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Delay Time Estimation Using Hilbert Transform and

New Extrapolation Procedure

Yosuke TSUCHIYA* and Yasushi MIKI**

We present a new method for estimating the delay time of a minimum-phase system with delay. It is based on
the Hilbert transform relationship between the log magnitude and the phase of a minimum-phase system. An
extrapolation procedure for the frequency characteristics is required to describe a discrete causal system which
corresponds to the actual continuous system. The algorithm for the extrapolation is improved to stabilize the
frequency characteristics, and bi-directional extrapolation procedure is presented.
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1. Introduction

To measure the acoustic impedance of a material, the
distance between its surface and an observation point
must be measured accurately. In the case of a grass land
or a gravel layer, however, it is not easy to determine the
reflecting surface visually. A new method presented here
is based on the fact that a reflection system is minimum-
phase, and uses the Hilbert transform relationship be-
tween the log magnitude and phase of frequency charac-
teristics of the system. Using this method, an acoustical
boundary can be determined acoustically by estimating
the delay time of a sound reflection system.

A basic principle of the delay time estimation using
Hilbert transform has been proposed by one of the au-
thors. 2 The main subject of the present paper is how
to give the total frequency characteristics of a discrete
causal system from a finite number of measurement data.
It has been shown that the transformation matrix which
transforms the lower half of frequency characteristics of a
discrete causal system to the higher half exists uniquely,
just as Hilbert transform transforms the real part of the
frequency characteristics to the imaginary part thereof.
However , this transformation is too sensitive to an addi-
tive non-causal noise for a practical use. Hence, we have
introduced an extrapolation technique.?

We, first, improve the extrapolation algorithm proposed
before in order to stabilize the final result, and further,
we present a new bi-directional extrapolation procedure

for the band-limited measurement data.
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Fig.1 Real part and imaginary part of the frequency char-
acteristics of a causal system. These are the Hilbert
transform pair in a continuous system.

Circles: frequency characteristics obtained by mea-
surement.

2. Delay time estimation

2.1 Extrapolation procedure for the discrete
causal system

In a real system, frequency characteristics are expanded
to infinite frequency range, but in a actual measurement,
only a finite number of data within a finite frequency
range are obtainable, as shown in circles in Fig. 1. The
band-limited system in general does not satisfy causality.
But we can describe a discrete causal system by modi-
fying the frequency characteristics obtained by measure-
ment using extrapolation technique.

Let

Z(k) = X(k) +jY (k) (k=0,1,.,K—1) (1)

be the frequency characteristics, where Z(k) (k =0, 1, ...,
K/4—1) are given by measurement, and the complex con-

jugate relations are assumed for negative frequencies, i.e.,
Z(K — k) = Z"(k) 2)

Frequency characteristics Z(k) (k = K/4, K/4+ 1, ...,
K/2) are to be extrapolated. The procedure is as follows:
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1. Set
X(k)=xzr (k=K/4, K/4+1, . ,K/2) (3)

2. Take the DHT(Discrete Hilbert Transform) of X (k) :
HIX (k)]

3. Define the squared error:

K/4-1 K/2

E= )Y (HX®]-Y&)+ > Wik (4)
k=0 k=K/4

W) = S XH) - X (k- 1)

+i(H[X(F)] - H[X(k = 1)])] (5)

4. Find minimum FE with respect to the variables
zr (k=K/4, K/4+1, ..., K/2).

2.2 Results of extrapolation

An example of extrapolation is shown in Fig. 2. The
points at £ = 1 through 16 show the frequency charac-
teristics obtained by measurement, and points k = 49
through 64 show the complex conjugates. The real part
of the frequency characteristics between k = 17 and 48
are set to zero as initial values. The imaginary part of
the frequency characteristics calculated from the DHT of
the real part (thin line), shows a difference from the imag-
inary part obtained by measurement (open circles). It is
due to the fact that the measured characteristics does not
satisfy causality. Figure 2 (b) shows the final result, and

a good agreement is achieved between thin line and open
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(b) Final result of extrapolation.

Fig.2 Procedure for extrapolation. (a) Real part (filled cir-
cles) and imaginary part (open circles) of the fre-
quency characteristics are given in the lower frequency
range. (b) The thin line shows the DHT of the real
part of the total frequency characteristics after extrap-
olation.
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circles.

2.3 Stabilization of extrapolation procedure

The second term in Eq. (4) is an additional term to sta-
bilize the extrapolation against possible non-causal noise.
Without addition of this term causes considerable vari-

ations in extrapolated values (open circles in Fig. 3).
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Fig.3 Result of extrapolation without stabilizing process.
Open circles show the frequency characteristics ob-
tained by extrapolation from the measured data (filled
circles).

