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A New Approach to Rectangle Packing Problem Based on
Stochastic Tabu Search
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A rectangle packing is a non-overlapping placement of given rectangles. The algorithm to optimize the rect-
angle packing can be required in a variety of application fields. However, since the optimization problem of

rectangle packing is a combinatorial optimization problem and NP-hard, it is hard to solve it exactly in practical
applications. To cope with this difficulty, a new coding scheme, sequence-pair, has been proposed, by means of
which any possible packing can be represented. Tabu search is one of the powerful meta-heuristics, which can
explore the solution space effectively in an intelligent manner. Thus a tabu search approach for rectangle packing

problem based on sequence-pair should be powerful in practical applications, however any such approaches have
not been reported. The purpose of this paper is to apply tabu search to rectangle packing based on sequence-
pair, and evaluate this approach. First, rectangle packing problem is formulated, and the representation of each
solution is defined. And then, the proposed method is described in detail, where first admissible move strategy
and a concept of stochastic tabu restrictions are employed. The experimental result shows that the proposed
method keeps providing good performance through the search process.
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1. Introduction

A rectangle packing is a non-overlapping placement of
given rectangles. The algorithm to optimize the rectan-
gle packing can be required in a variety of application
fields, such as VLSI layout design, facility layout problem,
etc. However, since the optimization problem of rectan-
gle packing is a combinatorial optimization problem and
NP-hard ¥, it is hard to solve it exactly in practical ap-
plications. Thus heuristic algorithms have been widely
used.

Until now, a variety of approaches based on simulated
annealing or genetic algorithm have been reported in the
literature for rectangle packing. Most of them could be
classified into two categories according to their coding
schemes, namely the representation of each packing. In
one scheme, a packing is defined by a tree structure (and
in many cases, represented in terms of “Polish expres-
2)~d)

sion”) , in the other scheme, a packing is defined by a

5)~7) However in each of these

permutation of rectangles
schemes, some kind of packing can not be represented, and
consequently, we could never obtain such kind of packing
using these approaches.

To cope with this difficulty, several new coding schemes,
such as sequence-pair V), BSG-structure®, O-tree®, and

so on, have been proposed, by means of which any possible
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packing can be represented, and good packing can be ob-
tained. Among them, the sequence-pair coding has been
widely researched '9~'?)  since it can be implemented eas-
ily and effectively. It is also thought that the sequence-
pair coding is fit to use in most of meta-heuristics 13),

Tabu search ' is one of the powerful meta-
heuristics, which can explore the solution space effectively
in an intelligent manner by means of “flexible memory”
13) A tabu search approach for rectangle packing prob-
lem based on sequence-pair should be powerful in prac-
tical applications, however any such approaches have not
been reported. The purpose of this paper is to present a
new approach for rectangle packing based on tabu search
heuristic ', and evaluate it.

In this paper, rectangle packing problem is formulated
at first. Next, the representation of each solution is de-
fined, and then tabu search is applied. A concept of

14) is also introduced. In ad-

stochastic tabu restrictions
dition, a part of experimental results is shown in order to

demonstrate the effectiveness of the proposed method.
2. Rectangle packing problem

A packing is a non-overlapping placement of given rect-
angles. A rectangle packing problem is to seek a packing
with minimum (bounding) area'). The problem can be
formulated as follows:

Definition (Rectangle packing problem).  Assume
there exist n rectangles r; (i = 1,...,n). Let w; and h;

be width and height of r;, and (x;,y;) be coordinate of
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the center of r;. Given the width w; and height h; of
each rectangle r; (i = 1,...,n), seek a set of coordinates
(zi,y:) of all given rectangles r; (¢ = 1,...,n) which min-
imizes the area s of the bounding rectangle of all given

rectangles

A )
X {mlax (yi + %) — min (yi - %)} (1)

under the following “non-overlapping” condition

hi 4+ h;
or |y —y;| > T’

forany i,j (1<i<nm1<j<ni#j). (2)

3. Tabu search for rectangle packing

Tabu search!?'® is one of the powerful meta-
heuristics, where the optimal solution is searched in the
solution space, moving from one trial solution to another,
in the same way as local neighborhood search. In tabu
search, as distinct from local neighborhood search, the
exploration can be continued even at a locally optimal
solution. In order not to fall back into a locally optimal
solution previously emerged, some of possible moves are
regarded as forbidden, on the basis of historical informa-
tion from the search process.

