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Robust Receding Horizon Control for Hybrid Systems based on

Constrained Positively Invariant Sets

Masakazu MUKATI*, Takehito AZUMA* and Masayuki FUJITA*

This paper presents a robust receding horizon control algorithm for a class of hybrid systems by exploiting
the equivalence between piecewise linear systems and mixed logical dynamical systems. The control algorithm
consists of two control modes which are a state feedback mode and a receding horizon control mode. In the
receding horizon control mode, the constrained positively invariant sets are used for a terminal constraint. This

control algorithm guarantees that the state converges to a union of constrained positively invariant sets with no
constraint violation. An illustrative example is presented to show that the control algorithm satisfies the stability

and constraints.
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1. Introduction

In recent years, receding horizon control (model pre-
dictive control) has attracted the attention of researchers
in not only the field of process control, but also the field
of robotics and aerospace. Furthermore, robust control
problems have been studied for receding horizon con-
trol V. Tt is well known that, in the practical applica-
tions, physical bounds on the state and control input are
present, so the control law is required to guarantee that
the closed-loop system fulfills these constraints. The re-
ceding horizon control strategy optimizes an open-loop
control sequence at each time, to minimize an objective
function subject to some state and input constraints. For
these problems terminal constraints play important role in
stabilization problems?. In 3) feedback min-max model
predictive control for linear time invariant discrete-time
systems is presented. This control algorithm is effective
for the bounded disturbance case. On the other hand, hy-
brid systems arise in a large number of application areas,
and are attracting increasing attention in both academic

4,5 Bem-

theory-oriented circles as well as in industry
porad et al. have proposed a new class of hybrid systems
called Mixed Logical Dynamical (MLD) systems®. Tt is
capable to model a broad class of systems: linear hybrid
dynamical systems, hybrid automata, some class of dis-

crete event systems, linear systems with constraints, etc.
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Further in 9) equivalences among some classes of hybrid
systems are established. Bemporad et al. have proposed
receding horizon control algorithm for mixed logical dy-
namical systems named Mixed Integer Predictive Control
(MIPC) law ® and have proved that it stabilizes MLD sys-
tems to the equilibrium state or the desired reference tra-
jectory. However when disturbances or model mismatch
are present, closed-loop performance can be poor with
likely violations of the constraints and no convergence can
be guaranteed. Feedback min-max model predictive con-
trol for hybrid systems is considered, however it is not easy
to extend the algorithm in 3). Since the system formu-
lation is restricted to linear time invariant discrete-time
systems, the control can not deal with hybrid systems di-
rectly and a method to construct the end set constraint
is not given clearly. Furthermore, robust receding hori-
zon control for hybrid systems has been researched and
some formulations which address these issue have been
proposed. However it is not clear how to construct the
terminal constraints.

In this paper, we take into account the effects of un-
known bounded disturbances and propose a robust re-
ceding horizon control algorithm for piecewise linear sys-
tems. It is based on feedback min-max model predictive
control®, but in the control algorithm we employ the
equivalence of piecewise linear systems and MLD systems
and propose the end set constraint that consists of con-

strained positively invariant sets 10), 14)

Switching control
using constrained positively invariant set is also reported
in 13). This control law guarantees convergence to the
set and satisfying the constraints for unknown bounded
disturbance. A simple example is shown to illustrate the

effects of the control law.
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The reminder of this paper is organized as follows. Sec-
tion 2 describes the problem formulation and constrained
positively invariant sets. In section 3 we propose a robust
receding horizon control procedure for piecewise linear
systems that solves a min-max type optimization prob-
lem. Section 4 shows an illustrative example of the simu-
lation result when the control procedure is applied. Sec-

tion 5 describes a conclusion of our research.
2. System Representation

2.1 Piecewise Linear Systems with Distur-
bance
In this paper, piecewise linear systems with disturbance

are described by the following equation (1),
r(t+1)=A'z(t) + B'u(t)+Byw(t) z(t) € X; (1)

