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Dead Time Measurement of Stable System by Wavelet

under Closed Loop Configuration

Tetsuya TABARU* and Seiichi SHIN**

This paper shows that the wavelet based dead time measurement method, which has been already studied
for open loop systems, is also applicable to closed loop systems. The method measures a dead time of an LTI

system from a wavelet transform of a cross correlation function between its input and output. At first, we derive
the cross correlation function and its cross spectrum for the closed loop case. Next, its wavelet transform is
analyzed under certain conditions by using the relation among a wavelet transform of a correlation function and
the corresponding spectrum, which we have been already studied. The analysis shows that the dead time is also

measurable for the closed loop case although the cross correlation function, the cross spectrum and the wavelet

transform have more complicated forms than the open loop case.
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1. Introduction

We have proposed dead time (pure time delay, transport
delay) measurement methods by wavelet transform 0.2,
The methods measure the dead time from a continuous
wavelet transform of a cross correlation function between
an input and an output or a step response as follows:

(1) Calculate the wavelet transform of the cross cor-
relation function or the step response by using a com-
plex analyzing wavelet.

(2) Plot phase (argument) contour lines for the
wavelet transform (Fig. 1). Horizontal axis is assigned
for location parameter (time) and vertical for dilation
parameter (reciprocal of frequency).

(3) Then the contour lines concentrate at the dead
time to be measured as the dilation parameter tends to
zero.

Our methods have some advantages over conventional
methods. They are applicable even if a degree and a rela-
tive degree of a system are unknown. This is common to
both the step response based method U and the correla-
tion based method?. The latter method has additional
advantages. A limitation on a test input signal is rel-
atively small. The test signal is only required to have a
continuous spectrum in a certain frequency range. This is
a difference from conventional correlation based methods,

which often need special test signals like white noise. In
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addition, it is robust to disturbances if they have no cor-
relation with inputs. The method was applied to real sys-
tem: an air conditioner system® and a boiler plant >+ 9.
The results indicated efficiency of our method.

The preceding studies?® have provided the reason
why the method can measure a dead time of a system
when it is an open loop, LTI (linear time invariant) and
SISO (single-input single-output) system. However, no
analysis has been given for the case of a closed loop sys-
tem regardless of its importance. There are many systems
operated under closed loop conditions. For some of them,
a feedback control is necessary for stability. It means that
our preceding theory can’t cover such a case. In spite of
this, several applications of our method were carried out
for closed loop systems. Nakano et al. succeeded in the
dead time estimation of the boiler plant under feedback

control 29,

From the above background, we should an-
alyze the method under closed loop settings and investi-
gate its limitations. This is important when applying the

method to wide range of real systems.

phase contour

location parameter
Dead Time b

Fig.1 The dead time measuring method from a phase con-

o| dilation parameter «

tour plot of wavelet transform.
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The objective of this paper is to show that our method
is also applicable to closed loop LTI systems under certain
conditions. The target is limited to stable SISO systems,
so that it is relatively easy to calculate a cross correlation
function between an input and an output. The method
can be employed for both open and closed loop systems.
It follows that we don’t need to know whether an object
to measure is a part of a closed loop system or not. This
is a new advantage of our proposed method.

Section 2 describes our preceding studies related to this
paper. Problem settings are given in section 3. Section 4
is devoted to calculate a cross correlation function and
cross spectrum density between an input and an output.
Since both the correlation function and the spectrum den-
sity are too complicated to analyze directly, pre-analyses
are provided in section 5. Section 6 gives detailed analy-
ses on phase contour lines to reveal the capability of our
method. To achieve it, we will suppose additional con-
ditions so that the analyses are simple and practical. In
section 7, numerical simulations show validity of our dis-
cussion. Section 8 concludes this paper.

Notation: The set of real numbers will be represented
by R and the set of complex numbers by C. The asterisk
* denotes complex conjugation and Z denotes a phase (ar-
gument) value. The Fourier transform of a time-domain
signal z(t) is defined by X (w) = f_Jr:: z(t)e™7*tdt. In this
study, we use this definition to agree with the Laplace
transform (V. The inner product over the space of square
integrable functions L*(R) is defined by (z(t),y(t)) =
fj;o xz*(t)y(t)dt. The cross correlation function between
u(t) € R and y(t +t') € R is denoted by ¢u(e),y(e+e)(T)

and its definition is as follows:

T
butrsire(®) = Jim g [ utyte+t 4
Thus @) y(t++)(w), which is the Fourier transform of
Gu(t),y(t+¢')(T), is the cross spectrum density between u(t)
and y(t+t'). If t' = 0, they are simply denoted by ¢, (1)
and ®,,(w) respectively. Similarly, ¢..(7) is the auto
correlation function of u(t) € R and ®,.(w) is the power
spectrum density.

