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This paper proposes a design method for NCSs (networked control systems), where plant and controller are

linked through a serial communication network. The network has limitted capacity and control inputs and mea-

sured outputs are updated/sampled partially at each step. Assuming that the controller-plant communication is

periodic, the design problem is formulated as one for sampled-data feedback systems with periodic discrete-time

components. A necessary and sufficient condition for existence of discrete-time periodic controller is given in

terms of LMIs, and a controller construction algorithm is derived. The proposed controller (if exists) is stabilizing

and sub-optimizes the L2-induced norm of the resultant NCS.

Key Words: networked control systems, sampled-data control, H∞ control

1. Introduction

Control systems constructed through a serial commu-

nication network is called NCSs (networked control sys-

tems) 11). In comparison to conventional control system

connected in a point-to-point manner, NCSs are superior

from the following viewpoints: low cost, high reliability,

less wiring, easy maintenance and wiring, etc. Hence the

use of NCSs is now widely spreading as an implementation

method in the field of automobiles, production plants, and

airplanes.

Since the communication in NCSs is in a serial manner,

the number of sensors and actuators those can access to

the controller at a time is limited 7). The communication

constraints do not exist in a point-to-point communica-

tion, and is a particular difficulty in the design of NCSs.

Under such communication constraints, it would be nat-

ural to switch sensors/actuators that can access controller

periodically 7). A stabilization problem under the period-

ic switching is considered in References 7), 14), 15) and

a necessary and sufficient condition for the stabilization

problem and a construction algorithm of a stabilizing con-

troller are provided in References 14), 15). There is, how-

ever, no discussion on the performance of the whole sys-

tem.

The purpose of this paper is to propose a design method

of a controller which optimizes the closed-loop perfor-

mance, in addition to the internal stability, of the NCSs

with communication constraints. The closed-loop perfor-

mance will be evaluated by L2-induced norm, where we
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will treat NCSs as a special class of sampled-data feed-

back control systems. We will derive a necessary and suf-

ficient condition for the existence of the sub-optimizing

controller for a given performance level and a synthesis

procedure to construct the sub-optimizing controller.

This paper is organized as follows: Section 2 describes

the communication constraints in NCSs and formulate it

as a sampled-data systems design problem. Section 3 pro-

vides a necessary and sufficient condition in terms of LMIs

for the synthesis problem of NCSs with communication

constraints. A controller synthesis algorithm is also given.

Some numerical examples are given in Section 4. Section 5

contains some concluding remarks.

Notation: For a given matrix A ∈ R
n×m, (i) A′ de-

notes its transpose, (ii) X ∈ R
(n−r)×n satisfying XA = 0,

XX ′ > 0 is denoted by A⊥ where r := rankA. If

A ∈ R
np×nm has the following structure:

A =















A11 0 . . . 0

A21 A22

. . .
...

...
. . . 0

An1 An2 . . . Ann















, Aij ∈ R
p×m

,

we write A ∈ BLT(p, m, n). For a given positive integer

ν, the blocking 9) of a discrete-time signal x for period ν

is denoted by Bνx, namely,

(Bνx) [k] :=













x[νk]

x[νk + 1]
...

x[ν(k + 1) − 1]













.

For given systems G and H with appropriate sizes and un-

derlying time domain, the feedback connection of G and H

is denoted by G ? H supposing the well-posedness implic-
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-ator controller

Fig. 1 Networked control system

itly. For a given finite-dimensional discrete-time system

Gd with a state-space realization:
[

x[k + 1]

y[k]

]

=

[

A[k] B[k]

C[k] D[k]

][

x[k]

u[k]

]

,

we use the following packed notation:

Gd
ssr
=

[

A[k] B[k]

C[k] D[k]

]

. (1)

We also use the same notation for continuous-time sys-

tems. L2- and `2-induced norms are denoted by ‖Gc‖ and

‖Gd‖ for an L2-stable continuous-time system Gc and an

`2-stable discrete-time system, respectively.

2. Control System Synthesis with Com-

munication Constraints

2. 1 Communication Constraints in NCSs

An example of NCSs is depicted in Fig. 1. The plant

is connected to the communication network through the

sensor(s) and the actuator(s). We assume that each sen-

sors, each actuators, and the controller are independent

network nodes.

