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Graph-Dependent Sufficient Conditions for Synchronization of

Network Coupled System with Time-delay

Masateru Amano∗, Zhi-wei Luo∗∗ and Shigeyuki Hosoe∗

This paper studies the synchronization of network coupled systems consisting of many identical dynamic sub-

systems as well as network coupling with interaction time-delay. Based on graph theory and Lyapunov stability

theory, the paper gives two sufficient conditions for the total system synchronization with respect to the graph

structures of network coupling interaction, one is delay-independent and the other is the delay-dependent. These

two conditions are compared with Wu’s research 6), 7), which was established without taking interaction time-

delays into account. Simulations with two examples show the influences of the interaction time-delay as well as

graph structures on the overall synchronization of subsystems.
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1. Introduction

As shown in many examples such as Benard Convec-

tion, Belousov-Zhabotinsky Reaction, group of automo-

biles and activity of biological cells, some kinds of spa-

tiotemporal pattern are formed when many identical dy-

namical systems are coupled through the network cou-

pling interaction. Even in case when dynamics of each

subsystem itself are very simple, coupled systems gener-

ate the complex pattern. These interesting behaviors of

network coupled systems, called as complex systems or

self -organization, are studied in several regions and the

application of these phenomena to the engineering is ex-

pected 1). An typical application of pattern formation on

coupled systems for example is locomotion of legged robot

using a central pattern generator 2), 3).

These behaviors of network coupled systems are

strongly dependent on the coupling structure and the

graph structure of network which constitutes interaction

is an important factor because it determines the perfor-

mance of coupled systems as well as interaction terms

with each subsystems. The analysis of coupling structure

to realize desired states of coupled systems have been per-

formed by several researches. Yuasa and Ito formulated

coupled systems whose subsystems dynamics are the gra-

dient systems generated by potential functions defined on
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a graph as the coupling interaction and studied the con-

trol theory of coupled systems 4), 5). Wu et al. gave a suf-

ficient condition for synchronization of systems composed

of identical dynamic subsystems and coupled through lin-

ear diffusive element. They reduce the condition to an

eigenvalue problem of Laplacian matrix characterizing

graph structure of network coupling interaction 6). Ad-

ditionally, based on graph theory, they showed the effect

of edges and vertices of graph on synchronization of cou-

pled systems 7).

As well as the coupling structure, time-delays within

coupling interaction are also a typical factor character-

izing coupled systems, since time-delays within coupling

interaction often arises due to information communica-

tion and energy transportation 8)∼10). As is well known,

time-delays degrade the system performance and desta-

bilize them, in the worst case when the controllers are

designed without considering the time-delays 11)∼13).

This paper takes into account the time-delays within

interaction and studies the synchronization of network

coupled systems with respect to the graph structure of

network and interaction terms with each system. For

simplicity, in this paper only the case of a constant time-

delay will be considered. We first formulate a mathemat-

ical model for the network coupled systems consisting of

many identical dynamic subsystems. Following Wu, the

network coupling interaction is represented in this model

by a Laplacian matrix and a matrix representing the in-

teraction strength in Kronecker product form. Based on

stability analysis of delayed system using Lyapunov func-

tional, we then derive delay-dependent as well as delay-

independent sufficient conditions of the synchronization

for coupled systems with respect to the coupling struc-
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ture. Two numerical examples are given to show the ef-

fectiveness of our studies. In first example, for a given

graph of network coupling and interaction strength, the

effect of time-delay’s influence on the overall synchroniza-

tion is compared with Wu’s result, which does not take

account for time-delay. The second example is given un-

der different level of interaction strengths to show that, for

two different types of coupling graph structures consist-

ing of same numbers of subsystems, the graph structures

influence the system synchronization in a nonlinear way.

In the following, problem formulation and preliminaries

are given in section 2. The delay-independent synchro-

nization condition is derived in section 3, and Section4

yields the delay-dependant one. We discuss our results

in section 5 by using two numerical examples of networks

consisting of many Chua’s oscillators as its subsystem.

