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Nonlinear Model Predictive Control Using Successive Linearization

- Application to Chemical Reactors -

Hiroya SEKI*, Satoshi O0oYAMA** and Morimasa OGAWA***

A nonlinear model predictive control based on successive linearization approach is developed. A nonlinear
process model is linearized along its trajectory and an infinite-time horizon linear optimal regulator with inte-
grator is implemented in a receding horizon fashion. Simulation examples for highly nonlinear chemical reactors

which exhibit static input or output multiplicities are given to demonstrate the capability of the controller.

The developed control algorithm has been successfully applied to a grade transition operation in an industrial

polymerization reactor.
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1. Introduction

Model predictive control (MPC), which was originally
developed in the 1970’s to meet the specialized control
needs of power plants and petroleum refineries, can now
be found in a wide variety of application areas especially
in the petroleum and petrochemical industries V. How-
ever, most of industrial applications are limited to linear
MPC (LMPC), in which controlled plants are weakly non-
linear or operating regions are limited so that the assump-
tions of linearity may hold.

Representative of highly nonlinear chemical processes
to which LMPC applications are difficult, are chemical
reactors, the core of a chemical process. Among the non-
linearities exhibited by chemical reactors, steady state in-

put mulsiplicities 23 4)~T)

and output multiplicities can
be cited as detrimental to feedback control. With non-
linear processes which exhibit output multiplicities, there
exist more than one set of outputs for a certain set of in-
puts in their steady state relations; in most cases, they
are accompanied by changes in open-loop stability. On
the other hands, with processes exhibiting input multi-
plicities, there exist more than one set of inputs for a
certain set of outputs; this implies that the sign of the
steady state gain (in the case of multivariable systems,
the sign of the determinant of the steady state gain ma-
trix) changes in the operating region, and there may exist

sets of setpoints which are unreachable.
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For these kinds of nonlinear processes, it would be dif-
ficult to cover a wide range of operating conditions with
a single linear controller. Especially for processes with
input multiplicities, a linear controller with integral ac-
tion necessarily becomes unstable if a sign change in the
steady state gain occurs®.

Nonlinear MPC(NMPC), which employs a nonlinear
process model to predict future process responses and cal-
culate manipulated variable moves, possesses a strong po-
tentiality of improving control and operation of nonlinear
processes. The underlying principle of NMPC is the same
as that of LMPC with the exception that the model de-
scribing the process dynamics is nonlinear. However, from
implementation viewpoints, it poses some technical prob-
lems, which are associated with computational burdens?®;
even with the currently available CPU power, applica-
tion of NMPC, in which a nonlinear optimization prob-
lem has to be solved on-line, requires formidable efforts
in order to calculate control actions within fixed sampling
time. NMPC based on successive linearization '),
which uses a locally linearized model at each control in-
terval, is currently the most practical and promising tech-
nique for industrial applications.

In this paper, NMPC algorithm using the successive lin-
earization approach is first described. Motivated by the
fact that unconstrained LMPC with infinite-time predic-
tion/control horizons is known to be equivalent to lin-
ear quadratic regulator (LQR) and nice stability prop-
erty is guaranteed, we apply LQR control problem to the
locally linearized process model successively obtained at
each control sampling time. Particular attention is paid to
the solvability of the LQR problem, in which singularity

of the steady state gain matrix becomes a critical issue.
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Secondly, simulation studies are performed using nonlin-
ear chemical reactor examples which exhibit input or out-
put multiplicities. Finally, application to grade transi-
tion operations of an industrial high density polyethylene

(HDPE) polymerization reactor is presented.

2. Nonlinear MPC wusing successive

linearization

A process is assumed to be described by the following
nonlinear ordinary differential equation:

& = f(z,u), (1)

y = h(z), )
where x € R", u,y € R™ are a state variable, a manipu-
lated variable and a controlled variable respectively.

We assume that the process is square and we design a
controller which realizes offset free responses of the con-
trolled variable y to its target value r(t) € R™.

2.1 Control algorithm

Defining the values of each variable at time ¢t = ¢, as
zr = z(tr), ur = u(tr),yr = y(tx), the control algorithm
is described as follows. The algorithm is presented here
in the continuous time domain for brevity, but in practice
it would be implemented in discrete time.

Step 1 (Local linearization) Around the current tra-

jectory (xk,ur), the process model (1)(2) is linearized:

Az = ArAzy + BrAug + g (3)
Ayr = CrAwzy, (4)
where

Azy, = x(t) — xr, Aup = u(t) — ur, Ayr = y(t) — ys,
0

0
Ak = f(xk,uk), Bk =

e g(l‘k,uk),
oh
Cr = %(l‘k,uk), Ok = f(Tr, ur).