where z(t) € R" is the state, u(t) € R™ is the input, X;
is the partition of the state set that satisfies X; N X; = 0
and Vi # j, Ui_;X; = X and we assume that (A°, BY)
is controllable. The vector w(t) € W C R’ is an un-
known bounded disturbance and the set W is convex and
contains the origin. In addition the system is subject to
constraints on either or both the states and the control
inputs i.e. z(t) € X, u(t) € U, Vi € N. We assume X
and U are convex polyhedral. Consider the output to be

constrained
ye(t) = Cx(t) + Du(t) + Dww(t). (2)

By an appropriate choice of matrix C, D and a set Y, all

constraint defined in this paper can be summarized by
ye(t) €Y. ®3)

Assume that the set Y is convex and contains the origin.

2.2 The Mixed Logical Dynamical Form of
Piecewise Linear Systems

Here the mixed logical dynamical form ) which is

equivalent to piecewise linear systems is introduced. Con-

sider the following general piecewise linear system

x(t+1) = A'z(t) + B'u(t) for z(t) € X; 4)
y(t) = Ciz(t) + Diu(t) (5)

where z(t) € R" is the state, u(t) € R™ is the input, X;
is a partition of the state set that satisfies X; N AX; = 0
and Vi # j, U1 X; = X and we assume that (A%, BY)
is controllable. Piecewise affine systems are described by

the state space equations

z(t + 1)=A'z(t) + B'u(t) + fi
y(t)=Ciz(t) + g:

(t)

]

] € X;(6)
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Since f;, g; can be thought as generated by integrators
with no input, the piecewise linear system and the piece-
wise affine system are equivalent. The piecewise affine
system (6) can be transformed into mixed logical dynam-
ical systems formulation®. And it also is reported that
Mixed Logical Dynamical systems are formally equiva-
lent to piecewise affine systems®. The key idea of mixed
logical dynamical systems is technique that can transform
into propositional logic into mixed integer inequalities, i.e.
inequalities involving both continuous and 0-1 variables.

The general mixed logical dynamical form %) is:

z(t + 1) = Az(t)+ Biu(t)+ B2 (t) + Baz(t) (7a)
Ex0(t)+E3z(t) < Ewu(t)+Eswx(t)+Es (7b)

where

8
Il

T
|: ],zCER”C,xlE{O,l}"’,n:znc—f-m
x

uc m m
u=|: ],uCER “ur € {0,1}™ m = me + my
uy

is the state of the system, whose components are distin-
guished between continuous z. and 0-1 z;, is the command
input. 6 € {0,1}" and z € R represent respectively
auxiliary logical and continuous variables.

The piecewise linear system (1) can be transformed
mixed logical dynamical system formulation. The mixed

logical dynamical systems form is

z(t+1)=Az(t)+ Bu(t)+ B2 (t)+ Bsz(t) + Bpw(t) (8a)
E20(t)+ Esz(t) < Ewu(t)+ Eax(t)+ E5(8b)

Assume that system (8) is completely well-posed %) which
in words means that for all x, u, w within a bounded
set the variables §, z are uniquely determined, i.e. there
exist functions F', G such that, at each time ¢, 6(t) =
F(z(t),u(t), w(t)), 2(t) = G(z(t), u(t), w(t)).

A robust receding horizon control algorithm for the hy-
brid systems by exploiting the equivalence between piece-
wise linear systems and mixed logical dynamical systems.
A description language HYSDEL (HYbrid Systems DE-

12) is proposed. In this paper, we

scription Language)
assume that the equivalent representations is obtained by

using HYSDEL 2.