An analyzing wavelet is denoted by v¥(t). In this pa-
per, ¥(t) is supposed to be a complex function. Wavelet
bases are represented by . () and defined by ¢, () =
P((t — b)/a)/\/a. The parameter a is a dilation param-

eter (or scaling parameter, scale parameter) and b is a

(1) There is a slight difference from the definition in the
previous paper 7). It has the additional constant 1/v2m.
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location parameter (or translation parameter, shift pa-
rameter). The wavelet transform is defined by using this
basis as Z(a, b) = (¥a,5(t), z(t)). Note that the parameter
a is restricted to be positive real numbers in this paper.

The domain of the parameter b is R.
2. Preceding Results

This section gives a brief explanation about two preced-
ing results necessary for this paper. The first is a relation
between a wavelet transform of a correlation function and
the corresponding spectrum density 7 (Section 2.1). The
second is a theoretical study of our method for the open
loop case (Section 2.2).

2.1 Wavelet Transform of Correlation Func-

tion and Spectrum Density

Consider a wavelet transform of a cross correlation func-
tion ¢u.y (7). It is defined by ¢ay (a,b) = (Va.s(T), Puy (1)).
The following lemma is about a relation between the
wavelet transform ¢, (a,b) and the corresponding spec-
trum density ®., (w) 4 7.

Lemma 1. Assume that ®.,(w) and v(t) are n-
times differentiable, and there is a constant C, satisfy-
ing |pazy(7)| < Cs/(1 + |7|)" 2. Then, for an arbitrary

constant wo,

- (0 =
Pay(a,b) = —1/]\/((—1)¢z(t),y(t+b)(%)+kz=:le+Rn(1)

where

Va ) wo\ [Tk
Op = m%t),y(wb)(;) AT (wo +aX)dA

In addition, |R,| is bounded as follows.

va

|Rn|§—?max
n. w

oo

+
‘I’i?%,mb)(w) ‘/ [A" T (wo+aX)|dX

oo

Proof: See the preceding paper ). The conditions on
¥(t) and ¢(7) are needed to ensure the boundedness of
|R..|. |
The above lemma implies

() & P 22) )
if Qr and R, are sufficiently small. This equation allows
us to consider a wavelet transform of a correlation func-
tion as an estimate of the corresponding spectrum density.
In order to relate the wavelet transform with the spec-
trum density, we have to select an appropriate analyzing
wavelet such that @ becomes small. An example of such
a wavelet is a function that can be expressed as a product
of an even window function and a complex sinusoid e?*7¢,

that is
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Y(t) = w(i&)ej“"’t7 w(t) =w(-t) € R (3)

where w, is the center frequency, and w(t) is a window
function. In the rest of this paper, we assume use of an-
alyzing wavelets such that the approximation (2) holds,
and denote the center frequency of such a wavelet by wp.
2.2 Dead Time Measurement for Open Loop
Systems

We provide give a mathematical interpretation of our
proposed method for stable open loop systems. The ex-
planation is based on our past paper %) and the result of
the section 2.1. We also note that the same result can
be derived from a self-similarity property of an impulse
response around a dead time?.

The open loop system treated in our studies is a SISO
(single-input single-output) LTI (linear time-invariant)
system whose transfer function is G(s) = Gr(s)e™"*,
where GRr(s) is a strictly proper rational transfer function
with real coefficients and L is a dead time of the system.
An input and an output of the system are denoted by u(t)
and y(t) respectively.

From ®,(1)y(t45)(w) = Gr(jw) e 7 By (w)e’? and
the equation (2), it can be derived that /¢y, (a,b) =
LGRr(jwp/a) + (b — L)wp/a — L(0). This equation can
be rewritten as

b— LGRr(jwp/a) — L‘Z;uy(a’b) — 24(0) a+ L. (4)

Wp

On a phase contour line of ¢uy(a,b), Lpuy(a,b) takes
the same value. For smaller a (i.e. higher frequency),
LGRr(jwp/a) is almost constant because Gr(jw) becomes
steady value when w is higher than a certain frequency.
Consequently, the phase contour lines are expressed by

the following equation.
b=sa+L, s€R (5)

It implies that any contour line concentrates at b = L,

where the dead time is located, as a — 0.
3. Problem Settings

This section describes a closed loop system considered
in this paper.

