycle length, the extension of the control method should

be developed hereafter. The endeavor along this direction

will enable us to apply the present approach to the actual

road networks.

We used 2-phase cycle as the cycle system of the signals.

In a large intersection with traffic flows turning right or

left, the signal of the intersection will need three or more

phases in a cycle. In this case, we need vector for rep-

resenting the split of a signal, instead of scalar. The dy-

namics of Hamilton system on a graph, which can handle

vector, should be developed.
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