3. Robust Receding Horizon Control Algo-

rithm

3.1 Control Laws
Since the state can not be steered to the origin due to
existing disturbance w(t), the control objective is to drive

the state of the system to the set that is constructed by
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invariant sets. In this paper, we propose 2 modes for the
control law by using two system representations (1), (8).
mode-1: The control law is set as u = K;x for the system
(1).

mode-2: Here [ € £ denotes indexes of possible distur-
bance. At time ¢, predictions for possible disturbance
are represented by {w'(j|t)}, and {u'(j|t)} denotes the
input sequence for a disturbance realization I. {z'(j|t)},
{6'(j|t)} are similarly defined respectively.

z'(j + 1|t) is defined as follows

o (k+1t) = Az’ (k|t)+ Biu' (k|t)
+Bod' (k|t)+ Bsz' (k|t) + Byw' (k|t) (9a)
Eob' (k|t)+ Esz' (k|t) <
B (k|t)+Esx' (k|t)+Es 1 € L (9b)

At current time ¢, let z(t) be the current state. Consider

the following optimal control problem (10),
L(x' (k|t), u' (k[£Y1L0)

(2! (N|t) € P
' (k + 1)t) = Az'(k|t) + Biu!(t)
+ B8 (k|t) + Bsz' (k|t) + Byw' (k|t)
Eo8' (k|t) + Esz' (k|t)
< Evu! (t) + Eaz' (k|t) + Es
lyc(t) €Y

subject to

where N is predictive horizon and Q1 = Q) > 0, Q2 =
Q5 > 0 are weighting matrices respectively. For the sake
of simplicity we define z(k|t) := z(t + k, z(t),ur ") and
S(K|t), z(k|t) are defined similarly. z(N|t)! € P denotes
an end set constraint. It is assumed that L is a convex

function and

I { 0 z €P (11)
L(z,u) > a(d(z,P)) z¢P

where a(-) is a K-function and d(z,P) denotes the dis-
tance between x and the set P.

At each time step, solve the optimization problem (10).
Assume that the optimal solution U/ exists. Let the opti-

mal control sequence be
UY M) == {a(0]t), ..., a(N —1]t)}.

Then the actual control applied at time ¢ is the first ele-
ment of this sequence i.e. u(t) = @(0|t). Because of the
linearity of the system (9) and convexity of the constraints
and cost, we consider only the extreme disturbance real-
ization. We show the optimal problem considering only
extreme disturbance realization leads to a stabilizing con-

trol law that satisfies the constraints for all disturbance
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realizations that lie inside the convex hull of the realiza-
tions considered in the optimization. Here, assume that
W C R" is polyhedron. The disturbances that take values
of vertices of the convex set W are considered.

Then let £, denote the set of indexes [, such that possi-
ble realizations of the disturbance take the values on the
vertices of W. Then the optimization problem (10) are re-
placed by the following problem (12), which can be solved

by finite optimizations.

2

min max J(U ', z(t)) =

(oM e L(z' (k[t), u' (k[t))12)

0

S
Il

(' (N|t) € P
o' (k + 1]t) = Az' (k|t) + Biu'(t)
+By6! (k|t) + Bsz' (k|t) + Bpw'(k|t)
Eq68' (k|t) + Es2' (k|t)
< Evul(t) + Eax' (K|t) + Es
lyc(t) €Y

subject to

Predictive variables can be represented as follows.

x(k|t):A’“x(t)+z_:Ai[Blu(k—1—i|t) + Bod(k—1—ilt)

+ B3z (k—1—i|t)+ Byw(k—1—ilt)] (13)

By plugging (13) into (12), and by defining the vectors

[ «'(0) s'(o[t)
Q= : A= )
lu! (T—1) Y (T—1]t)
2 (0[t) w' (0]¢)
glh= : , = : Ve L, (14)
| 2H(T—1]t) w'(T—1|t)

we obtain the following formulation of the optimization
problem that is equivalent to (12). Assume that the set
‘P is polytope.

,

Q! Q! Q!
. Al Al , Al
min max S1 + 2(S2 + 2'(t)Ss)
Q,AEleL, |= =l =l
rt rt rt
(15)
o
Al
subject to F < F> + Fx(t)

1]

1
\ _FJ

where S;, F;,i = 1,2, 3 are suitably defined.