Figure 2 illustrates a block diagram of the closed loop
system. It consists of a controller C' and a controlled ob-
ject P, which has a dead time element to be measured at
its input. Both of them are linear and time-invariant. In
addition, we assume that C is proper and Gr(s) is strictly
proper. An input and an output of the overall system are
r(t) € R and y(t) € R respectively. An output of the

controller is u(t) € R, which is connected to an input of
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P controlled object v(t)
c u(t) +
t —sL G t
T( ) ™ controller e’ B R(s) + y( )
. rational transfer
? dead time function

Fig.2 Closed loop system considered in this paper.

the controlled object. A disturbance v(t) € R is added
to the output of P. Assume that P and the overall sys-
tem are stable and v(¢) has no correlation with r(¢) (i.e.
Gro(T) = Pro(w) =0).

The state variable equations of the controlled object are

as follows
xp(t) = Apzp(t) + bpu(t — L) (6-a)
y(t)=c, zp(t) + v(t) (6-b)

where @, (t) is its state vector. This system is assumed to
be controllable and observable. The state variable equa-

tions of the controller are
®o(t) =Acxe(t) + [ber be2 | f,,(t) (7-a)
u(t) :cz‘wc () 4+ [der de2 | f ., (F) (7-b)

where f,,(t) = [r(t) v(t)]T and x.(t) is controller’s state
vector. Now, define x(t) = [x,(t) x.(t)]T. Therefore,

the overall state variable equations are the following.

z(t)=A1x(t) + Asx(t — L)

+B1 frv(t)+B2 fr'u(t_L) (8_3‘)
u(t)=Cuz(t) + Du f,,(t) (8-b)
y(t)=Cyx(t) + v(t) (8-c)

where
| 4, 0 | bpdeac] byel
A= berc? AC]’ A= [ 0o 0 ] (6-2)
BIZ[ N . [bpdcl bpdﬁ] (ob)
bcl bc2 0 0
Cu=lde2c} ¢f'], 0, =[] 0] (9-¢)
D, =[dc de2]. (9-d)

This is one of the simplest retarded systems®. With-
out loss of generality, we assume x(t) = f,,(¢t) = 0 for
t < 0 because the initial response doesn’t affect correla-
tion functions for stable systems.

This closed loop system involves various configurations
of a feedback controller for a SISO system. For exam-
ple, rational transfer function controllers, two degrees of

freedom controllers, and PID controllers.
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Remark: More precisely, if a PID controller has a
“ideal” derivative term, the controller is not included in
the problem settings. However, it doesn’t matter in ac-
tual control. |

The measurement procedure is the same as the open
loop case. In the above settings, an exogenous input is
added to r(t) (input of the overall system) instead of u(t)
(input of the controlled object), but this is not a funda-
mental difference. In fact, setting d.;1 = 1 allows us to

add the exogenous signal to u(t) directly.

4. Derivation of Cross Correlation Function

and Cross Spectrum Density

The aim of this section is to represent the cross corre-
lation function between u(t) and y(t) by using the auto
correlation functions of r(t) and y(t). Similarly, the cor-
responding spectrum density is also derived. They are
necessary for later analyses. First, we calculate ¢uy(7)
(section 4.1), and then obtain ®,,(w) (section 4.2). The
proofs of the lemma 2, 3 and 4 are straightforward calcu-
lations. Thus we only show brief outlines for them.

4.1

At first, consider the response of the state variable for
the system (8).

and its state variable equation can be written as
x(t) = L)+ (1),

where f(t) = Bi1f,,(t) + B2f,,(t
given by the following lemma.

If 2(t) = 0 and f(t) = 0 for ¢t < 0, the
response of the system (10) is

Cross Correlation Function

The system is a simple retarded system

Alm(t) + AQE(t — (10)

— L). The response is

Lemma 2.

s t
H=> / gr(t — &) £(§ — kL), (11)
k=0"0
where g (t) is defined recursively as follows.
et k=0,t>0
gr(t)=3 [Tt Ay g1 (€)dE, k> 1, £ >0
0,t<0
(12)

Proof: For t > 0, the response of the system (10) is®

x(t) = / 10 (£(6) + Ava(€ — L))de.