Sensors and actuators are connected to controller in a

point-to-point manner in conventional control systems,

and hence the controller can access all sensors and ac-

tuators simultaneously. There, however, exists communi-

cation constraints in NCSs, e. g., the controller can access

one of the sensor and the actuator at a time if the plant

is SISO and the network is of the bus structure.

Under such communication constraints, it would be nat-

ural to switch sensors/actuators that can access controller

periodically 7). We also deal with the communication con-

straints by the periodic input/output switching in this

paper.

2. 2 Control Systems Synthesis

In this subsection, we formulate a control systems syn-

thesis problem with communication constraints as that

for sampled-data feedback systems with periodic discrete-

time elements (Fig. 2).

In Fig. 2, Gc is a continuous-time FDLTI (finite-

dimensional linear time-invariant) system:

Gc :
ssr
=







Ac Bc1 Bc2

Cc1 Dc11 Dc12

Cc2 0 0







,

G

�zc � wc

Nd

 
 
 
 
 
 
 
 
 
 

u�H�

uc

Gc

�

yc
Sy

`
`
`
`
`
`
`
`
`
`

�

yd - Kd ud

�

Fig. 2 Sampled-data system with periodic discrete-time com-

ponents

where Dc21 = 0 and Dc22 = 0 are assumed and the as-

sumption is a necessary condition for the L2-stability of

the closed loop system. S and H are an ideal sampler and

a zero-order hold for sampling period h respectively:

S : yc 7→ y : y[k] = yc(kh),

H : u 7→ uc : uc(kh + θ) = u[k], θ ∈ [0, h).

Nd is a periodic discrete-time system with period ν repre-

senting the communication channel switching periodical-

ly:

Nd :
ssr
=







AN [k] BN1[k] BN2[k]

CN1[k] 0 DN12[k]

CN2[k] DN21[k] 0







, (2)







AN [k] BN1[k] BN2[k]

CN1[k] 0 DN12[k]

CN2[k] DN21[k] 0







=







AN [k + ν] BN1[k + ν] BN2[k + ν]

CN1[k + ν] 0 DN12[k + ν]

CN2[k + ν] DN21[k + ν] 0







.

Kd is a discrete-time controller to be designed.

Example 1. Consider the case when the following

three conditions hold: (i) the plant is SISO, (ii) the net-

work capacity is 1, and (iii) yd and ud are updated by

tern. In the case ν = 2 and yd and u are given by

yd[k] =

{

y[k] k = 0, 2, 4, . . . ,

y[k − 1] k = 1, 3, 5, . . .

u[k] =

{

ud[k − 1] k = 0, 2, 4, . . . ,

ud[k] k = 1, 3, 5, . . .
.

Consequently this case can be represented in the frame-

work of Fig. 2 by setting
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Nd
ssr
=













































0 1 0

1 0 0

0 1 0







k = 0, 2, 4, . . . ,







0 0 1

0 0 1

1 0 0







k = 1, 3, 5, . . .

.

Remark 1. The number of sensors/actuators those

the controller Kd can access at time k is given by

rank

[

0 DN12[k]

DN21[k] 0

]

.

In this paper, the following control system synthesis

problem is considered(1):

Problem 1. For a given G and Nd, find a controller

Kd satisfying

(i) G ? Nd ? Kd is internally stable, and

(ii) ‖G ? Nd ? Kd‖ < 1, where

G :=

[

I 0

0 S

]

Gc

[

I 0

0 H

]

. (3)

Remark 2. A design procedure of Kd satisfying the

specification (i) is found in 14), 15).

2. 3 Reductions of Specifications

The following lemma is standard in the sampled-data

control theory 1):

Lemma 1. Suppose that G ? Nd ? Kd is internally sta-

ble.

‖G ? Nd ? Kd‖ ≥ ‖D11‖

where

(D11w)(θ) := Cc1

∫ θ

0

eAc(θ−τ)
Bc1w(τ ) dτ + Dc11w(θ).

This is a direct consequence of the fact that D11 is the

restriction of G ? Nd ? Kd on [0, h].