The following assumption is made:

Assumption 1. The locally linearized system (3)(4)
is stabilizable and detectable.
Step 2 (Determination of steady state target by
the least squares method) Steady state target Zx, U

is obtained as the solution to the following least squares

problem:
Jmin T = (Arg — CrAzy) " (Ary — CrAxy)
+ Aule Ay, (5)
subject to
ApAzy + BrAuy + 6, =0, (6)

where Ary = r(t) — yr, and Ry € R™*™ is a positive
definite tuning weight matrix.

The least squares solution is given as
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T cfc, o0 Af CcFAry
a | = O R, BF 0
A Ak Bk (0] _6k

where A € R" is a Lagrange multiplier.
Step 3 (LQ control problem)

model is augmented with integrators at input, and the

The locally linearized

linear optimal regulator is constructed around the steady
state target obtained at Step 2. If we define

A -
Zp = ( Tk Tk ) s Vr = Aﬂk, (8)

Auy, — U

P — k k  Gp = x 7
Oan Om)(m Im
the augmented system can be described as
. —Z
2k = Frzr + Gror,  zi(te) = ( B ) ) (9)

—Up

where I,,, is the m—th order identity matrix.
To the above system, the infinite-time horizon LQ con-

trol problem is applied:

min J;, = / {z;‘:kak + ngzvk}dt, (10)
'Uk tk
where
B = y L ER (11
Q ( o R Q (11)

The matrix R2 € R™*™ is a positive definite weight ma-
trix and used as tuning parameter.
The solution to the optimal control problem vj, is ob-

tained by solving the associated Riccati equation as
v (t) = —Krzi(t), (12)

where K; € R™*("*+™) ig the regulator gain matrix.
The ini-

tial value of the optimal control input obtained at Step 3:

Step 4 (Implementation of control input)

Uk

x Ty
vi(ty) = —Krz(tr) = Ky, ( ) (13)
is implemented on the plant.
2.2 Characteristics of the control algorithm
When constructing a linear servo system for a constant

setpoint, it is assumed that the following matrix is non-

singular *2):

Ar By
<I>k:<0k O>' (14)

However, with nonlinear systems which exhibit input mul-
tiplicities, the matrix ®; may become singular. Also with
general nonlinear systems, nonsingularity of the matrix

&, may not be guaranteed along all the trajectories. For
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a linear system with singular ®;, a linear optimal regula-
tor cannot be constructed because steady state for a given
setpoint r is not uniquely determined. In order to solve
this problem, weighting R; on the input Awuy is introduced
to the least squares problem (5) and the steady state tar-
get is updated at each control sampling time; existence
of the inverse matrix in Equation (7) is guaranteed if the
assumption 1 and R; > 0 hold. Note that the LQR prob-
lem (10) is also solvable. For general nonlinear systems
with which the assumption 1 does not hold, the control
algorithm is not applicable.

For linear systems, model predictive control with
infinite-time prediction/control horizons is known to be
equivalent to LQR. However, the control algorithm pre-
sented here differs from LQR because the steady state tar-
get is updated at each control interval due to the weight
R; (if Ry =0, it coincides with the LQR). However, nom-
inal closed loop stability can be proven'®).

The reason why the process is augmented at its input is
the industrial requirements that aggressive input variable
changes are not desired most often and offset free steady
state responses are preferred.

Through rearrangement of equations, the controller can

be described in the following form:

W= Ki{r —h(z)} + Ko f(z,u), (15)
where
Ky = Ry'GT(F — GK)™T[C Omxm]T, (16)
K> = —R,'G"(F - GK) Py, (17)

and P; € REmMIXn i o submatrix defined for the unique

solution P € RIX(+m) of the Riccati equation and

defined by
( P P ) _P (18)

In Egs (15)-(18), the matrices are the same as those de-

fined in the previous subsection (subscript k is omitted)

and they are functions of (z,u).

The closed loop has the following steady state proper-
ties:

Reachable setpoint: When the matrix ® evaluated at
the equilibrium corresponding to the given setpoint is
nonsingular, it can be shown that det K1 # 0. At
equilibrium, f(-) = 0 holds, so that Eq. (15) implies
r = h(z) is the unique solution which makes w = 0.
That is, there exists no steady state error. However,
in an actual process with modeling errors, f(-) = 0 of
the model does not necessarily hold at the true process
equilibrium, so that steady state error may exist; this

is a consequence of augmenting the plant at its input,

not directly integrating the error between the setpoint

and the controlled variable. The method for eliminating

steady state errors is described in the next section.
Unreachable setpoint: With nonlinear processes
which exhibit input multiplicities, there may be cases
where given setpoints are unreachable (a linear con-
troller surely becomes unstable). In this case, the closed
loop converges to an equilibrium where det ® = 0 and
the steady state error belongs to the null space of KT
(in the case det ® = 0, it results in det K; = 0) ).