Finally, Section 6 concludes the paper.

2. Problem Formulation and Preliminaries

Let us consider m identical dynamic subsystems that

interact with one another via a network. Generally, the

state equation of each subsystem is given by

ẋi = f(xi, t) (1)

where xi ∈ Rn, i = 1, · · · , m is the state vector. Follow-

ing Wu’s formulation 7) and taking into account about the

time-delay within coupling interaction, the state equation

of the whole system including network coupling interac-

tion can be described as

ẋ = I⊗f(xi, t)+G0⊗D0x+G1⊗D1x(t−τ) (2)

G⊗D =




G11D · · · G1mD
...

. . .
...

Gm1D · · · GmmD




where x =
[
xT

1 · · ·xT
m

]T ∈ Rmn is the state of the net-

work coupled systems, G0,G1 ∈ Rm×m are symmet-

ric matrices solely determined as will be described be-

low by the corresponding graph structure of the network,

D0,D1 ∈ Rn×n are real matrices denoting the coupling

strength between subsystems, and τ > 0 is a constant

time-delay. ⊗ is Kronecker product (see appendix A for

more information on its properties).

We shall study the synchronization of all subsystems

with respect to the graph structure under the condition

of interaction time-delay. We define the synchronization

of the total system as follows.

Definition. A network coupled systems with state

v1

v2 v3

Subsystem1

Subsystem2 Subsystem3

Fig. 1 Network system and Its Connectivity Graph

equation (2) synchronizes if the states of any two subsys-

tems, xi and xj , satisfy ‖xi − xj‖ → 0 as t →∞.

Associated with the graph structure of network interac-

tion, the adjacency matrix A is defined in the following

manner.

Definition. The adjacency matrix A = [Aij ] of a

graph having p vertices is defined as follows: Aij = q if

there are q edges connecting vertex i and vertex j in graph

and Aij = 0 otherwise. Here, we assume that the network

does not include any self-loops.

Definition. For an n × m matrix B, Φ(B) is a di-

agonal n × n matrix, of which the diagonal elements are

the row sum of B.

Now, with above definitions, Laplacian matrix G is de-

fined as follows.

Definition. Laplacian matrix G is constructed from

matrix A and Φ(·) as: G = Φ(A)−A.

An example of network coupled systems and its corre-

sponding graph are shown in Fig. 1. Adjacency matrix

A and the Laplacian matrixG of this system are as below:

A =




0 0 2

0 0 1

2 1 0


 ,G =




2 0 −2

0 1 −1

−2 −1 3




Observe that G is symmetric, all of its off-diagonal ele-

ments are nonpositive and the sum of elements in each

row is zero. These properties are easily verified by above

definitions. With this in mind, we give the following def-

inition.

Definition. By W , we denote the set of all irre-

ducible matrices such that the off-diagonal elements are

all nonpositive and the sum of elements in each row is

zero.

If G in W , then the graph corresponding to this G is

connected 14). In this paper, it is assumed that G0 +G1

is irreducible, which means that the total system is con-

nected through either time-delay or non-time-delay paths.

However, G0 and G1 themselves may not be connected.

In this case they can always be decomposed into matrices

in W as:
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G = CT




G01 0

. . .

G0h

0 0



C,G01, · · · ,G0h ∈ W

(3)

where C is a permutation matrix, and h is the number of

connected graphs contained in the network. For matrix G

in W , the following theorem gives important properties.

Theorem 2.1. 7) If B ∈ Rm×m is a symmetric ma-

trix in W , then B is positive semidefinite and has a zero

eigenvalue with the corresponding eigenvector [1 · · · 1]T .

Moreover, the zero eigenvalue has multiplicity 1.

3. Graph Structure and
Delay-Independent Synchronization

In this and next sections, we study the synchroniza-

tion of the system, focusing on the network graph struc-

ture together the time-delay. This section presents a syn-

chronization condition which is independent of the time-

delay. This will be accomplished by employing a Lya-

punov functinal 11)∼13).