Hence the following assumption is a necessary condition

to satisfy the specification above:

Assumption 1. For a given G in (3), the following

holds:

‖D11‖ < 1. (4)

Under Assumption 1, we get the following lem-

ma:

Lemma 2. For given G satisfying Assumption 1, Nd,

and Kd, define G∞ by an H∞ norm bound preserving

discrete-time system for G given in 1). The following s-

tatements are equivalent:

(i) G ? Nd ? Kd is internally stable and

‖G ? Nd ? Kd‖ < 1.

(1) Other difficulities in the design of NCSs such that the

random time-delay are ignored in this paper.

(ii) Gd ? Kd is internally stable and ‖Gd ? Kd‖ < 1,

where

Gd := G∞ ? Nd. (5)

(iii) G̃d ? K̃d is internally stable and
∥

∥G̃d ? K̃d

∥

∥ < 1,

where

G̃d :=

[

Bν 0

0 Bν

]

Gd

[

B−1
ν 0

0 B−1
ν

]

, (6)

K̃d := BνKdB
−1
ν . (7)

Proof: The equivalence between (i) and (ii) is a straight-

forward extension of 1), while the equivalent between (ii)

and (iii) is trivial since the blocking is isometric (Proper-

ty 1 in Appendix B).

Remark 3. Gd is ν-periodic, and hence no conser-

vatism is introduced if we restrict Kd to ν-periodic sys-

tems 2).

Remark 4. Suppose that Kd is ν-periodic. Both G̃d

and K̃d are time-invariant (Property 2 in Appendix B).

Note also that the ‘D’-matrix of K̃d must have a certain

structure (Property 3 in Appendix B).

3. Main Results: LMI-Based Design of

NCSs

In this section, a solution to the design problem formu-

lated in the previous section will be given.

Let a state-space form of G̃d is given by

G̃d
ssr
=:







A B1 B2

C1 D11 D12

C2 D21 D22







. (8)

Let also sizes of A and D11 be denoted by n×n and π×µ

respectively. The following theorems give a solution to

Problem 1:

Theorem 1. For given G satisfying Assumption 1 and

Nd, Problem 1 has a solution if and only if there exist

X = X ′ ∈ R
n×n, Y = Y ′ ∈ R

n×n, and Z ∈ BLT(m, p, ν)

satisfying (9)—(12):

B̌
⊥

(

ǍX̌µǍ
′ − X̌π

) (

B̌
⊥
)′

< 0, (9)

(

Č
′
)⊥ (

Ǎ
′
Y̌πǍ − Y̌µ

)

(

(

Č
′
)⊥

)′

< 0, (10)

[

X I

I Y

]

> 0, (11)

∆ :=

[

X̌π −(Ǎ + B̌ZČ)

−(Ǎ + B̌ZČ)′ Y̌µ

]

> 0. (12)

where

Ǎ :=

[

A B1

C1 D11

]

, B̌ :=

[

B2

D12

]

, Č :=
[

C2 D21

]

,
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X̌q :=

[

X 0

0 Iq

]

, Y̌q :=

[

Y 0

0 Iq

]

.

Theorem 2. Suppose that Problem 1 has a solution.

We can construct a solution Kd by the following proce-

dure:

Step 1: Determine X = X ′ ∈ R
n×n, Y = Y ′ ∈ R

n×n,

and Z ∈ BLT(m, p, ν) by solving (9)—(12).

Step 2: Determine K̄d by

K̄d :
ssr
=

[

AK BK

CK Z

]

(13)

where

AK := −R−1 (Y B2ΘC + Θ′
BC2X + Y (A − B2ZC2)X

+
[

−I′
π I′

πY̌πǍ + Θ′
BČ

]

∆−1

×

[

ǍX̌µIµ + B̌ΘC

−Iµ

])

(Q′)
−1

,

BK := R
−1(−Y B2Z + Θ′

B),

CK := (−ZC2X + ΘC)
(

Q
′
)−1

,

I − XY =: QR
′
,

ΘB :=
[

Iνp 0

]









0νp

[

0 Č

]

[

0

Č′

]

−∆









†






0νp,n

Iµ

−Ǎ′Y̌πIπ







,

ΘC :=
[

Iνm 0

]









0νm

[

B̌′ 0

]

[

B̌

0

]

−∆









†






0νm,n

−ǍX̌µIµ

Iπ







,

Iq :=
[

In 0n,q

]′

.

Step 3: Determine K̃d by

K̃d := (−D22) ?