This historical information is stored in a queue, called
tabu list, and the element of tabu list is called attribute.
The length of the tabu list is limited, and this limit length
is called tabu length. When moving from one trial solu-
tion to another in the search process, a set of attributes
corresponding to the move is added to the tabu list, and
the oldest set of attributes in the tabu list is discarded
when the length of the tabu list exceeds the tabu length.

Now, consider how to apply tabu search to rectangle
packing problem.

3.1 Representation of solution

In this paper, each solution of rectangle packing prob-
lem is represented by a pair of permutations of rectan-
gles called sequence-pair, and decoded to a corresponding
packing by means of the procedure described in 10). The
two sequences of sequence-pair are denoted by I'y and
I'_, respectively.

The decoded packing by 10) is either the same as
one obtained by the procedure described in 1) or more
compacted packing obtained by reducing redundant con-
straints between rectangles taken into account in 1). Re-
fer to 10) for more detailed discussion.

For example, given a set of rectangles shown in Fig. 1

(a) and a sequence-pair
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(F+;F*) = ((7'4,7"6,1"5,7'1,1"2,1"3,7'7)

k)
(ra,77,75,73,74,71,76)) (3)

the decoding process is illustrated in Fig. 1 (b)—(e).

The bold line L in Fig.1 shows the boundary of the
region where any (large) rectangle can be placed with-
out overlap. In the decoding process, each rectangle is
placed onto L, one after another, based on the following
guidelines:

(1) Rectangles are placed in the same order as I'_.
(2) Allrectangles on L are always aligned in the same
order as 'y, from upper-left to lower-right.

In Fig. 1, ry is placed at first and then r7,rs, ..., since
r2 is at first and then r7,75,...on I'_. In Fig. 1 (d), r1 is
placed between rs and rs3, since r; is between r5 and r3
onI'y.

In the same way, any sequence-pair can be decoded to
a corresponding packing.

3.2 Outline of the proposed method

We have applied tabu search to rectangle packing prob-
lem as outlined in Fig.2. Procedure TABUPACKING
is the main routine, which repeatedly calls procedure
NEXTSOLUTION at line 9 for iterative improvement.

x is the trial solution, which is represented by a
sequence-pair as described above. At first, x is initial-
ized as a random sequence-pair at line 5. And then, an
adjacent solution of z is selected through lines from 13 to
34, and z is updated with it at line 37, in order to move
from one solution to another, in the same way as local
neighborhood search.

Whenever a new sequence-pair is generated, it is de-
coded to a corresponding packing as described above, and
the area of the packing is evaluated, as shown at line 5, 6,
16 and 17. The area of the packing is stored, and referred
when it is required. The notation f(z) means the area of
the packing decoded from z.

ne is the number of evaluations of solutions. Initially,
ne is cleared at line 4. Whenever a sequence-pair is eval-
uated, ne is incremented, at line 6 and 17. When n. is
larger than a given number MAXEVAL, the algorithm is
terminated, as seen at line 8.

xp keeps the best solution through the search process,
which is initialized at line 7, and updated at line 18 and
20.

3.3 Strategy of move

As for move, not “best admissible move strategy” but
“first admissible move strategy” is employed, as follows.

7)

In the literature 1™, it is reported that the latter is more

effective than the former.
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Fig.1 Process of decoding based on 10).

1: procedure TABUPACKING:
2:  begin

3 initialize tabu list 77

4 ne < 0;

5: let  be an initial solution;
6 evaluate z; ne < ne + 1;

7 Tp —

8 while n. < MAXEVAL do

9 NEXTSOLUTION(z, T, xp, ne);
10:  end.

11: procedure NEXTSOLUTION(z, T, zp, ne):
12:  begin

13: Ty < nil;

14: for i + 1 to MAXNEI do

15: begin

16: let ¢, be an adjacent solution of z;

17: evaluate zq; ne < ne + 1;

18: if f(zq) < f(xp) then

19: begin

20: Ty < Ta;

21: goto MOVE;

22: end

23: if the move from z to z, is not forbidden
by the tabu restrictions specified by
T then

24: begin

25: if f(za) < f(z) then

26: goto MOVE;

27: if zg = nil or f(z.) < f(zg) then

28: Tg ¢ Ta;

29: end

30: end

31: if 4 = nil then

32: goto NOMOVE;

33: else

34: Ta < Tg;

35: label MOVE:

36: update T with a set of attributes corresponding

to the move from z to xq;

37: T < Tq;

38: label NOMOVE:

39: end.