The result is obtained by applying this equation recur-
sively. |
The next lemma enables us to represent u(t) and y(t)
of the system (8) by r(t) and v(t).
Lemma 3. Consider the system (8).
fro() =0 for t <0, u(t) and y(t) are

If z(t) =
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Zguk Fru(€—kL)AE+ D, £,,(t) (13-2)
k=0

Zgy, JE—EkL)E+0(t),  (13-b)
where g, 1(t) and g, x(t) are defined by
gu,k(t) = [gur,k(t) guv,k(t)]
_ { Cu gk(t)Bl k=0 (14_a)
Cu(gr(t)Bi+gr-1(t)B2) k>
Gy k() =[gyri(t) gyv,k(t)]
=Cy(gr(t)B1 + gr—1(t)B2). (14-b)

Proof: The response of (8-a) is the sum of responses of

the following two retarded systems.

a:(t) :Alw
m(t) :Alm

() + As(t —
(t) + Asx(t —

L)+ Bif,,(t)
L)+ B> f,,(t

(15-a)
— L) (15-b)

From lemma 2, the responses of the above systems are

=Y [ o= 0Bse-kmac 6

t):Z/ ge-1(t —&§)Baf,, (§ —kL)dS (16-b)
k=1"0

and their sum is the response of the system (8-a). The
results are obtained by substituting the response into the
equation (8-b) and (8-c). |

Now, we can derive a lemma about the cross correlation

function ¢uy (7).

Lemma 4. Let ¢rrovo(T) = [¢rr(7) ¢UU(T)]T. Then
+oo +oo
¢uy Z / T - t ¢rr vu( kL)
k=—o00
+ Z / Guv,—k(t — T) oo (t — kL)dt
k=—o00
+ d52¢vv(7')- (17)

where hy,(t) = [he i (t) hon(t)]”

are defined as follows.

and h,x(t) and h, ()

/gmz t)gyre+1(§)dE, kB <0
1=1-%"0
hr,k(t):
dergyr i (t +Z / Gur1(=)gyr 41(6)dE,
0
{ E>1
Z / Fuot(€=t)gyoiri(©)dE, k<O
1=1—£”0
hv,k(t):

t) gy, k+1(€)dE,

de2gyv,k( +Z/ Juo,1 (€

k>1
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Proof: Let z; (¢
Suppose that f

= [TZqt—&)fi(—kiL)dE for i = 1,2.
|gi (t)|dt is bounded for each i. Then

+oo
foren () = / W(r = Dpsns(t — (ki — ka)L)dt.

f q1(§ —t)a2(
by using the relation and ¢, (7) = 0. The assumptions on

where h(t £)d¢. We can reach the result

stability of P and the overall system assure the bound-
edness of hy(t).

proof of lemma 6 though the calculation is performed in

The rest of the proof is similar to the

frequency domain. Thus, the details are omitted. |

4.2 Cross Spectrum Density

The calculation of the cross spectrum density takes has
steps. In the first step, U(w) and Y (w) are expressed by
R(w) and V(w) (lemma 5). This part uses the results of
the lemmas 2 and 3. The cross spectrum density between
u(t) and y(t) is derived in the second step (lemma 6).

Before the lemma 5, let us introduce Gr(s), Gc(s),
Gci(s), Gea(s), and Grp(s) as below:

GR(S):Cg(SI_Ap)_le (18)
Go(s)=[Goi(s) Goa(s)]

=c; (sI — Ac) [ ber bes ] + [der dea]  (19)

GLP(S) :GCQ (S)GR(S) (20)

Each transfer function can be interpreted as follows:
GRr(s) is the rational transfer function in the controlled
object, G¢1(s) is the transfer function of the controller C
from r(t) to u(t), Gea(s) is similar but from v(t), and
Grp(s) is the open-loop transfer function without the
dead time element.

Lemma 5. For the system (8),

Z TG k() Fro (@) + DuF o ()

(21-a)

oS}

Y(w)=> e "Gy x(jw)Fry(w) + V(w) (21-b)
k=1
where G, 1 (jw) and Gy« (jw) are the Fourier transforms
of gu.r(t) and gy x(t), and F,,(w) = [R(w) V(w)]” is the
Fourier transform of f. (¢). In addition, for w such that

|Grp(jw)| < 1, Gu.k(jw) and Gy k(jw) can be represented

as follows:
. _ GO(JW) - Du: k= B
G { Gurlio)Gotio), k21 o
Gyk(jw)=Gr(jw)(GLpr(jw))* " 'Go(jw).  (22-b)

Proof: The former part of the lemma (the equation (21))

is obvious from the equation (13), so we will only prove
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the latter.

Now define b,o € R* by byo = [b, 07 ]". Applying the
Laplace transform to the lemma 2 and using Az = byoCl,
we obtain Gri1(s) = Go(s)A2Gr = Go(s) bpoCuGr(5).
From a property of the inverse of block triangular matri-

ces, Go(s) can be expressed as follows.