[

I

I

]

K̄d

[

I I

]

(14)

ssr
=

[

AK − BKR̃−1D22CK BKR̃−1

(I + ZD22)
−1CK ZR̃−1

]

,

where R̃ := I + D22Z.

Step 4: Determine Kd by

Kd := B−1
ν K̃dBν .

Proof: See Appendix A.

Remark 5. A solution Kd to Problem 1 constructed

in Theorem 2 is ν-periodic.

Remark 6. Problem 1 might not have a solution

even if the H∞ control problem for G̃d has a solution. We

can find a similar situation in the multirate H∞ problem

(e. g. 4), 10), 12)). In fact, we can apply solutions for the

multirate H∞ problem to Problem 1. Theorem 1 is a spe-

cialized alternative solution providing a new LMI-based

formula. We also note that LMIs in Theorem 1 contain

less LMI-variables in compare to LMIs in 10) when n is

large and ν is small.

4. Numerical Examples

Consider a system in Fig. 2 with

Gc =

[

W1 0

0 I2

]

Pc +

[

0 W2

0 0

]

,

Pc :
ssr
=

















1 1 2 0 1

1 1 1 1 0

0 1 0 0 0

−1 1 0 0 0

1 0 0 0 0

















where p = m = 2. W1 and W2 are determined by the

following transfer functions:

Ŵ1(s) =
s

s + 1
, Ŵ2(s) =

0.1s

s + 1

[

1 1

]

.

Let the sampling period be chosen to h = 0.1 and the net-

work capacity be γ = 3. We further assume that Kd can

access 2 actuators simultaneously, namely, we consider Nd

having the following form:

Nd =

[

0 I2

Ny 0

]

.

We compare the following design methods:

Method 0 Ny = I2 (no communication constraint)

Method 1a Ny =
[

I 0

]

(no communication con-

straint, the second sensor is ignored.)

Method 1b Ny =
[

0 I

]

(no communication con-

straint, the first sensor is ignored.)

Method 2 Determine Ny by

yd[k] =























[

y1[k]

y2[k − 1]

]

; (k : even),

[

y1[k − 1]

y2[k]

]

; (k : odd)

and solve Problem 1 to determine Kd.

Method 3 Determine Ny by

yd[k] =























[

y1[k] + y2[k]

y1[k − 1] + y2[k − 1]

]

; (k : even),

[

y1[k − 1] + y2[k − 1]

y1[k] + y2[k]

]

; (k : odd)

and solve Problem 1 to determine Kd.

Method 4 Determine Ny by

yd[k] =























[

y1[k] + 1.5y2[k]

y1[k − 1] + y2[k − 1]

]

; (k : even),

[

y1[k − 1] + 1.5y2[k − 1]

y1[k] + y2[k]

]

; (k : odd)
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Table 1 Performance of resultant system

L2-induced norm

Method 0 0.07

Method 1a unstable

Method 1b 0.7

Method 2 0.18

Method 3 0.13

Method 4 0.09

proposed (Method 2)

existing (Method 1b)

0 10 20
time [s]

1

0

−1

output

Fig. 3 Sinusoid response

and solve Problem 1 to determine Kd.

The achieved values of the L2-induced norm by apply-

ing the design method are summarized in Table 1. Note

that the value for Method 0 will be the limits of perfor-

mance of the NCSs with communication constraints. We

can observe that the resultant performance of Method 2

is closer to the limit of the performance, in comparison to

those by Methods 1a and 1b. Time responses of resultant

systems of Methods 1b and 2 for sinusoid disturbance at

5 [rad/sec] are depicted in Fig. 3.

We also note that we can further optimizes the perfor-

mance by properly choosing the sensors and/or actuators.

In this example, more than 30% performance improve-

ment has been achieved by Method 4, where we compare

between Cases 2 and 4.

5. Concluding Remarks

In this paper, a design problem for NCSs has been con-

sidered. The network has limitted capacity and control in-

puts and measured outputs are updated/sampled partial-

ly at each step. Assuming that the controller-plant com-

munication is periodic, the design problem is formulated

as one for sampled-data feedback systems with periodic

discrete-time components. A necessary and sufficient con-

dition for existence of discrete-time periodic controller has

been given in terms of LMIs, and a controller construction

algorithm has been derived. The proposed controller (if

exists) stabilizes and sub-optimizes the L2-induced norm

of the resultant NCSs.