2.3 State estimation and steady state proper-

ties of the closed loop

In the previous section, it is assumed that the state vari-
able is known, but practically we have to estimate them
in some way. Also, offset free estimation of the controlled
variables is required to construct a closed loop which re-
alizes offset free response to a constant setpoint.

Here, we introduce steady state extended Kalman filter
which assumes a constant disturbance at its input.
State estimator with input disturbance The pro-

cess model is augmented as follows:

& = f(&u+§)
£=0 (19)
Z} = h(i)7

where £ € R",§ € R™ and £ € R™ are the estimate
of state variable, output variable and input disturbance,
respectively.

At time t = ¢, steady state Kalman filter is constructed

for the matrix pair:

Apg By

(G Omem ). 20
Om)(n Ome ( t * ( )

The dynamics of the state estimator is described as
&= f(#,u+8)+Ki(y—9)
£ = Ke(y—9) (21)
g = h(2),

where K; € R"*™ and K¢ € R™*™ are the submatrix of
the Kalman filter gain matrix.

If the matrix pair (20) is detectable and the Kalman
filter gain matrix is obtained, we can prove that the sub-
matrix K¢ is nonsingular, so that Eq. (21) implies that
y =19, f(-) = 0 for the steady state (& = 0, £ = 0), re-
sulting in offset free estimation of the output. Moreover,
Eq. (15) implies that if the closed loop is stable, it achieves
an offset free response to a constant setpoint regardless of

model errors.
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Table 1 Process and model parameters for the CSTR with
output multiplicities

T v D, A B Ti0 T2
process | 1.0 40.0 0.075 —8.0 0.3 1.0 1.0
model | 1.0 40.0 0.0675 —7.2 0.33 1.0 1.0

X3
‘

Fig.1 Closed loop response of the CSTR with output multi-
plicities. The dashed and dotted lines are the steady
state input/output relation of the process and the
model, respectively. The point marked by ‘o’ is the
initial condition and ‘%’ is the set-point.

3. Simulations

3.1 Chemical reactor with output multiplici-
ties ©
The example process is a continuous stirred tank reac-
tor (CSTR) with a cooling jacket, in which the 1st order
exothermic reaction A—B occurs. The process model is
described as follows:

T2

iL = (=1 + 210) — Dy exp(—2—
Té1 = (—z1 + Z10) exp(1 x2/’y)$1
. X2
= (= 4 T20) + AD. exp(—=2
TEy = (—x2 + ®20) + A exp(1 x2/’_y)$1
— B(x2 —u) (22)
Yy = T2,

where z1,z> and u are normalized concentration of A,
reactor temperature and jacket temperature respectively.
The model parameters are listed in Table 1, together
with the model errors assumed in the simulation calcula-
tion. This process exhibits steady state output multiplic-
ities and open loop stability property changes depending
on operating points.

Figs.1, 2 show the closed loop responses to a set-
point r = 2.0 with the initial condition (z1,z2) =
(0.8593,0.7966), u = —0.301. The tuning parameters are
R =1.0x 1072, R, = 1.0 x 10~ !. In this example, the
process is controlled from an open loop stable equilib-
rium to an open loop unstable equilibrium. The closed
loop converges to the setpoint without steady state errors

even under the presence of the modeling errors.

3
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Fig.2 Closed loop response of the CSTR with output multi-
plicities. The dotted line is the set-point.

Table 2 Model parameters for the CSTR with input multi-
plicities
i 1 2 3 4
kio 1.0 0.7 0.1 0.006
E;/RT; | 833 10 50 83.3

3.2 Chemical reactor with input multiplici-
ties ¥
The next example process is a CSTR with the reaction:
1,4 23
A=R=+=S
and its dynamics is described by
¢a = ui(ca, —ca) — kica + kacr
¢r = u1(l —cay —cr) +kica +k3(l —ca —cr)

— (k2 + ka)cr (23)

T
ZI:(CA CR):

where ¢; (i = A, R) is the concentration of each species,
c4, is the concentration of A in the feed, u; is the feed
rate, us is the reaction temperature. All the variables
are normalized. The reaction rate constants ki1 ~ k4 are

expressed in the Arrhenius form:
E; 1

— —1)]. 24
(o= )] (24)

Model parameters are listed in Table 2.

ki = ki,o eXp[—

This process exhibits steady state input multiplicities,
and the determinant of the gain matrix from the input
uw = (u1 u2)” to y = (ca cr)” changes sign. There are
unreachable setpoints.