(sT—A,)7 " 0
GO(S) = 1 —1
(sI—Ac) 'beacl (sI—Ap) ™" (sI—Ac)
It follows that Gr(s) = CyGo(s)bpo, Gc(s) = D. +
CuGo(8)B1, and Grp(s) = CuGo(s)bpo. Therefore
C.Go(s)Bi=Go(s) — D, (23)
Cqu+1(S):GLP(S)Cqu(S) (24)
CyGrt1(s) =Gr(s)CuGr(s) (25)

for k > 0. Now, we rewrite the equation (14) by applying

the Laplace transform.

Guk(8) =[ Gurk(s) Guuvi(s)]
_ CuGO(S)Bl, k=0
| Cu(Gi(s)B1+Gi—1(s)B2), k> 1
Gye(5) =[ Gyri(s) Gyur(s)]

= Cy(Gk(S)Bl =+ Gk_l(S)BQ)

The equation (22) is obtained by substituting the equa-

tions (23), (24), (25) and B> = bpoD. into the above

equations. Note that the summation of the equation (21)

has finite values only for w satisfying |Grp (jw)| < 1. I
The next step is a calculation of @,y (w).

Lemma 6. For w such that |Grp(jw)| <1,

—+o0
w)= Z H (jw) @,y o (w)e <M

k=—oc0

+ ) (Gip(w))

k=—oc0

G (jw) By (w)e 7 (26)

where @40 (w) = [®rr (W) Pyy(w)]” and

e Ger ) (Geai)l ),

H(jw) = k=1
(Gip ()™ H1 (i), k<

(Grr ()~ Hi(jw), E> 1

(1)

Proof: From ®,, = 0 (the assumption that v(¢) has no
correlation with r(t)),
G FrGy i Fro
=(Gur ' R+ G o V) (Gyrpn R+ Gy 1 V)
= G):”.,kr Gyr,k”érr + G:;.v,k’ Gyv,kllévv
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(w is omitted for simplicity). By using the relation and

the lemma 5, we can represent ®,,(w) as follows:

Duy(w) =U" (W)Y (w)

= Z Z G;r,kr(jw)Gyr’krr(jw)érr(w)ejw(k’_krr)L
k'=0k'"" =1
+ Z Z G;:'u,k’(jw)Gyv,k:”(j(l.))@vv(w)ej“’(k’—k”)L
k=0 k=1
+de1 Z Gyr,krr(jw)q)rr(w)e—jwkuL
k=1

=+ dc? Z Gyv’krr(jw)@vv(w)e—jwk’!L
k=1

£ Gl ()P @)+ s ().
k=0

Let k = k" — k'. Then the first term of the equation

becomes
Z Z Gir,k’(jw)Gyr,lrFk’(jw)éﬁ‘(w)eijwkll
k'=0k=1—Fk’

= Z Z G;r,k’(jw)Gyr,k+k'(jw)@rr(w)e_j“kL_

k=—oco k’=p
ktk!>1
The same holds for the second term. For integers k and
k', it is easy to confirm the following facts.
eFork>0: k' >0andk+k >1=k >0.
eFork<0: k" >0andk+k >1=k >1-k
Thus, the previous representation of ®,,(w) can be

rewritten as

—+oco
Doy (W) =der Y Gy (jw) B (w)e ™I
k=1

+o00 +oo

+3 D Gl ()Gt () B ()T

k=1k"=0

0 oo
+ 3D Gl (0)G s () By (w)e

k=—oco k'=1—k

400
Hder Y Gy p(jw) o (w)e ™I
k=1
400 +oo
DD G (G0) Gy i (J0) B (w)e I
k=1Ek'=0

0 too
+ D D Gl ()G () s ()T

k=—oco k/=1-k

0
+ Y Gl (19) B (@) deaun ().

k'=—oc0

Now, let Hy(jw) = [Hrr(jw) Hv,k(jw)]T and
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(

D Gk (j0)Gyrerr ()

k=0
Hr,k(jw): + dchyr,k(j(lJ), k Z 1
Z Gt (JW)Gyr ogr (Jw), k<0
L k'=1—k
D Gl (0) Gy e ()
k'=0
H, k(jw) = + de2Gyor(jw), k> 1

Z G;v,k’ (jw)Gyv,k—Hc’ (Jw)y k S 0.
\ k/'=1-Fk

Then the equation (26) is obtained by substituing the
equation (22-a) into G, _(jw).