3.2 End Set Constraint

In this section, we explain how to construct the end set
P. Consider the control input v = K;z for the system (1)

then the system can be rewritten as
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z(t+1) = (A + B°K,)z(t) + Buow(t) (16)
ye(t) = (C + DKi)z(t) + Duww(t) (17)

Maximal constrained positively invariant set for the sys-
tem (16) in the set 7 is defined as O; (see Appendix
Appendix A). Next we define a set that is used for an end

set constraint of receding horizon control as
P = N1 Ocoi. (18)

Maximal constrained positively invariant set O.; can be
obtained by the recursive process proposed in 10),14).
Notice that we have to design so that the set P is not
empty (.

3.3 Control Algorithm

We propose a robust receding horizon control algo-
rithm for the piecewise linear systems (1) with distur-
bance w(t) € W as follows.

Algorithm 1: Data: z(t)

Algorithm: IF z(t) € P THEN (mode-1) u(t) = K;z(t).
ELSE (mode-2) Solve the optimal control problem
(10) for the system (8), and set u(t) to the first
element of the optimal input sequence. O

Theorem 1. Assume that the optimal control prob-
lem (10) has feasible solutions. The control for the system

(1) given by Algorithm 1 satisfies the constraints (3) and

drives the state z(t) to the set Ui—; Ouo;i .

Proof: At time ¢, state z(t), let {w'(j|t)}, [ € £ denote
the optimal control sequences that respond to disturbance
realizations {@'(j|t)}. Let {z'(j|t)} and J'(U!*,z(t)) de-
note the state trajectories and the costs for the case of a
disturbance realization I. The optimal cost is defined as

V() = max J'(t) (19)

At time ¢, the first element of the optimal sequence is

applied, and disturbance takes a certain value w(t). The

set of indexes such that w'(t|t) = w(t), VI € L1 and
w'(t|t) # w(t), VI & L1 as L1 is defined. At time t+1, the
state z(t+ 1) has moved along a trajectory that coincides

with the predicted state trajectories indexed by | € L.

Consider the optimal sequence defined as U; = {@'(k +

1), @'(k +2Jt), ---, @'(k+ N —1Jt), K;z(k+ N[t)'},

Vil € Li. Then we obtain the following inequality.

Vit +1) < J U, 2(t+ 1)) (20)

Using the relations &' (k+1|t) = &' (k|t+1) and 2! (k+1[t) =

(1) One possible way to satisfy the requirement is setting
the gain K; value so that (A* + B*K;) = 0. It makes the
state z(t + 1) = By w(t), w € W then it is possible to con-
struct the CPI sets. Since the set W includes the origin, the
end set P is obtained by design the gains.
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2 (k|t + 1), VI € L the inequality (20) is represented as
VI(t) = L(x(t), u(t)) + Lz (N]t),u' (N]).  (21)

From the definition of L an end set constraint ziHN“ eP

provides L(z'(t+ N|t),u' (t + N|t)) = 0, and consequently
Vit +1) S V'(#) = L(x(t), ul?))- (22)

Let V(t 4+ 1) denote the optimal cost at time ¢ + 1, then

we obtain
V(i +1) < max VI(t) — L(z(t), u'(¢)). (23)
Since maxjez, V'(t) < maxies V() = V(t), we obtain
V(t+1) < V(t) — L(z(t), u(t)). (24)

The cost is monotonically nonincreasing. As it is bounded
below by zero, it must consequently converge to a constant
value, so that V(t) — V(t+1) — 0 as t — co. From (24),
we have L(z(t),u(t)) < V(t) = V(t+1) and it follows that

L(z(t),u(t)) — 0 as t = oco. In view of Assumption 1,

we conclude that d(z(t),P) — 0, as t = co. Hence the

state converges to P. Further when the state in the set

‘P, the control law changes to u = K;z. Consequently the

control algorithm satisfies the constraints and drives the

state in U;_; O;. [

Theorem 1 is guarantees that the state of the system
can be steered to the set U;—; Ow: with no constraint vi-
olation. The set O; depends on the design of feedback
gain K;, X and U. If we consider PWA system of a single
region, the control algorithm corresponds to the algorithm
for a linear system. Thus Theorem 1 includes the theorem
1in 3) as a special case. It is difficult, however, to ob-
tain the optimal solution of the optimal control problem
(10) since I € L has infinite canditates. Algorithm 1 is
extended to the following.