3. 1 Delay-independent synchronization condi-

tion

To begin with, we need the following definition on V -

uniformly decreasing function.

Definition. 7) Given a square matrix V , a function

ffi(x, t) : Rn+1 → Rn is V -uniformly decreasing if there

exits c > 0 such that for all x,y, t

(x− y)TV (ffi(x, t)− ffi(y, t)) ≤ −c ‖x− y‖2 .

By assuming the V -uniformly decreasing property for

subsystems (1), we give the following sufficient condition

for synchronization of the network coupled systems (2):

Theorem 3.1. Let K be a matrix such that f(xi, t)

+Kxi is V -uniformly decreasing for some symmetric

positive definite matrix V . If there exits a symmetric pos-

itive definite matrix Q and a symmetric matrix U ∈ W

such that

(U ⊗ V )(G0 ⊗D0 − I ⊗K)

+
1

2
(G1 ⊗D1)

TQ(G1 ⊗D1)

+
1

2
(U ⊗ V )TQ−1(U ⊗ V ) ≤ 0, (4)

then the system (2) synchronizes.

Proof. Define a Lyapunov functional g as follows:

g =
1

2
xT (U ⊗ V )x+

1

2

∫ 0

−τ

xT (t + θ)

× (G1 ⊗D1)
TQ(G1 ⊗D1)x(t + θ)dθ. (5)

Since the second term of (5) is positive, Lyapunov func-

tional (5) is positive semidefinite and satisfies the follow-

ing inequality:

g ≥ 1

2
xT (U ⊗ V )x ≥ 0.

By Theorem.2.1, U is positive semidefinite and has a zero

eigenvalue of multiplicity 1 with eigenvector [1 · · · 1]T .

Due to these properties of U and the positive definiteness

of V , g(x(·)) is zero if xi = xj for all i, j, and is positive

otherwise. The time derivative of g along trajectories of

system (2) is:

ġ =xT (U ⊗ V ) {I ⊗ f(xi) + (I ⊗K)x}
+ xT {(U ⊗ V )(G0 ⊗D0 − I ⊗K)

+
1

2
(G1 ⊗D1)

TQ(G1 ⊗D1)
}
x

+ xT (U ⊗ V )(G1 ⊗D1)x(t− τ)

− 1

2
xT (t− τ)(G1 ⊗D1)

TQ(G1 ⊗D1)x(t− τ).

(6)

By the marix inequality (B. 1) in Appendix B, we get:

2xT (U ⊗ V )(G1 ⊗D1)x(t− τ)

≤ xT (U ⊗ V )TQ−1(U ⊗ V )x

+ xT (t− τ)(G1 ⊗D1)
TQ(G1 ⊗D1)x(t− τ). (7)

Moreover, from Wu’s research 7), by the definition of V -

uniformly decreasing and U ∈ W , we obtain:

xT (U ⊗ V ) {I ⊗ f(xi) + (I ⊗K)x}
≤ −cα1i ‖x1 − xi‖2 − · · · − cαjm ‖xj − xm‖2

= −cxT (U ⊗ I)x, (8)

where αjm is a positive constant determined by matrix

U ∈ W 7). Hence, it follows from (4),(6),(7) and (8) that

ġ ≤ −cxT (U ⊗ I)x.

The time derivative of g is zero if xi = xj for all i, j, and

is negative otherwise. Thus, Lyapunov functinal g along

trajectories of system (5) approach to zero, and the states

of any two subsystems, xi and xj , satisfy ‖xi − xj‖ → 0

as t →∞. Therefore system synchronization is proved by

Lyapunov’s direct method.