Fig.2 Outline of the proposed method.

An adjacent solution of z is selected randomly and as-
signed to zq, at line 16. At first, the tabu restrictions are
considered. Only if the move to z, is not forbidden by the
tabu restrictions, the move can be accepted, as described
at line 23. Then, the area of z, is examined, and if z, is
better than z, the move is chosen, without evaluating the
other adjacent solutions, as described at line 25 and 26.

In the case when z, is better than z; (the best solution
previously emerged), aspiration level is considered to
be attained, and the move is chosen whether the move is
forbidden or not, as described at line 18 and 21.

Only in these two cases, the move to this adjacent so-
lution is chosen. In the other cases, this adjacent solu-

tion is discarded. Another adjacent solution is selected
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randomly, and tried again. If no move is chosen after a
given number MAXNEI of adjacent solutions are tried,
we think (from the standpoint of efficiency) that x is a lo-
cally optimal solution, and the best of adjacent solutions
already tried and not forbidden by the tabu restrictions
is chosen. The MAXNEI adjacent solutions are tried in
the loop specified at line 14. The best adjacent solution
is kept in x4 through lines 13, 27, and 28, and chosen at
line 34.

3.4 Generation of adjacent solution

In the proposed method, an adjacent solution z, of the
trial solution z is generated by means of one of the fol-
lowing three operations randomly selected:

(1) Swap two rectangles on I';. of z.

(2) Swap two rectangles on I'_ of z.

(3) Swap two rectangles on both I't and I'_ of z.
In each operation, the two rectangles are selected ran-
domly.

As is illustrated in Fig. 3, these operations correspond
to the following transformations of the packing, respec-
tively:

(1) Move two rectangles toward upper-left and lower-
right.

(2) Move two rectangles toward upper-right and
lower-left.

(3) Swap two rectangles.

3.5 Stochastic tabu restrictions

In applying tabu search heuristic, the tabu restrictions
greatly affect the efficiency of the search process. Af-
ter careful consideration and some computational experi-
ments, the following procedure is constructed:

Let ro(m) and rp(m) be two rectangles which are
swapped in the move m. Let s(m) be sequence(s) (I'y,
I'_, or both) where rectangles are swapped in the move
m. Assume the tabu length is TL, and attributes of the
last TL moves are stored in the tabu list. Denote the
last TL moves by m(1), m(2),...,

oldest (ex. m(1) denotes the last move).

m(TL) from newest to

When a new adjacent solution z, is generated, the cor-
responding move m, is tested with each element of the
tabu list. If both of the following conditions:

(1) s(ma) is the same as s(m(7))
(2) ra(ma) or ry(me) is the same as rq(m(i)) or
ro(m(i))
are satisfied, m, is rejected with probability
. TL—-i+1
p(i) = —F— (4)

This procedure can be described more formally in

Fig. 4.
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Fig.3 Operations to generate adjacent solutions.

1: procedure CANMOVE(m,):
2:  begin

3: for : +— 1 to TL do
4

5

or 1(ma) = ra(mf(i))
or ry(mq) = rp(m(i)) then
6 begin
7 let  be a random number in [0, 1);
TL —i+1
8: P —
TL
9: if r < p then
10: begin
11: CANMOVE < “no”;
12: goto EXIT;
13: end
14: end
15: CANMOVE <« “yes”;
16: label EXIT:

17:  end.

Fig.4 Procedure to check tabu restrictions.

4. Experimental results

The proposed method has been programmed in
C++ language, and run on a VT-Alpha600H/U (18.0



T.SICE Vol.E-4

SPECint95) workstation. We have also implemented the
following 4 methods in order to evaluate the proposed
method. In all of them, adjacent solutions are generated
in the same way as described in 3. 4.