Algorithm 2: Data: z(t)

Algorithm: IF z(t) € P THEN (mode-1) u(t) = K;z(t).
ELSE (mode-2) Solve the optimal control problem
(12) for the system (8), and set u(t) to the first
element of the optimal input sequence. O

Theorem 2. Assume that the optimal control prob-
lem (12) has feasible solutions. The control for the system

(1) given by Algorithm 2 satisfies the constraints (3) and

drives the state z(t) to the set Ui—; Ouo;.

Proof: From the assumptions the constraints (3) are
satisfied. Since L is convex, we can proof in a similar way
of the proof of Theorem 1. 0

Theorem 2 is also guarantees that the state of the sys-

tem can be steered to the set U;_; Qi with no constraint
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violation. The set Oooi is depend on the design of feed-
back gain K;, X and U. Theorem 2 is also extension of
the theorem 2 in 3).

In Algorithm 2 the control mode 1 is mode for keeping
the state in the set P and mode 2 is mode for steering the
state to the set P. According to the each gain K;, the con-
straint sets X and U, the maximal constrained positively
invariant set Ooo; is designed. Then we can construct the
end set as U;_; Ox;. The P can be obtained by the way
(footnote 1). The feasibility of Algorithm 2 depends on
the set P and the feasibility of the optimization prob-
lem in mode-2. If the optimization problem in mode-2 is
not feasible, it is necessary to make the horizon longer,
the end set P larger or to tune weighting matrices. How-
ever, the computation of the algorithm is demanding since
mode 2 solves the min-max optimization problem each
time steps. The optimization problem is solved as mixed
integer quadratic programming (MIQP). For MIQP some
computational algorithms are proposed and available e.g.
branch and bound method.

Then the proposed procedure is summarized as follows.
(1) Set the feedback gain K; for each region i.
(2) Calculate the maximal constrained positively in-

variant set Oo; for each region i.

(3) Let Nj—;Oxi be the end set constraint P.
(4) Set horizon N and weight matrices Qs, s =1, 2.
(5) Algorithm .

4. Illustrative Example

We consider the following simple system:

__|cosa(t) —sina(t) 0 0
$(t+1)_0.8|:sina(t) cos alt) :|x(t)+|:1 u(t)+ ) w(;‘;
o) = T [1 0Ja(t)>0 (25)

Sl - it [1 o0zt <o.

This system has constraints z(t) € [—10,10] x [-10, 10],
u(t) € [—2,2]. The disturbance w(t) is assumed to be
w(t) € [-0.2,0.2]. Hence, the output to be constrained Y

is defined as

([ [-10] [07] [10]
0 -1 0 10
10| |z 0 10
Y:= (¢ z| + u < (26)
0 1] |z 0 10
00 -1 2
[ L0 0] [ 1] _2JJ

Consider the state feedback u(t) = Kiz(t) if the state of
the system is in A7 and wu(t) = Kax(t) if it is in A», and

calculate the constrained positively invariant sets Ooo1
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and Oz for each closed loop system. The sets O1 and

Oz obtained from
K =[-12 —06], K»=[06 —1.2] (27)

are shown in Fig. 1. Then we define the set that are used
for the end set constraint of receding horizon control as
P = Oc1 N Oco2. The set P is represented by a gray

region in Fig. 1.