Note. For the network coupled systems without

time-delay, Wu derived a sufficient condition for synchro-

nization 7)

0 ≥ (U ⊗ V )(G0 ⊗D0 +G1 ⊗D1 − I ⊗K). (9)

Compared this, since
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0 ≥ (U ⊗ V )(G0 ⊗D0 − I ⊗K)

+
1

2
(G1 ⊗D1)

TQ(G1 ⊗D1)

+
1

2
(U ⊗ V )TQ−1(U ⊗ V )

≥ (U ⊗ V )(G0 ⊗D0 +G1 ⊗D1 − I ⊗K),

condition (4) of Theorem.3.1 may look more conservative

than the result of Wu. However, our condition covers the

case constant interaction time-delay is included, which is

not considered in the Wu’s result 7).

3. 2 Case study when U = G0 +G1 2W
A key point in Theorem.3.1 is the selection of the matrix

U . An easy but most promised way is to setU = G0+G1.

Note that by assumption, G0 + G1 belongs to W (See

Fig. 2). Also, let us fix Q as Q = I. then we obtain from

(4):

G2
0 ⊗ (V D0 +

1

2
V 2) +G2

1 ⊗ (
1

2
DT

1D1 +
1

2
V 2)

+G1G0 ⊗ (V D0 +
1

2
V 2) +G0G1 ⊗ 1

2
V 2

− (G0 +G1)⊗ V K ≤ 0.

Using matrix inequality (B. 1) in Appendix B, we have:

G0G1 +G1G0 ≤ G1G1 +G0G0.

Therefore, the condition for synchronization is converted

to

M0 +M1 ≤ 0 (10)

M0 = G2
0 ⊗ (

3

2
V D0 + V 2)−G0 ⊗ V K (11)

M1 = G2
1 ⊗ (

1

2
DT

1D1 + V 2 +
1

2
V D0)−G1 ⊗ V K.

(12)

Thus the sufficient condition for this is obviously that

both M0 and M1 are negative semidefinite. By apply-

ing Theorem.Appendix A.1 in Appendix A to (11), (12),

and noting that λ(G0) ≥ 0, λ(G1) ≥ 0, we then have the

following lemma:

Lemma 3.1. Let K be a matrix such that f(xi, t)

+Kxi is V -uniformly decreasing for some symmetric

positive definite matrix V . The system of (2) synchro-

nizes if for all nonzero eigenvalues λi(G0), λi(G1)

0Graph G
Graph G 1

delay

delay

Fig. 2 Case: G0 +G1 ∈ W

λi(G0)
{

3

2
(V D0 +DT

0 V ) + 2V 2
}

− (V K + V KT ) ≤ 0 (13)

λi(G1)
{
DT

1D1 + 2V 2 +
1

2
(V D0 +DT

0 V )
}

− (V K + V KT ) ≤ 0. (14)

Proof. By Theorem.Appendix A.1, the eigenvalues

ofM0+M
T
0 are the eigenvalues of λ2(G0)

{
3/2(V D0 +DT

0 V )

+2V 2
}
− λ(G0)(V K + V KT ). Since λ(G0) ≥ 0 and

(13), M0 is negative semidefinite. Similarly M1 is nega-

tive semidefinite by λ(G1) ≥ 0 and (14). Thus M0 +M1

is negative semidefinite. The lemma is proved.

It is easy to see that if V D0 ≤ −(DT
1D1 + 2V 2) ≤ 0

and V K is positive semidefinite, then system can syn-

chronize by Lemma.3.1. However, in many case V K is

negative semidefinite, since there is trade-off between K

and the V -uniformly decreasing assumption of f(xi, t).

Therefore it is preferable for system synchronization that

V D0 ≤ −(DT
1D1 + 2V 2 + X) ≤ 0, where X is posi-

tive semidefinite determined by λi(G0), λi(G1), and K.

Furhermore note that the upper bound ofD0 includes not

only λi(G0), λi(G1), and K but also D1. This implies

that the increase of no-delayed coupling strength and the

decrease of delayed one have the effect of preserving the

synchronization.

4. Delay-Dependent Synchronization

The synchronization conditions derived in the last sec-

tion are inherently conservative since they guarantees the

synchronization regardless of the length of time-delay. In

this section, we derive a delay-dependent synchronization

condition for the network coupled systems (2). In The-

orem.3.1, we assumed that the subsystem dynamics are

V -uniformly decreasing. In this section we have to fur-

ther assume the Lipschitz continuity on (1).