Figs. 3, 4 show the closed loop response to a setpoint
r = (0.28 0.28)” with the initial condition (ca,cr) =
(0.2989,0.3596), (u1,us) = (0.2083,0.8879) and cao =
0.8. The state variables ca,cr are both measured and
Ry =102, Ry = 10 3I,. In the u; — u> plot of Fig. 3,
+— denote the sign of the determinant of the steady state
gain matrix at that point. The given setpoint r is un-
reachable at steady states (it is in the region marked by

‘Unreachable’ in ¢4 — cr plot of Fig.3), but the closed
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Fig.3 Closed loop response of the CSTR with input multi-
plicities. The dotted lines are the loci along which the
steady state gain matrix becomes singular. The points
marked by ‘o’ are the initial conditions, and ‘X’ are the
final states, and ‘x’ are the set-points.
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Fig.4 Closed loop response of the CSTR with input multi-
plicities. The dotted lines are the set-points.

loop converges to a point where the determinant of the
steady state gain matrix is zero. As shown in this exam-
ple, the closed loop remains stable even for an unreachable

setpoint.
4. Industrial application

The control algorithm is applied to a polymerization re-
actor for HDPE (High Density Polyethylene) production.
The reactor does not exhibit input or output multiplici-
ties, but its frequent grade changeover operations require
control systems to cover a wide operating range; in the
conventional reactor operations, a linear control system
has been utilized, but controlled responses during grade
transition are rather sluggish so that there are frequent
operator interventions.

Fig.5 shows the process flow diagram. Gaseous
monomer (ethylene), comonomer (propylene), and hydro-
gen are fed to the reactor together with catalysts. These
feed streams are controlled by PID controllers. The prod-
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Fig.5 Process flow of the HDPE reactor.

uct flow of polyethylene is used to control the reactor
slurry level. The reactor temperature is controlled by the
cooling jacket and the recycle cooler. The reactor pres-
sure and gas compositions are available for the feedback
control.

A basic operation of the process is to adjust the partial
pressure of each gas composition (more precisely, the re-
actor pressure, the ratio of hydrogen/ethylene, and propy-
lene/ethylene in the gas phase which are strongly related
to the key polymer properties such as Melt Index and
density) to specified values, which are determined in ac-
cordance with a polymer grade being produced, by ma-
nipulating the feed gas streams. The set-point in the reac-
tor temperature is also determined according to polymer
grades. The set-point in the production rate is changed
by market demand.

In the conventional linear control system, multi-
loop LMPC has been utilized with the pairings: pro-
duction rate<»monomer feed rate, monomer partial
pressure<>catalyst feed rate, hydrogen/monomer partial
pressure ratio<>hydrogen feed rate, comonomer/monomer
partial pressure ratio¢<>comonomer feed rate.

In designing NMPC, a fourth order process model which
describes the mass balance for the monomer, hydrogen,
comonomer and catalyst is developed *¥. The controlled
variables are selected as the monomer partial pressure, the
hydrogen partial pressure, the comonomer partial pres-
sure, and the production rate. The manipulated variables
are selected as the catalyst feed rate, hydrogen feed rate,
comonomer feed rate and the monomer feed rate. Pro-
cess constraints are considered as described in the litera-
turel5). The control interval is 1 min.

In order to provide off-set free estimation of the con-
trolled variables, a simple multi-loop state estimator is
designed. For example, in estimating the hydrogen par-

tial pressure, an input disturbance ¢, is assumed, and &,
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is updated by the hydrogen partial pressure measurement

P;, and its estimate P, using the following equation:
t
ﬁh(t) = Kc,h(Ph — Ph) + KI,}L/ (Ph — ﬁh)dT, (25)
0

where K. », K1, are tuning parameters.

Fig. 6 shows the closed-loop responses of the NMPC
during a grade changeover, together with those of the
LMPC under the same operating condition. In the figure,
P, P, /Py, Pppy /P denote the monomer partial pres-
sure, the hydrogen/monomer partial pressure ratio and
the comonomer/monomer partial pressure ratio respec-
tively. Grade transition operations are realized by simply
giving step changes to the setpoints of the controlled vari-
able.

The NMPC improved the closed-loop performance, es-
pecially the monomer and hydrogen partial pressures re-
sponses. A long-term comparison of the NMPC and
LMPC performances also confirmed the superiority of the
developed NMPC to the conventional LMPC; the NMPC
reduced the operator interventions by nearly two thirds
and the service factors (the percentage of the time dura-
tion of the controller turned on) was increased by nearly
20%.

5. Conclusions

Nonlinear model predictive control based on succes-
sive linearization has been proposed. Through simula-
tion studies on nonlinear chemical reactors which exhibit
steady state input or output multiplicities, capability of
the proposed controller has been demonstrated.

The developed control algorithm has been successfully
applied to a grade transition operation in an industrial

HDPE polymerization reactor.
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Fig.6 Comparison of NMPC and LMPC responses in a grade changeover operation.
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