-10 5 0 5 10
X

Fig.1 Sets Oco1 and Oco2

IR

. B

O o 1U0O ooy
-5
-10
-10 -5 0 5 10
X

s
Fig.2 State trajectory

. 20 ‘ 30
time t
Fig.3 State response (solid line: z1, dashed line: x»)

0 ‘ 10 ,‘ 20 ‘ 30
time t
Fig.4 Input response

Transform PWA system (25) into the corresponding
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MLD system (see Appendix Appendix B). L is defined

as follows,

L(z,u) = { 0 @€P) o)
eI, + kG, (= ¢P).

The control law given by Algorithm 2 is adapted along
with the predictive horizon N = 3, a terminal constraint
z(N|t) € P and weights Q1 = 10I, Q> = 1. In Fig. 2-4,
we show the resulting trajectories obtained with z(0) =
[—8 4] and w(t) = 0.2/t, t > 1. Fig. 3 shows the state,
which has the constraint z(¢) € [—10,10] x [—10, 10] and
Fig. 4 shows the constrained control input u(t) € [-2,2].
Finally we find that in spite of the disturbance the con-
trol law given by Algorithm 1 drives the state to the set

O1 U O allowing no constraint violations.
5. Conclusion

In this paper we have proposed robust receding hori-
zon control algorithm for piecewise linear systems. The
robust receding horizon control has been implemented by
solving a min— max type optimization problem employ-
ing mixed logical dynamical form with an end set con-
straint that have consisted of constrained positively in-
variant sets. Proposed control algorithm has guaranteed
convergence to the set and no constraint violations. A
simple example has been shown to illustrate the effects of
the procedure. However, in the proposed algorithm the
computation of the algorithm is demanding since mode 2
solves the min-max optimization problem each time steps.
If we control the system on-line, it is hoped that the com-

putation is improved.
References

1) A. Bemporad and M. Morari: Robust Model Predictive
Control: A Survey, in Robustness in Identification and
Control, A. Garulli, A. Tesi and A. Vicino (Eds.), Lecture
Notes in Control and Information Sciences, vol. 245, pp.
207-226, Springer-Verlag, 1999.

2) D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M.
Scokaert: Constrained Model Predictive Contrl: Stablility
and Optimality, Automatica, vol. 36, no. 6, pp. 790-814,
2000.

3) P. O. M. Scokaert and D. Q. Mayne: Min-Max Feedback
Model Predictive Control for Constrained Linear Systems,
IEEE Trans. Automat. Contr., vol. 43, no. 8, pp. 1136—
1142, 1998.

4) R.Izadi-Zamanabadi, P. Amann, M. Blanke, V. Cocquem-
pot, G.L. Gissinger, E.C. Kerrigan, T. F. Lootsma, J.M.
Perronne, and G. Schreier: Ship Propulsion Control and
Reconfiguration, in K. J. Astrom e.a. (Eds.), Control of
Complez Systems, Springer-Verlag, 2000.

5) E.C. Kerrigan, A. Bemporad, D. Mignone, M. Morari and
J. M. Maciejowski: Multi-objective Prioritisation and Re-
configuration for the Control of Constrained Hybrid Sys-
tems, Proc. of the 2000 American Control Conference, pp.

No.1 January 2004

1694-1698, 2000.

6) A.Bemporad and M. Morari: Control of Systems Integrat-
ing Logic, Dynamics,and Constraints, Automatica, vol. 35,
no. 3, pp. 407-427, 1999.

7) B. De Schutter and T. van den Boom: Model Predictive
Control for Max-Puls-Linear Discrete Event Systems, Au-
tomatica, vol. 37, no. 7, pp. 1049-1056, 2001.

8) A.Bemporad, G. Ferrari-Trecate, and M. Morari: Observ-
ability and Controllability of Piecewise Affine and Hybrid
Systems, IEEE Trans. on Automatic Control, vol. 45, no.
10, pp. 1864—1876, 2000.

9) W. P. M. H. Heemels, B. De Schutter, and A. Bempo-
rad: Equivalence of Hybrid Dynamical Models, Automat-
ica, vol. 37, no. 7, pp. 1085-1091, 2001.