Assumption 4.1. Function f(x, t) is Lipschitz con-

tinuous in x with a Lipschitz constant γ, i.e.,

‖f(x, t)− f(y, t)‖ ≤ γ ‖x− y‖ for all x,y, t.

The following theorem gives the delay-dependent condi-

tions for synchronization.

Theorem 4.1. Suppose that f(xi, t) is Lipschitz

continuous in x with constant γ. Let K be a matrix

such that f(xi, t) +Kxi is V -uniformly decreasing for

some symmetric positive definite matrix V . For given a

scalar τ∗ > 0, if there exits a symmetric matrix U ∈ W

and constants r1, r2, r3 > 0 such that

(U ⊗ V ) (G0 ⊗D0 +G1 ⊗D1 − I ⊗K)
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+
1

2
τ∗

{
r1γλmax(D

T
1D1)λmax(G1) (G1 ⊗ I)

+ r2 (G0 ⊗D0)
T (G0 ⊗D0)

+ r3 (G1 ⊗D1)
T (G1 ⊗D1)

+ r−1
1 (U ⊗ V ) (U ⊗ V )

+ (r−1
2 + r−1

3 ) (U ⊗ V ) (G1 ⊗D1) (G1 ⊗D1)
T

× (U ⊗ V )} ≤ 0, (15)

then system (2) synchronizes for any constant delay-time

τ ∈ [0, τ∗].

Proof. Introduce the Lyapunov functional g as:

g =
1

2
xT (U ⊗ V )x

+
r1

2

∫ 0

−τ

∫ t

t+θ

‖(G1 ⊗D1)F (s)‖2 dsdθ

+
r2

2

∫ 0

−τ

∫ t

t+θ

‖(G0 ⊗D0)x(s)‖2dsdθ

+
r3

2

∫ 0

−τ

∫ t

t−τ+θ

‖(G1 ⊗D1)x(s)‖2dsdθ, (16)

where F (·) = I ⊗ f(xi(·), ·). Following the same reason-

ing as in the proof of Theorem3.1, Lyapunov functional

(16) is positive semidefinite and takes zero-value only if

xi = xj for all i, j. From (2), we have

x(t− τ) = x(t)−
∫ 0

−τ

ẋ(t + θ)dθ

= x(t)−
∫ 0

−τ

{F (t + θ) + (G0 ⊗D0)x(t + θ)

+ (G1 ⊗D1)x(t− τ + θ)} dθ.

Substituting the above equation into (2), we get:

ẋ =F (t) + (G0 ⊗D0 +G1 ⊗D1)x

− (G1 ⊗D1)

∫ 0

−τ

F (t + θ)dθ

− (G1 ⊗D1)

∫ 0

−τ

G0 ⊗D0x(t + θ)dθ

− (G1 ⊗D1)

∫ 0

−τ

G1 ⊗D1x(t− τ + θ)dθ.

(17)

Using this, the time derivative of g along the trajectories

of (2) is computed as

ġ =xT (U ⊗ V ) {F (t) + (G0 ⊗D0 +G1 ⊗D1)x}

− xT (U ⊗ V )(G1 ⊗D1)

∫ 0

−τ

{F (t + θ)

+(G0 ⊗D0)x(t + θ) + (G1 ⊗D1)x(t− τ + θ)} dθ

+
1

2
τr1 ‖(G1 ⊗D1)F (t)‖2

− 1

2

∫ 0

−τ

r1 ‖(G1 ⊗D1)F (t + θ)‖2 dθ

+
1

2
τr2 ‖(G0 ⊗D0)x‖2

− 1

2

∫ 0

−τ

r2 ‖(G0 ⊗D0)x(t + θ)‖2 dθ

+
1

2
τr3 ‖(G1 ⊗D1)x‖2

− 1

2

∫ 0

−τ

r3 ‖(G1 ⊗D1)x(t− τ + θ)‖2 dθ.