2.4 Estimation of the delay time

By the extrapolation procedure described above, the
frequency characteristics are modified to satisfy the
causality in the discrete system. Here follows the pro-

cedure for estimating the delay time.

1. Take the complex logarithm of Z(k):

Z(k) = X (k) + 5 ¥ (k) (6)
X (k) = log|Z(k)|, ¥ (k) = arg Z(k) (7)

2. Take the DHT of the log magnitude: H[X (k)]
3. Define the squared error:
KI
B = (HX(})] =Y (k) - kA)* (®)
k=0
where K’ with respect to A, which gives an estimate of
delay.
4. Find minimum E’ with respect to A, which gives an

estimate of delay.

Figure 4 shows an example of the estimation of a delay

time in a minimum-phase system with delay.

3. Delay time estimation of sound reflected

from a boundary of porous material 3)-4)

3.1 Model of the porous material
In former sections, we have used a sound reflection sys-

tem from the boundary of the porous material with the
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Fig.4 (a) Log magnitude of the extrapolated frequency char-
acteristics shown in Fig. 2 (b). (b) DHT of the log
magnitude (thin line), phase by measurement (dots),
and phase after adjustment (thick line).

acoustic impedance:

Z(f) = R(f) +3j X(f), 9)
R(f) = % 1 +0.070<ai> o, (10)
X(f) = —0.107% <GL>_ o (11)

where ¢ and 2 are the tortuosity and the porosity of
porous material, respectively, and ¢ = €2 = 1 is assumed
for simplicity. Furthermore, o is the flow resistivity of
the material and it represents a wide variety of acous-
tic materials, i.e., o = 10k (SI units) represents a glass
wool, 0. = 300k a grass land, and o. = 20000k an as-

phalt pavement.

3.2 Consideration for the estimation error

The estimated result of the delay time is considered.
The normal incidence reflection characteristics are shown
in Fig. 5 for the porous material with the flow resistivity
oe = 300k.
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Fig.5 Reflection characteristics of a porous material (0. =
300k). Circles show the discrete frequency character-
istics given in the range 0 - 5kHz.
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Let K = 64 in Eq. (1). The frequency characteristics
at kK = 1 through 16 are given (circles in Fig. 5), and
those at k = 17 through 32 are to be extrapolated. When
the sampling frequency is assumed to be 20 kHz, the fre-
quency range will be 0 - 5kHz for k = 1 - 16, and 5 -
10kHz for k = 17 - 32.

In order to evaluate the estimation error, following ex-

amination are made. Let
Zn(k) = Z(k)e 2™ AN (=12, .., N) (12)

be a set of frequency characteristics containing predeter-
mined delay times. Suppose that N = 64, and A = 1/16.
Delays are given in the range (0, 475), where T is the
sampling period and Ts = 50 us.

Figure 6 shows the log magnitude estimated for all
values of n in Eq. (12). We can see the periodical de-
pendence of the log magnitude on delay, and the period

is nearly equal to 2 Ts.

60

Fig.6 Log magnitude of the extrapolated frequency charac-
teristics for several values of given delays. Periodical
changes are seen with increasing delays.

k: discrete frequency. n: given delays (xTs/16).

Figure 7 shows the relation between actual and esti-
mated delay. The unit of axes is Ts. The estimation curve
for 0. = 300k has a periodical swell with the same pe-
riod as the log magnitude shown in Fig. 6. We can fit a

regression line for the data as shown below.
y = 0.136254 + 0.938897x (13)

The error between the regression line and the estimated
result for o. = 300k is shown in Fig. 8. The error lies
in the range (—0.2, +0.1)7T,. Substituting z = 0 in Eq.
(13), we obtain the time origin y = 0.13 7T = 6.8 us. Since
the maximum value of the error is 0.2 T, the regression

analysis reduces the error by half.



T.SICE Vol.E-4

Estimated del ay

Actual del ay Ts

1 2 3 4

Fig.7 Relation between actual and estimated delay. The unit
of abscissa and ordinate is T%s.
Solid line: g = 300k. Gray line: g = 30k.
Thin lines: regression lines obtained from estimated
values.

The estimated result for o = 30k is also shown in Fig.

7, where the estimation error at the time origin is about
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Fig.8 Difference between the regression line and the esti-
mated delay shown in Fig. 7 (0. = 300k).

