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Time-period Analysis for Pulse Train Deinterleaving

Ken’ichi Nishiguchi∗

This paper presents a new method for signal separation of interleaved pulse trains consisting of several pulse

trains emitted from independent signal sources, some of which may only exist for a short time. The separation

is based on the differences in the pulse repetition intervals (PRIs) of the signal sources. To detect each pulse

train, we derive a map from the input signal to a function of two variables: time and PRI, which we call the

PRI map. By taking the absolute value of the PRI map, we obtain a short-time PRI spectrum from which we

can use thresholding to estimate the number of signal sources, their time duration, and the PRIs. The PRI

map is an extension of PRI transform, which we previously proposed. The extension is based on time-period

analysis. The construction of the PRI map resembles a wavelet transform. The difference is that a PRI map is a

nonlinear transform, while the wavelet transform is linear. Simulation results are presented on the performance

of the signal separation of interleaved pulse trains using the PRI map. Finally, performance analysis shows the

detection ability of the PRI map for short pulse trains.
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1. Introduction

The problem of signal separation for periodic pulse

trains is called deinterleaving and arises in such fields

as radar signal detection and computer communications
1)∼8). In these fields, a receiver observes an interleaved

pulse train, which is a composite signal comprised of many

unknown sources with different pulse repetition intervals

(PRIs).

As described in Wiley 1), who reviews the conventional

approaches to radar pulse deinterleaving, the deinterleav-

ing of radar pulse trains is mainly based on the difference

of pulse repetition intervals (PRIs).

If signals from all sources are sinusoidal, they can be

easily separated by spectral analysis. More specifically,

the number of signals and their frequencies are estimated

from the number and locations of the peaks in the power

spectrum. However, when signals are pulse trains, the

power spectrum and the autocorrelation function again

become periodical pulse trains; therefore, pulse train dein-

terleaving is a non-straightforward task.

To solve this problem, we previously proposed a method

called PRI transform 7), which is a nonlinear integral

transform. PRI transform retains the peaks correspond-

ing to PRIs and completely suppresses the peaks of the

subharmonics in the autocorrelation function. Although

the original PRI transform was vulnerable to timing jit-

ter (PRI jitter), this was resolved by modifying the PRI
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transform 8). PRI transform allows us to obtain a kind

of spectrum, referred to as PRI spectrum, from which we

can estimate the number of signal sources and their PRIs.

However, to apply the PRI transform a constraint ex-

ists: each pulse train must contain enough pulses in the

observation period. From a practical viewpoint, robust-

ness to PRI jitters and being able to detect short pulse

trains is desirable. In this paper, we satisfy these re-

quirements by proposing a method called the PRI map,

which is an extension of PRI transform by a time-period

analysis. Though the former is also a nonlinear integral

transformation like the latter, it has a feature that leads

to a time-varying PRI spectrum using moving windows

whose width is proportional to PRIs. By this extension,

we show that pulse trains become detectable even if their

PRIs are jittered, and they exist for short time periods in

the observation period.

The organization of this paper is as follows. In Section

2, we formulate the problem and show the limitations of

deinterleaving by PRI transform. In Section 3, we de-

scribe a deinterleaving method by PRI map proposed in

this paper and simulation results. In Section 4, we ana-

lyze the performance of the PRI map. Finally, Section 5

draws some conclusions.

2. Formulation of the problem

Let tn, n = 1, 2, · · · , N be the times of arrival (TOAs)

of pulses. If we consider TOA the only parameter of each

pulse, the pulse train can be modeled as a sum of unit

impulses,
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g(t) =

N∑
n=1

δ(t− tn), (1)

where δ(·) is the Dirac delta function. Though an actual

pulse has finite width and amplitude, we represent it by

an impulse because only its TOA is used as a parameter.

We assume that the pulse train contains signals from

several sources with different PRIs. In this case the pulse

train can be represented as

g(t) =

M∑
µ=1

gµ(t), (2)

gµ(t) =

Nµ∑
n=1

δ(t− (n + ηµ)pµ), (3)

where M is the number of signal sources, Nµ is the num-

ber of pulses contained in source µ, and pµ and ηµ are its

PRI and phase, respectively.

The deinterleaving problem treated here is to esti-

mate the number of signal sources M and their PRIs

pµ, µ = 1, · · · , M . Equation (3) represents an ideal case in

which the PRIs are fixed and there are no missing pulses.

In actual situations, however, PRIs may be jittered, and

pulses may be missing. Moreover, we must treat cases in

which the number of pulses Nµ is small.