The equation (27) can be proven by the following
way. From the equation (22), for k > 1, Guro(jw) =
Ge1(jw) = der, Guri(jw) = (Grp(jw))"Ger(jw), and
Gyri(jw) = Gr(jw)(Grr(jw))*'Ge1(jw). By substi-

tuting them into H, (jw), we can rewritten it as

Gr(jw)|Geor () (Grp ()™ |Gre(iw)™ .

k'=0
If |Grp(jw)| < 1, the summation is finite and
Gr(jw)|Go1(jw) P (Grp(jw)
1—|Grp(jw)l? '

Also for k < 0, a similar calculation yields the result. The

H,p(jw) =

same way holds for H, 1 (jw). |
5. Pre-analyses of Phase Contour Lines

As seen in the previous section, both the cross correla-
tion function and the cross spectrum density have com-
plicated forms for the closed loop case. It is difficult to
analyze phase contour lines directly. Thus, this section
provides preparations for the later analyses. In the sec-
tion 5.1, we compare the cross correlation function with
the open loop case and consider the outlines of the phase
contour plot. Section 5.2 gives an analysis for individual
terms of ¢,y (7) and @,y (w). Both of them are composed
of the terms related to an integer times the dead time of
the system. We investigate phase contour lines of each
term separately.

5.1 Difference from Open Loop Case and Out-

lines of Phase Contour Lines

For open loop systems, if there is no correlation between
u(t) and v(t),

+oo
fun(7) = / gr(r — Dibua(t — L)1, (28)

where gr(t) is the impulse response of Gr(s). Let us com-

pare this equation and the equation (17). We will notice
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dilation parameter

b=-L b=0 b=L b=2L
location parameter

Fig.3 Phase contour line plots of the closed loop case. The
contour lines may concentrate at every b = kL (k =
s, —1,0,1,2,---) as @ — 0.

the following facts.
(1) The closed loop one consists of multiple terms
and contains ¢,,(t — kL) and ¢, (t — kL) for every in-
teger k, whereas the open loop one has only ¢, (t — L),
which corresponds to k = 1.
(2) Each integral is a convolution of two functions:
auto correlation function shifted along the time axis by
kL, which is an integer times of the dead time, and a
function that consists of impulse responses of system
elements and doesn’t contain a dead time term. The
form is common to both open and closed loop system.
When the measured system is open loop, the phase con-
tour lines converge at only one point (0,L). For closed
loop, however, the former fact implies different behav-
iors. The contour lines can be drawn into multiple points.
Moreover, the contours become complicated due to inter-
actions among the terms. The later indicates that each in-
tegral has the same form even if the system is closed loop.
If we can extract each term from the equation (17) and
calculate its wavelet transform, it could be expected that
the phase contours of the wavelet transform concentrate
at b= kL (k is integer). From the above observation, for
the closed loop systems, we can imagine that the phase
contour lines of ¢,y (a,b) gather around multiple points
where the location parameter is equal to an integer times
of the dead time (Fig. 3).

5.2 Phase Contour Analysis for Each Term

For the closed loop case, ¢uy,k(7) is the sum of multi-
ple terms related to different time delays. We will ana-
lyze phase contour lines for each term. The analysis is a
preparation for the next section. Our interest is an anal-
ysis of the phase contour lines when a approaches zero.
In other words, behaviors in relatively higher frequency
bands. Therefore we can assume |Grp(jw)| < 1 and em-
ploy the lemma 6.

At first, we denote the k-th term of the first summation

of the equation (26) by ®.,,,(w), that is

By k(W) = Hy,(jw) By vy (w)e T (29)

It is possible to relate ®,,,k(w) with the k-th term in the

first summation of the equation (17), that is

+oo
oy () = / BT (r — 1), (t— L)L (30)

This is due to the stability assumption of the system. In
the rest of the paper, we ignore the second line of the
T Buyn(w).

k=—o00

equation (26) and assume P,y (w) &
Let ¢uy.k(a,b) be the wavelet transform corresponding

t0 ®uy,k(w). The result of the section 2.1 gives the fol-

lowing expression.

'/’_(O)Hk(&) q,mw(&) giwp(b=kL)/a

va a a

From (27), LH(jw) = LGr(jw) + (k — 1)LGLrp(jw).

Thus Zpuy,k(a,b) = LGr(jwp/a)+(k—1)LGLp(jwp/a)—

LY(0) + (b — kL)wp/a because ®,,(wp/a) is real. Con-

sequently, phase contour lines for ¢,y x(a,b) can be ex-

quy,k(aa b) ~

pressed as

o LG Gt

P

— L buy k(a,b) — L1p(0))a + kL. (31)

This equation shows that the contour lines for integer k
converge at b = kL as a — 0 (Fig. 3).