To the second term, applying (B. 1) in appendix B, we

have:

− 2xT (U ⊗ V ) (G1 ⊗D1)

∫ 0

−τ

F (t + θ)dθ

≤
∫ 0

−τ

{
r−1
1 ‖(U ⊗ V )x‖2

+ r1 ‖(G1 ⊗D1) (F (t + θ))‖2
}

dθ

= τr−1
1 ‖(U ⊗ V )x‖2

+ r1

∫ 0

−τ

‖(G1 ⊗D1)F (t + θ)‖2 dθ. (18)

Similarly, applying (B. 1) to the other terms, we get

ġ ≤xT (U ⊗ V ) {F (t) + (G0 ⊗D0 +G1 ⊗D1)x}

+
1

2
τr1 ‖(G1 ⊗D1)F (t)‖2 +

1

2
τr2 ‖(G0 ⊗D0)x‖2

+
1

2
τr3 ‖(G1 ⊗D1)x‖2 +

1

2
τr−1

1 ‖(U ⊗ V )x‖2

+
1

2
τ(r−1

2 + r−1
3 ) ‖(U ⊗ V )(G1 ⊗D1)x‖2 .

(19)

By the spectral mapping theorem, all eigenvalues of

G1(λmax(G1)I−G1) are nonnegative. Furthermore, since

f(xi, t) is Lipschitz continuous in x, the following relation

for the norm of F (·) holds:

‖(G1 ⊗D1)F (t)‖2

≤ λmax(D
T
1D1)λmax(G1)F

T (t) (G1 ⊗ I)F (t)

≤ λmax(D
T
1D1)λmax(G1)γα1i ‖x1 − xi‖+

· · ·+ λmax(D
T
1D1)λmax(G1)γαnj ‖xn − xj‖

= λmax(D
T
1D1)λmax(G1)γx

T (G1 ⊗ I)x. (20)

Therefore using (8) in the previous section, (15), (19) and

(20), then we have

ġ ≤ −cxT (U ⊗ I)x ≤ 0.

Hence, the time derivative of g is negative if the total

system does not synchronize. The theorem is proved by

Lyapunov’s direct method.

Note. Notice that when τ∗ = 0, condition (15) re-

duces to the one derived by Wu 7). Also note that τ∗ ap-

pears linearly in (15) and the matrices that are included

in the parentheses are non-negative definite. Therefore
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the larger the network time-delay τ∗, the more stringent

the condition becomes for synchronization.

Note. To examine the influence of the network graph

structure with time-delay, let us focus on the term G1 ⊗
D1 in the synchronization condition (15) by assuming for

simplicity that D0 = 0 and D1 = Dx, with x ∈ R1, a

scalar that represents the interaction strength with time-

delay. Denote the left side of (15) as Y , then it is repre-

sented by the following parabola equation:

Y = Ax2 +Bx +C

where

A =
1

2
τ∗

{
r1γλmax(D

TD)λmax(G1) (G1 ⊗ I)

+ r3 (G1 ⊗D)T (G1 ⊗D)

+r−1
3 (U ⊗ V )(G1 ⊗D)(G1 ⊗D)T (U ⊗ V )

}
≥ 0

B =(U ⊗ V )(G1 ⊗D)

C =
1

2
τ∗r−1

1 (U ⊗ V ) (U ⊗ V )− (U ⊗ V )(I ⊗K).

Clearly, a coefficient matrix A of second order term in Y

is positive semidefinite. Furthermore, if vTAv = 0 for

any vector v 6= 0, then vTBv = 0. Therefore it is sug-

gested that there will be an upper and lower bound x0, x1

for x within which Y becomes negative semidefinite.

Secondly, notice that if we introduce new edges or in-

crease the number of edges connecting the subsystems,

then the Laplacian matrices satisfy Ĝ1 ≥ G1 where Ĝ1

denotes the Laplacian matrix corresponding to the graph

with increased edge. This indicates that since Y depend

on G1 binomially the increase of the time-delay edges in

the graph influence the synchronization condition greatly.