LB (multi-start Local search with Best admissible

move strategy)
In this method, all adjacent solutions are generated

for each trial solution z, and evaluated in random or-
der. Then, the best solution z; of them is selected as
the candidate of next trial solution. In the case when
Tp is not better than x (that is, z is a locally optimal
solution), the exploration is restarted from another trial
solution randomly generated.

LF (multi-start Local search with First admissible

move strategy)
In this method, all adjacent solutions are generated

for each trial solution z, and evaluated in random or-

der, in the same way as LB. However, in case when an

adjacent solution z, is evaluated and it is better than

x, . is selected as the next trial solution immediately,

without evaluating the other adjacent solutions. If no

solution is selected after all adjacent solutions are evalu-
ated (that is, z is a locally optimal solution), the explo-
ration is restarted from another trial solution randomly
generated.

SA (Simulated Annealing)

In this method !*), the geometric cooling is employed
for cooling schedule. Parameters, such as initial tem-
perature and cooling ratio, are decided based on ex-
haustive preliminary computational experiments.

TS (Tabu Search without stochastic tabu restrictions)

A simplified version of the proposed method has been
also programmed, which is the same as the proposed
method except that the tabu restrictions are determin-
istic (“p(¢) = 1” is adopted instead of Eq. (4)).

We applied all of above 5 methods to MCNC bench-
mark “ami49” 18), which is a problem in VLSI layout de-
sign including 49 building blocks. In all computational ex-
periments, the number of evaluations (MAXEVAL) was
limited to 1,000,000. Many preliminary computational
experiments were carried out in order to decide parame-
ters required in SA, TS, and the proposed method. The
parameters for the proposed method was decided as fol-

lows:

MAXNEI : 200
TL :5

Each method was executed 100 times for “ami49”. The

CPU time of a trial of the proposed method in our im-
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Fig.5 Behaviors of methods.

plementation is about 8 minutes. The average behavior

over 100 trials of each method is summarized in Fig. 5.

For each number of evaluations (indicated at horizontal

axis in Fig.5), the area of the best solution obtained in

the trial until that moment was kept, and the average of

them over 100 trials is plotted in Fig. 5, for each method.
At first, the following should be noticed hear:

(1) In LB, the first move from the initial solution
to another solution is carried out after all of the adja-
cent solutions of the initial solution are evaluated. The
number of adjacent solutions is 3,528 (49C> X 3).

In each of 100 trials in the experiment, at first, 3,528
adjacent solutions of the initial solution were evaluated.
In the meantime, solutions which were better than ones
previously emerged in the trial were found (evaluated),
and the curve of LB in Fig. 5 is plotted downward.

Just after 3,528 evaluations, the move from the ini-
tial solution to another was carried out, and after that,
adjacent solutions of the new solution were evaluated.
Thus, the curve of LB in Fig.5 has a corner at 3,528
evaluations.

(2) In each of 100 trials for SA in the experiment, at
first, the temperature was high, and the search process
was rather in “random walk” fashion. In the mean-
time, solutions which were better than ones previously
emerged in the trial were found, and the curve of SA in
Fig. 5 is plotted downward.

As the temperature fell and gradually the move to-
ward a bad solution became unaccepted, better solu-
tions found one after another, and the curve of SA in
Fig.5 has a steep slope at about 1,800-2,500 evalua-
tions.

From Fig. 5 and these notices, the performances in the
early stage of the search processes are summarized as fol-

lows:
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(1) The performance in the early stage of the search
process of LB is obviously inferior to the other meth-
ods. For “ami49”, the number of adjacent solutions is
large, and the evaluations of all of them degrade the
performance.

(2) As for SA, the performance in the early stage
(more specifically, less than about 3,000 evaluations)
is not good compared to LF, TS, and the proposed
method. If the temperature is lowered rapidly, the per-
formance in the early stage may be improved however
the solution obtained after MAXEVAL (1,000,000) eval-
uations should be worse. For SA, the “random walk”
phase is essential and degradation of the performance
in the early stage is unavoidable.

(3) LF, TS, and the proposed method provided bet-
ter performance than LB and SA at less than about
3,000 evaluations. However, the performance of LF
gradually went down.