10) K. Hirata and M. Fujita: Analysis of Conditions for non-
violation of Constraints on Linear Discrete-time Systems
with Exogenous Inputs, Proc. of the 36th IEEE Confer-
ence on Decision and Control, pp. 1477-1478, 1997.

11) K. Hirata and M. Fujita: Analysis of Conditions for Non-
Violation of Constraints on Linear Discrete-Time Systems
with Exogenous Inputs (in Japanese), IEEJ Transactions
on Electronics, Information and Systems, vol.118-C, no. 3,
pp. 384-390, 1998.

12) F. D. Torrisi, A. Bemporad and D. Mignone: HYSDEL—-
A Tool for Generating Hybrid Models, Technical Re-
port AUTO00-03, Automatic Control Lab, ETH, http :
//control.ethz.ch/ hybrid/hysdel/, 2000.

13) K. Hirata and M. Fujita: Control of Systems with State
and Control Constraints via Controller Switching Strat-
egy, Workshop on Systems with time-domain constraints,
Eindhoven, the Netherlands, 2000.

14) I. Kolmanovsky and E. G. Gilbert: Maximal Output Ad-
missible Sets for Discrete-Time Systems with Disturbance
Inputs, Proc. of the 1995 American Control Conference,
pp- 1995-2000, 1995.

Appendix A. Constrained Positively Invari-

ant Sets

The constrained positively invariant set (CPI)*:% js
explained in order to use it for an end set constraint
of receding horizon control. The CPI set is applied to
constrained control and switching control'®. For each
closed-loop system, we define a state constraint set.

Definition. '9°'" State constraint set X((C +
DK;), D.,Y,W) is defined by

Xi = {z|(C + DK;)z 4+ Dyw € Y,Yw € W}. (A.1)

Necessary and sufficient condition y.(t) € Y for possible
disturbance w(t) € W is z(t) € X;.

Definition. '9:'% ©, c R contains origin in its in-
terior. O; is a CPI set, if it is a positively invariant set
and is contained in X;((C' + DKj;),D.,,Y,W).

If a CPI set exists, for any initial state z(0) € O; and
w(t) € W, then z(t) € O; for all t € ZT, where Z™ de-
notes the set of nonnegative integer.

Definition. Maximal constrained positively invari-

ant set is defined as follows
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Ocoi = {z(0)|y. (t|z(0),w) € Y,Vt€ZT,Vw € W}(A.2) [ 0] [ 1 0] (107
0 10 —e

Maximal CPI set O«; can be obtained by recursive pro- 0 0 0

cess proposed in 10),14). 0 0 0
0 0 M

. < u(t)+ z(t)+
Appendix B. Example: MLD System Repre- 0 0 M
. B Ay M
sentation

—B., —A; M

In this section, PWA system (25) is transformed into E;‘ J A: J g
MLD system representation. By defining §(¢) such that - - o

[0(t) =1] < [[1 0]z(¢) > 0] that is equivalent to
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Kanazawa University. His research interests in-

where ¢ is small tolerance. The system (25) can be de-

scribed by

a(t+1)=(A1z(t) + Buu(t)) 0(t) ) X : .
clude receding horizon control and its applica-
+(Azx(t) + Buu(t)) (1 — 6(t))+Bow(t). (B.2) tions.

In order to transform products of 4(t), z(¢) and u(t), aux-
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iliary variables z1(t), z2(t) are introduced as follows

{ 21(t) = (Arz(t) + Bau(t)) 6(t)
22(t) = (Asa(t) + Buu(t)) (1 — 8(t)).

The auxiliary variables z1(t), z2(t) are equivalent to

(B.3)
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at) < () works, control of time delay systems and gain
z1(t) > md(t) scheduling.
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Therefore, the PWA system (25) can be rewritten as
x(t + 1) — [ I I ] Z(t) + wa(t) (B. 6) LR NN R R AR AR R R AR R AR AN
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