We will show some examples in the next section to verify

these observations.

5. Numerical Simulations

Assume that subsystems are given by

ẋi = f(xi, t) =




kα(−xi1 + xi2 + h(xi1))

k(xi1 − xi2 + xi3)

k(−βxi2 − µxi3)




(21)

h(xi1) = bxi1 +
1

2
(a− b) (|xi1 + 1| − |xi1 − 1|)

where parameters k, α, β, µ > 0 and a > b > 0. Equation

(21) is known as a dimensionless Chua’s oscillator, which

exhibits chaotic phenomena as shown in Fig. 3, where the

parameters are set as k = 1, α = 2, β = 2, µ = 0.01, a =

1.14, b = 0.714. To study the influences of the network’s

time-delay and the network graph structure to the overall

system’s synchronization, we perform following two nu-

merical simulations.

5. 1 Example 1

In this example, we fix the graph structure as shown

in Fig. 4 and will examine how does the time-delay influ-

ence the synchronization. Assuming that the interaction

among subsystems arises only through the time-delayed

edge, matrix G corresponding to the network graph is

given as

G0 = 0,G1 =




4 −1 −1 −1 −1

−1 2 −1 0 0

−1 −1 3 −1 0

−1 0 −1 3 −1

−1 0 0 −1 2




.

Also choose the coupling strength matrix as

D0 = 0,D1 =



−12 0 0

0 −12 0

0 0 −12


 .

By selecting parameters in Theorem.4.1 as

U = G1,

V =




0.5 0 0

0 1.0 0

0 0 0.5


 ,K =



−2.281 0 0

0 0 0

0 0 0.0012




r1 = 0.005, r2 = 0, r3 = 6.5,

it can be seen that for τ∗ = 10.0[ms] the synchronization

conditions in Theorem.4.1 are all satisfied.

Figure 5 shows the time responses of the state differ-

ence (x1 − x3) for the cases when there is no coupling as

0

3

-3
0

-3
3 0.5

0
-0.5

Fig. 3 Trajectory of a Chua’s Oscillator

Subsystem1

Subsystem5
Subsystem4

Subsystem3

Subsystem2

Fig. 4 Graph structure of simulation system
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0 30
time[s]
15

0

5

x 1
x 3

-5 1
time[s]
0.5

0

1

x 1
x 3

-1
0

(a)no coupling (b) τ = 0[ms]

1
time[s]
0.50

0

1

x 1
x 3

-1 1
time[s]
0.50

0

20
x 1

x 3

-20

(c)τ = 10[ms] (d) τ = 30[ms]

Fig. 5 Time responses of the state differences x1 − x3 with

x11 − x31 (−), x12 − x32 (·), x13 − x33 (−·).

well as when the time-delays are τ = 0, 10 and 30[ms], re-

spectively. For τ = 0, 10[ms], the system is synchronizing

as ensured by theorem.

5. 2 Example 2

In the second example, we compare two types of net-

works as shown in Fig. 6, one is the ring-graph and an-

other is the star-graph. As in example 1, we assume that

the interaction arises only through the time-delayed edge

and set D0 = 0 and D1 = −xI, with x ∈ R1, a scalar

that represents the interaction strength.

The system synchronization results with respect to the

changes of the time-delayed interaction strengths and the

time-delays are summarized in Table 1, 2, respectively.

Upper and middle stands in Table 1, 2 show simulation

results of each graph with respect to interaction strengths

for τ = 0, 10[ms]. Last stand shows the range of interac-

tion strengths, which within the synchronization condi-

tion in the Theorem.4.1 holds for τ∗ = 10[ms]. © means

that the system is synchronized and × says not. ? means

that synchronization of Theorem.4.1 condition holds.