The PRI transform of signal g(t) is defined by 7)

D(τ) =

∫ ∞

−∞
g(t)g(t + τ)e2πit/τdt, (4)

where τ is the PRI variable (τ > 0). If the input signal is

a pulse train of the form of (1), its PRI transform contains

an integral of the product of two δ functions. This inte-

gral is a convolutional type, and the convolution of two δ

functions is strictly defined by Schwartz’s distribution 9)

in the following formula:
∫ ∞

−∞
δ(s− t)δ(t)dt = δ(s). (5)

Using the above formula, the PRI transform of the pulse

train of (1) is represented as

D(τ) =

N∑
m=2

m−1∑
n=1

δ(τ − (tm − tn))e2πitn/τ . (6)

In particular, when the pulse train comes from a single

signal source, i.e., tn = (n + η)p, n = 1, 2, · · · , N , it holds

that

D(τ) = (N − 1)δ(τ − p) exp(2πiη)

+

N−1∑
l=2

δ(τ − lp)
sin(Nπ/l)

sin(π/l)
eπi(N+1+2η)/l. (7)

The first term on the right-hand side (RHS) represents an
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When there are multiple signal sources, the subharmonics for

each source are suppressed in a similar manner.
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Fig. 1 Modified PRI transform for a pulse train with short

elements

impulse located at the PRI, and the modulus of the coef-

ficient equals N − 1. On the other hand, the second term

represents impulses located at the integer multiples of the

PRI, i.e., subharmonics, and the moduli of the coefficients

are evaluated by

∣∣∣∣
sin(Nπ/l)

sin(π/l)

∣∣∣∣ ≤
1

sin(π/l)
≤ l

2
, l = 2, 3, · · · . (8)

Note that RHS does not depend on N ; hence, as N in-

creases, the subharmonics are relatively suppressed.

Due to these features, the number of signal sources and

their PRIs can be estimated by applying PRI transform

and thresholding. However, this method has a limit from

a practical viewpoint, because pulses from each source

must exist during most parts of the observation time.

Figure 1a shows an example of an interleaved pulse train

that contains some short signal sources (sources #1, #2,

#4, and #5). The PRI transform of this input pulse

train is shown in Fig. 1b. Clearly, detecting all the signal

sources from Fig. 1b is difficult.
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Fig. 2 Moving window for PRI map

3. Time-period analysis of pulse trains

3. 1 PRI map

The limitation of PRI transform described in the pre-

ceding section is common to the Fourier transform used to

detect localized signals in general signal processing prob-

lems. The limitation of the Fourier transform is effec-

tively overcome by time-frequency analysis using wavelet

transforms 10), 11). From the same viewpoint, we propose

time-period analysis for pulse train deinterleaving.

For input signal g(·), we define the PRI map as

D(t, τ) =

∫

s∈W (t,τ)

g(s)g(s + τ)e2πis/τds, (9)

where W (t, τ) = [t− ντ/2, t + ντ/2] is a moving window

(see Fig. 2) and ν > 0 is a constant. The integrand is

identical to the PRI transform and the difference is the

integration range: the PRI map is the calculation of the

PRI transform only in the moving windows. The center

of the window is located at time t. The width of the win-

dow is ντ , which is set to be proportional to PRI τ for

the same reason as the wavelet transform. For example, if

w = 10, PRI transform is calculated in the interval with

width corresponding to 10 pulses for each τ . Thus, the

PRI map is a wavelet-like extension of PRI transform that

maps input signal g(·) to a function of time t and PRI τ .

When g(t) is a pulse train described by (1), the PRI

map becomes

D(t, τ) =

N∑
m=2

m−1∑
n=1

∫

s∈W (t,τ)

δ(s− tn)

×δ(s + τ − tm)e2πis/τds

=

N∑
m=2

m−1∑
n=1

δ(τ − (tm − tn))e2πitn/τIW (t,τ)(tn),

(10)

where IW (t,τ) is the defining function of set W (t, τ). For

Fig. 3 Overlapped PRI bins

numerical calculation, the PRI map must be a discrete

form. For this reason, we divide the τ -axis into small in-

tervals referred to as PRI bins (see Fig. 3). We denote

the distance between the centers of adjacent PRI bins by

∆τ and let

τk = (k − 1/2)∆τ, k = 1, · · · , K (11)

be the centers of the PRI bins. Here K, which denotes

the number of PRI bins, is selected so that K∆τ exceeds

the upper limit of PRI to be searched for. We represent

the PRI bins by

Bk = [(1− b/2)τk, (1 + b/2)τk], k = 1, · · · , K,(12)

where b > 0 is a constant. Then the widths of the PRI

bins are bτk, k = 1, · · · , K, and they overlap their neigh-

borhood bins. The overlap considers the PRI jitters of the

pulse trains to be detected 8). Under these preparations,

we define a discrete PRI map for a pulse train of (1) by

Dk(t) =
∑

{(n,m);tm−tn∈Bk,tn∈Wk(t)}
e2πitn/τk , (13)

where Wk(t) = W (t, τk). Moreover, using |Dk(t)|, we

define the PRI spectrum as a function of time. Since

it corresponds to a time-varying spectrum in the time-

frequency analysis, it can be called a time-varying PRI

spectrum.