The result does not directly mean that the phase con-
tour lines concentrate at b = kL for each integer k. We
plot the phase contours of <;~Suy (a,b), that is the sum of
Guy.r(a,b). Thus Ly, (a,b) is affected by multiple terms
and its behavior is not simple in general. Nevertheless, it
implies that b = kL are candidate points where the phase
contours gather. It agrees with the expectation in the
section 5. 1.

Remark: When defining ®,,,1(w), the second sum-
mation of (26) is ignored. We will note a phase value
for each term of the summation. In fact, the phase
value of (G p(jw)) ¥ Gy (jw) is identical to the one of
H(jw), that is Z((GLp(jw)) "Ges(jw)) = LGr(jw) +
(k—1)LGrp(jw) = LHr(jw). It can be proven by using
Grp(jw) = Ge2(jw)Gr(jw). Hence even if the defini-
tion of @4,k (w) includes a term in the second summation,
there is no effect on phase contour lines related to e /%%,
However, the later analyses become too difficult if adding

the second summation. Thus we don’t discuss any more.
6. Detailed Analyses of Phase Contour Lines

The objective of this section is to analyze the phase

contour lines for the closed loop case by using the above
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results. In order to complete our analysis, additional as-
sumptions are necessary. Thus we focus two cases with
appropriate conditions. The one case is that each term
of the equation (17) is localized in time domain, so that
interactions between the terms can be ignored. The result
of the section 5.2 is available for this case. The other is
that the gain of the loop transfer function is suppressed.
In fact, the result of the latter is identical to the open
loop case because &uy,k(a,b) becomes negligible except
for k = 1.

6.1 Case 1: Each Term Is Separated in Time

Domain

Foo Puy, k(1) for

k=—o00

Recall the assumption ¢u,(7) =
simplicity. If the contribution of Guy r(7T) t0 Guy(7) is
dominant around 7 = kL, ¢uyi(a,b) is also expected
to be dominant and a good approximation of ¢.,(a,b)
around b = kL. We show below that if ¢y w0 (7), hi(T)
and 9 (t) are exponentially decreasing function localized
around the origin, then ¢, 1(a,b) is also exponentially
decreasing and localized around b = kL. Now, suppose
three conditions.

(1) There exist positive constants C,, Cy, and
such that |¢.(7)] < Cre @™l and |¢u(7)] <
C’vefo‘”’lTl. Auto correlation functions of usual signals
satisfy this condition except for periodic signals.

(2) There exist positive constants C, and «j such
that |h, k()] < Cre™*l and |h, . (t)] < Cre~orlt
Both h,(t) and h,r(t) are composed of convolution
integrals between impulse responses of linear stable sys-
tems. Hence they are exponentially decaying functions.

(3) There exist positive constants Caw and aq. such
that |1(t)] < Cawe™®*!!l. Tt means the analyzing
wavelet ¢ (t) is localized around the origin and decays
exponentially.

Under the assumptions, we have the following lemma.

Lemma 7. If the above three conditions are satis-

fied, there is a positive constant Cj such that
b —Blb—kL
|Buy.i(a,b)] < Cge™ 1"+ (32)

where 8 = min{a,., an, ®aw/a}.
Proof: Consider two exponentially decaying functions.
Their convolution is also exponentially decaying and its
decay rate is governed by the slower one. |
Lemma 7 shows that ¢, x(a,b) becomes exponentially
smaller as |b—kL| is larger and the decay rate is governed
by the slowest time constant. We need to take acount of
ary and ap (@aw/a is negligible because it grows when
a — 0). If the dead time L is long such that e ®m%

apL

and e~ are sufficiently small, ¢.,.x(a,b) is localized

around b = kL and almost vanishes at b > (k + 1)L and
b < (k — 1)L. Therefore we can approximate ¢.,(a,b)

around b = kL as

Puy(a,0) = duy.(a,b). (33)

When this approximation is valid for some integers k,
as a tends to zero, the phase contour lines of ¢uy(a,b)
converge at the one of b = kL such that the approxima-
tion holds. That is, the contour lines concentrate around
multiple points. Nevertheless, the dead time is measur-
able from the interval of the points because the interval
is L.

As seen above, for the closed loop case, there is a pos-
sibilities that the phase contours concentrate not only at
b = L but also multiple points satisfying b = kL (k is
integer). It also means that the contours may converge at
a point where the location parameter is negative. These
properties differ from the open loop case.

6.2 Case 2: Open-Loop Transfer Function Has

Small Gain

Consider the equation (27). If |GLp(jw)| < 1, |Hk(jw)|

takes a maximum at k = 1 and decreases as |k — 1| is

larger. In addition, if |Grp(jwy/a)| < 1, we can derive

|Gun i (a,0)] = |G Lp (jwp /@) |Gy 1(a,b).