3.3 Comparison with the cross-correlation

method

The cross-correlation method is a general technique for
estimating delay time. A computational analysis for the
similar experiment as described above is shown in Fig.
9. A porous model with o. = 300k is used, and the test
signal is assumed to be band limited to 5kHz. The re-
sult shows that the estimation error is about 49 us, and
is 7 times as large as the error obtained by the proposed

method.
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Fig.9 Determination of the time origin of the impulse re-
sponse by cross-correlation method.
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4. Bi-directional extrapolation procedure

So far we have assumed that the frequency character-
istics are available in the low frequency range. However,
transmitters used for acoustical measurements, especially
in the range of ultrasonic, have generally narrow-band
frequency characteristics not only to the higher frequency

range but also to the lower frequency range.

4.1 Extrapolation procedure

The bi-directional extrapolation procedure is quite sim-
ilar to the extrapolation procedure described above. We
assumed that the frequency characteristics Z(k) (k =
K/8 +1, K/8 + 2, ..., 3K/8) are obtained by measure-
ment, and Z(k) (k=0, 1, ..., K/8; k =3K/8+1, 3K/8+
2, ..., K/2) are to be extrapolated. Then Eq. (3) in Sec-

tion 2.1 is rewritten as
X(k) =z (k=0,1, .., K/§;
k=3K/8+1,3K/8+2, .., K/2) (14)

and Egs. (4-5) as

K/8 3K/8

E=Y W'+ Y (HX(k)]-Y(k)

k=K/8+1
K/2
+ > WK (15)
k=3K/8+1
W) = I(X(H) — X (k= 1))
H(HX(W)] -~ HIX(E-D)]  (16)

Find the variable z, (k = 0,1, ..., K/8; k = 3K/8 +
1,3K/8 + 2, ..., K/2) which becomes the minimum E.

4.2 Result of extrapolation

Figure 10 (a) shows the initial condition, where initial
values of the real part of frequency characteristics in high
frequency range are set to zero and those in low frequency
range are set to unity, since the reflection coefficient at fre-
quency zero is assumed to be unity. Figure 10 (b) shows
the result of extrapolated real part (thick line) and the
imaginary part (thin line) which is calculated from the
DHT of the real part.

4.3 Considerations for the estimation error

Similar considerations are made as described in Section
3.2. We assumed that the frequency characteristics in the
range 2.5 - 7.5kHz are given by measurement and those
in the range 0 - 2.5 kHz and 7.5 - 10 kHz are to be extrap-
olated.
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real part

48 q(4

i magi nary part

(b) Final result of extrapolation.

Fig.10 Procedure for extrapolation. (a) Real part (filled cir-
cles) and imaginary part (open circles) of the fre-
quency characteristics are given in the middle fre-
quency range. (b) The thin line shows the DHT of
the real part of the total frequency characteristics
after extrapolation.

Figure 11 shows the relation between actual and es-
timated delay for the bi-directional extrapolation. A re-

gression line fitted for the data is written as
y = 0.145643 + 0.998782x (17)

The error between the regression line and the estimated
result is shown in Fig. 12. The error lines in the range
(0.15, 40.05) Ts. Substituting z = 0 in Eq. (17), we ob-
tain the time origin y = 0.14 T, = 7.3 us. The estimated
result for o = 30k is also shown in Fig. 12, where
the estimation error at the time origin is about 8.5 us.
We find that these estimation errors are comparable with

those shown in Section 3.2.

Estinated del ay
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Fig.11 Relation between actual and estimated delay. The
unit of abscissa and ordinate is Ts.
Solid line: o = 300k. Gray line: o = 30k.
Thin lines: regression lines obtained from estimated
values.

No.1 January 2005

0.05 T T

/AN
.05 N, \\/ VAR

Fig.12 Difference between the regression line and the esti-
mated delay shown in Fig. 11 (0. = 300k).

4.4 Comparison with cross-correlation method
A similar discussion described in Section 3.3 is also
made. A porous model with o. = 300k is used, and
the test signal is assumed to be band-pass filtered with
the frequency range 2.5 - 7.5 kHz. The estimation error
is found to be about 27 us, and is 4 times as large as the

error obtained by the proposed method.

5. Discussions

The amount of the estimation error depends on the flow
resistivity of a reflection surface. Figure 13 shows the
error curves for two types of extrapolation procedures de-
scribed above as a function of the flow resistivity. Gen-
erally, the errors decrease with increasing flow resistivity,

and two curves show little difference with each other.
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Fig.13 Estimation errors of the delay time as a function of
the flow resistivity.
Gray line: conventional extrapolation.
Solid line: bi-directional extrapolation.

6. Conclusions

The extrapolation procedure for the frequency charac-
teristics is presented with the new stabilizing technique
which stabilizes the extrapolation against possible non-
causal noise. The delay time estimation is achieved with
the accuracy 7 times as high as that by the conventional
cross-correlation method. The new extrapolation method,
is also presented. This method can be applied to the de-
lay time estimation using a narrow-band test signal, es-

pecially in the region of ultrasonic.
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