From these results, the followings are observed. First,

for the two types of the networks, when there is no time-

delay (τ = 0), both systems can realize synchronization

if we simply increase the interaction strength x. Clearly,

this property is suggested by our condition and Wu’s re-

sult 7).

Second, if there exists time-delay, with the ring-graph

network, the system can only be synchronized for inter-

action strength within a range of x ∈ [1 40] (in the case

when τ = 10[ms]), and for the star-graph, the range is

x ∈ [1 20], which is less than that of the ring-graph.

(a)Ring-graph structure (b) Star-graph structure

Fig. 6 Graph structures: Star-graph and Ring-graph

Table 1 The behavior of Ring-graph structure for each cou-

pling strengths

x 0 1 2 3 4 5 10 20 30 40 50

τ = 0[ms] × © © © © © © © © © ©
τ = 10[ms] × © © © © © © © © © ×
τ∗ = 10[ms] ? ? ? ?

Table 2 The behavior of Star-graph structure for each cou-

pling strengths

x 0 1 2 3 4 5 10 20 30 40 50

τ = 0[ms] × © © © © © © © © © ©
τ = 10[ms] × © © © © © © © × × ×
τ∗ = 10[ms] ? ? ? ?

These existences of upper and lower bound for interac-

tion strength x in all simulation are consistent with our

note in Section 4. However our conditions in this pa-

per can not explain that there are differences of an in-

teraction strength range for each graph structure, since

the Lyapunov functional (16) includes not only Laplacian

matrices G but also U which has to be chosen.

Third, the range of x with each graph for synchroniza-

tion, which being calculated using Theorem.4.1, is smaller

than that in this simulation. This implies that our syn-

chronization conditions in Theorem.4.1 are still conser-

vative. However, comparing with conditions in Theo-

rem.3.1, which don’t hold in this case (D0 = 0 and

D1 = −xI), conditions in Theorem.4.1 are less conser-

vative.

6. Conclusions

In this paper, we have considered network coupled sys-

tems and derived two graph-dependent sufficient condi-

tions, which ensure synchronization to occur among sub-

systems interconnected one another by constant time-

delays. Of those two condition, one is delay-independent

and the another is delay-dependent. The results are com-

pared with Wu’s research, which does not account for

time-delay. According to our result, it is suggested that

there will be a case where synchronization will occurs

only when the interaction strength and the number of the

graph-edges lie between some upper and lower bounds.

This was verified with using an easy example.
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A lot of studies remain to be studied. It is very impor-

tant to extend the present result to systems containing

multiple time-delays τ1, · · · , τm as well as time-varying

delays. Applications such as to multi-robots systems and

bi-locomotion systems controlled by central pattern gen-

erators are also strongly anticipated.
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Appendix A. Kronecker Product and its
Properties

The kronecker product has several properties as be

listed below. Suppose that all operation of equations are

valid.

• (A⊗B)T = AT ⊗BT

• (A⊗B)(C ⊗D) = (AC)⊗ (BD)

• Let λi(A), λj(B), i = 1, · · · , n, j = 1, · · · , m de-

note the eigenvalues of A ∈ Rn×n,B ∈ Rm×m.

Then the eigenvalues of (A ⊗B) are λi(A)λj(B), i =

1, · · · , n, j = 1, · · · , m.

Theorem Appendix A.1. 7) Let p1, p2 be two

polynominals. If A,B,C are real symmetric matrices

with eigenvectors ai, bi and ci and corresponding eigen-

values λi(A), λi(B) and λi(C) respectively, then the sym-

metric matrix p1(A) ⊗ B + p2(A) ⊗ C has eigenvectors

wij = ai ⊗ vij with corresponding eigenvalues λij where

vij are the eigenvectors of p1(λi(A))B+p2(λi(A))C with

corresponding eigenvalues λij .

Appendix B. Matrix Inequality

For any real matrices A,B, a symmetric positive defi-

nite matrix C with appropriate dimensions and a scalar

ε > 0, the following equation hold:

ATB +BTA ≤ εATCA+ ε−1BTC−1B. (B. 1)
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