In each trial of LF, the exploration was trapped at
a locally optimal solution and restarted. The first
restart in each trial in the experiments was at about
4,000-27,000 evaluations, however, TS and the pro-
posed method outperform LF even at 1,000 evaluations.
The reason should be that the exploration of TS or the
proposed method is more diversified because of tabu
restrictions.

(4) At about 0-1,000 evaluations, the proposed
method (bold line in Fig.5) was better than TS (solid
thin line in Fig. 5). Stochastic tabu restrictions improve
the performance in the early stage.

The performance of TS and the proposed method in the
early stage of the search process is good. This seems to be
preferable for practical applications where it takes a good
amount of time to evaluate each solution. For example, in
the layout design of VLSI’s, the objective function may
depend on not only the area of the bounding rectangle
of all given rectangles (in the case of our computational
experiments) but also the result of global or detailed rout-
ing, circuit’s performance evaluation, and so on.

Table 1, Fig. 6, and Fig. 7 show the area of the best

Table 1 Statistics of 100 trials.

Area (mm?)
Average Sta.r.ld;?rd Best | Worst
deviation
LB 40.70 0.67 39.21 | 42.43
LF 39.66 0.46 38.42 | 41.01
SA 36.68 0.24 36.18 | 37.66
TS 36.71 0.22 36.24 | 37.54
Proposed 36.66 0.20 36.26 | 37.24
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Fig.6 Frequency distribution of 100 trials (1).

solution obtained in each trial. It should be noticed here
that horizontal scales of graphs in Fig.6 and Fig.7 are
different.

The results are summarized as follows:

(1) LB and LF are much worse than SA, TS, and the
proposed method. The reason should be that the ex-
ploration is stopped at a locally optimal solution, and
solutions around it cannot be explored, in LB and LF.

(2) The areas of the solutions obtained by SA, TS,
and the proposed method are almost same. As for the
worst areas, the proposed method is slightly smaller,
and SA is slightly larger. If the execution time of the
program is very long as in the case described above,
and we can run the program only once, the proposed
method should be preferable.

Figure 8 shows the rectangle packing of ami49 ob-
tained by the proposed method. As can be seen from
the figure, a very tight packing can be obtained.

We also generated randomly two large problems
“rand1000” and “rand3000” including 1,000 and 3,000
rectangles respectively, and applied SA, TS, and the pro-
posed method. The numbers of evaluations were limited
to 10,000 and 1,000 for “rand1000” and “rand3000” re-
spectively, so that CPU time of each execution of the
proposed method would be about 15 minutes. The cool-
ing schedule of SA was adjusted to each problem, on the

other hand, the same parameters as for “ami49” were used
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in TS and the proposed method. Each method was exe-
cuted 50 times, and Table 2 shows the statistics of the
area of the best solution obtained in each trial. The av-
erage behaviors over 50 trials of each method applied to
“rand3000” are also summarized in Fig.9. The proposed
method provided better performance also in this experi-

ments.

Table 2 Statistics of 50 trials for large problems.

Area
Average Sta.rlld;?rd Best | Worst
deviation
rand1000
SA 42.63 0.90 40.74 | 45.10
TS 42.37 1.05 40.44 | 45.04
Proposed 42.26 0.97 40.18 | 44.62
rand3000
SA 196.1 7.8 180.8 | 213.3
TS 191.7 6.8 178.4 | 208.4
Proposed 190.7 6.5 174.3 | 205.5
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Fig.8 A rectangle packing obtained by the proposed method.
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Fig.9 Behaviors of methods applied to “rand3000”.

5. Concluding remarks

In this paper, a new approach for the rectangle pack-
ing problem based on tabu search heuristic has been pre-
sented. Each solution is defined by means of a sequence-
pair, and then any possible solution can be explored. As
far as the authors know, any approaches based on tabu
search utilizing sequence-pair have not been reported pre-
viously. A concept of stochastic tabu restrictions has been
also introduced.

The experimental result shows that tabu search pro-
vides better performance than the other methods in the
early stage of the search process, and also provides good
results comparable to simulated annealing at the end of
the search process. Stochastic tabu restrictions improve

the performance of tabu search.
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