Therefore |puy x(a,b)| < |Puy,1(a,b)| for a such that
|Grp(jwp/a)| is sufficiently small and ¢.,(a,b) can be

approximated as

Puy (a,0) = Guy.(a,b). (34)

Consequently, ¢y, 1(a,b) is dominant over all terms.
As seen in the previous section, phase contours of
$uy.1(a,b) are expressed by
o LG (i) = Loy () = L0(0)

Wp

+ L.(35)

For the case considered here, the equation also represents
the phase contours of ¢,y (a,b). This is equal to the equa-
tion (4), which was derived for the open loop case. Hence
the contour lines concentrate at b = L as a — 0. It means
that the phase contour plots are not affected by whether
a target system is open loop or closed loop, if the open-
loop transfer function has sufficiently small gain in higher

frequencies.
7. Numerical Example

This section gives two numerical simulations to illus-
trate validity of discussions in the preceding sections. The
former example corresponds to the section 6.1 and the

latter to 6. 2.
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r(t) 4:?—> C(s) P(s) y(t)

Fig.4 Configuration of numerical simulations.

Figure 4 shows a configuration of a controller C' and a
controlled object P in the simulations. Both P and C
were SISO LTT systems and only P had a dead time ele-
ment on its input. We added exogenous inputs r(¢) and
got u(t) and y(t), which were inputs and outputs of the
controlled object respectively. The purpose of the simula-
tion was to measure the dead time of P from the wavelet
transform of the cross correlation function between u(t)
and y(t).

Example 1: The transfer functions of P and C were

5 e
s+5

0.1

P(s) = % CO(s) =0.98 + - (36)

The dead time of P was 2 seconds. The number of samples
was set to 8192 and the sampling rate was set to 0.1 sec-
ond. We generated the input signal r(t) by applying the
filter whose transfer function was 1/(5s + 1) to normally
distributed random numbers with variance 1.0. This sim-
ulation was carried out under disturbance free. An ana-
lyzing wavelet was chosen to be the Gabor function, which
is a product of the Gaussian window function and a com-
plex sinusoid, i.e. ¥(t) = exp(—wit?/27?) exp(—jwyt). In
this simulation, wp, and v were set to 1 (rad/sec) and 27
respectively.

Figure 5 is a phase contour plot of ¢, (a,b). The hori-
zontal axis stands for shift parameter (time) and vertical
axis for dilation parameter. Phase contour lines converge
at multiple points b = —4,—2,0,2, -, i.e. every two sec-
onds, as a tends to zero. The result shows the validity of
the analysis in the section 6. 1.

Example 2: The transfer functions of P and C were

1

P = = —5s = V. ;.
(s) o yen LI C(s) =05+ . (37)

The dead time was 5 seconds. We used the same settings
as the Example 1 for the number of samples, the sampling
rate, the input signal r(t), and the analyzing wavelet.
Figure 6 illustrates a phase contour plot. Solid lines
are contours for the closed loop case and dashed lines for
open loop. Both contour lines resemble each other and
concentrate at b = 5, where the dead time is located, as
a tends to zero. This agrees with the discussion in the

section 6. 2.
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0.6+

0.51
0.4+

Y ——

dilation parameter

0.31

0.2+

1 %{%M 4

;

A0

0.0+— L—
2

4 -3 —

D
e
T

T T T T T T 1

3 4 5 6

-
location parameter (sec)

Fig.5 Phase contour line plots of Example 1.

dilation parameter

T T Trrrrrrrrrrrrrr e e e T
3.0 3.5 4.0 45 5.0 5.5 6.0 65 7.0
location parameter (sec)

Fig.6 Phase contour line plots of Example 2.

8. Conclusion

This paper describes that our wavelet based method for
dead time measurement is applicable to both open loop
systems and stable closed loop systems. We derive a cross
correlation function between an input and an output for
a measurement target under a closed loop configuration.
Our method uses the wavelet transform of the correla-
tion function and its phase contour line plots. We show
a possibility that the phase contour lines of the wavelet
transform may concentrate at multiple points, which cor-
respond to an integer times the dead time of the system,
under certain conditions. Another case is also considered.
If the open loop transfer function satisfies a condition on
its gain, the phase contour lines behave similarly to the
open loop setting. For both cases, our proposed method
can measure the dead time. Numerical experiments are
carried out to show the validity of the theoretical analyses.

There are some further researches: a theoretical anal-
ysis for the case of unstable systems, and evaluation of

effects by disturbances.
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