Appendix A. Proof of Theorems 1 and 2

Denote the ‘D’-matrix of a state-space system P by

D(P ). Invoking Lemma 2 and Property 3, Problem 1 has

a solution if and only if there exists a stabilizing controller

K̃d satisfying

(i)
∥

∥G̃d ? K̃d

∥

∥ < 1.

(ii) D(K̃d) ∈ BLT(p, m, ν).

supposing Assumption 1. Noting that the ‘D22’-matrix of

Nd is zero, and D22 in (8) satisfies

D22 ∈ BLT(p, m, ν)

and the diagonal blocks of D22 are all zero (See Proper-

ty 2), we have the following lemma:

Lemma 3. Suppose Assumption 1 holds. Problem 1

has a solution if and only if there exists a stabilizing con-

troller K̄d satisfying the following specifications:

(i)
∥

∥Ḡd ? K̄d

∥

∥ < 1.

(ii) D(K̄d) ∈ BLT(m, p, ν).

where

Ḡd := G̃d −

[

0 0

0 D22

]

.

More over if a solution exists, K̃d is given by (15).

Proof: Note that I − D(K̄d)D22 is invertible and

(I − D(K̄d)D22)
−1 ∈ BLT(m, m, ν).

Lemma 3 directly follows.

Hence we will consider the synthesis problem of a sta-

bilizing controller K̄d satisfying the specifications (i), (ii)

in Lemma 3 in the sequel. It is well-known that there

exists a stabilizing controller satisfying (i) if and only if

there exists X = X ′ ∈ R
n×n and Y = Y ′ ∈ R

n×n satis-

fying (9) – (11) (See e.g., 6) and references therein). The

following lemma 6) provides an H∞ controller synthesis

procedure:

Lemma 4. For given Ḡd, a stabilizing controller K̄d

satisfying (i) of Lemma 3 is obtained (if exists) by the

following steps:

Step 1: Find X = X ′ ∈ R
n×n and Y = Y ′ ∈ R

n×n

satisfying (9) – (11).

Step 2: Find Z ∈ R
νm×νp satisfying (12).

Step 3: Determine K̄d by (13).

Noting that Steps 2 and 3 are independent, and D(K̄d) =

Z, K̄d satisfies (ii) of Lemma 3 if we put an additional

constraint Z ∈ BLT(m, p, ν) in Step 2 of Lemma 4. Con-

versely, if such Z does not exist, there is not K̄d satisfying

(ii) of Lemma 3. This completes the proof.
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Appendix B. Blocking Related Properties

In this appendix, some properties related to the block-

ing technique are introduced without proofs. Proofs are

found in literature.

Property 1. For a given discrete-time signal x ∈ `2,

‖x‖2 = ‖Bνx‖2.

Property 2. For a given ν-periodic discrete-time sys-

tem Pd:

Pd :
ssr
=

[

A[k] B[k]

C[k] D[k]

]

,

[

A[k + ν] B[k + ν]

C[k + ν] D[k + ν]

]

=

[

A[k] B[k]

C[k] D[k]

]

, k = 0, 1, 2, . . . ,

BνPdB
−1
ν is time-invariant:

BνPdB
−1
ν

ssr
=

[

Ã B̃

C̃ D̃

]

,

Ã :=

ν−1
∏

i=0

A[i],

B̃ :=

[

ν−2
∏

i=0

A[i]B[0] · · · A[ν − 2]B[ν − 2] B[ν − 1]

]

,

C̃ :=



















C[0]

C[1]A[0]

...

C[ν − 1]

ν−2
∏

i=0

A[i]



















,

D̃ :=



















D[0] 0 · · · 0

C[1]B[0] D[1]
...

...
. . . 0

C[ν − 1]

ν−2
∏

i=1

A[i]B[0] · · · · · · D[ν − 1]



















.

Property 3. For a given νm-input νp-output FDLTI

discrete-time system P̃d, Pd := B−1
ν P̃dBν is ν-periodic.

Moreover Pd is causal if and only if

D(P̃d) ∈ BLT(p, m, ν),

where D(·) denotes the ‘D’-matrix in the state-space rep-

resentation.
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