In the previously proposed modified PRI transform 8),

we introduced the shift of time origins along with the

overlapped PRI bins and defined a discrete algorithm by

Dk =
∑

{(n,m);tm−tn∈Bk}
e2πit′n/τk , (14)

where t′n is the changed value of tn by the shift of the time

origin. Due to this shift operation, the enlargement of

the fluctuations of phase 2πtn/τk with time is suppressed.

This is effective for long pulse trains. However, since the
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PRI map is a PRI transform within moving windows, the

enlargement of phase fluctuation is not significant, so in

the PRI map we do not utilize the shift of time origins.

3. 2 Signal detection method from PRI map

If the PRI of a signal source is τk and its pulse train

exists in moving window Wk(t), then since the value of

the PRI map of (13) is the sum of complex numbers with

the same phase, it constructs a peak in the time-varying

PRI spectrum. The subharmonics, which are located at

the integer multiples of the PRI, are suppressed by the

same principle as the PRI transform.

We detect pulse trains by thresholding the time-varying

PRI spectrum. More specifically, if |Dk(t)| exceeds a cer-

tain threshold, we determine that a pulse train with a

PRI of τk exists at time t.

The detection threshold must be determined from the

noise statistics. We describe it with a noise model in the

following two sections.

3. 3 Noise model and false alarm probability

In the PRI map defined by (13), even if there is no

pulse train whose PRI corresponds to PRI bin Bk, pulse

pair (tn, tm) may exist that satisfies tm − tn ∈ Bk and

tn ∈ Wk(t). Then a complex number with modulus one

is added to the PRI map. This is caused by the mutual

interference of signal sources with different PRIs. Since

such complex numbers in general have different phases,

they are not accumulated; however, they constitute noise

components of the PRI map and cause false alarms. Here,

we analyze the false alarm probability with a Poisson ar-

rival model first introduced in a previous paper 8).

We arbitrarily fix PRI bin Bk and moving window

Wk(t) and assume that the value of the PRI map is only

generated by noise components, which means that no

pulse train whose PRI corresponds to the PRI bin is con-

tained in the moving window. We also assume that pulses

are distributed uniformly in the moving window. Let ρ

be the pulse density in the moving window. Although

the pulses are actually elements of some pulse trains, the

assumption of uniform distribution gives good approxima-

tion for the evaluation of the noise component of the PRI

transform 8). Since the PRI map is the PRI transform in

the moving windows, we use the same assumption.

Let L be the number of pulse pairs whose left element

is in the moving window and whose time difference is in

the PRI bins. Since the width of the moving window is

wτk, there are an average of ρwτk pulses in the window.

In addition, since the width of the PRI bin is bτk, for a

fixed pulse the average number of pulses, whose time dif-

ferences with the fixed pulse is in the PRI bin, is ρbτk.
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Fig. 4 False alarm probability of PRI map

The expectation of L, denoted by λ, is the product of the

above quantities, i.e.,

λ = (ρτk)2bw. (15)

Assuming that L pulses follow a Poisson distribution with

parameter λ, the noise component of the PRI map is mod-

eled by

DN =

L∑
j=1

eiΘj , (16)

where Θj , j = 1, 2, · · · , L are the independent random

variables uniformly distributed in [0, 2π]. We define the

noise intensity by

IN =
√

E|DN|2, (17)

which is calculated for the model of (16) as

I2
N = E

L∑
`,j=1

E[ei(Θ`−Θj)|L] = EL = λ, (18)

where E denotes expectation. Furthermore, the false

alarm probability for threshold Γ is obtained as follows:

PFA ≡ P(|DN| ≥ Γ)

= 1− Γ

∫ ∞

0

exp[λ(J0(s)− 1)]J1(Γs)ds, (19)

where J0(·) and J1(·) are the Bessel functions of orders 0

and 1, respectively. The derivation of (19) is shown in Ap-

pendix A. In Fig. 4, false alarm probabilities calculated

by (19) are shown.

3. 4 Threshold determination from data

In applications, detecting signals at a given false alarm

probability is desirable. For this reason, we numerically

solve (19) with respect to Γ and set

Γ = h(λ; PFA). (20)

In Fig. 5, the thresholds are plotted for each false alarm
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Fig. 5 Threshold of PRI map

probability as a function of λ. Although λ is a function

of pulse density, the actual pulse density of a pulse train

changes based on time. So when the number of pulses

in moving window Wk(t) is Nk(t), we estimate the pulse

density for each moving window by

ρ =
Nk(t)

wτk
, (21)

and λ by

λ =
N2

k (t)b

w
, (22)

and substituting that into (20) yields

Γk(t) = h(
N2

k (t)b

w
; PFA). (23)

We use this quantity as a threshold. It is an adaptive

threshold that includes the measurement values of the

data.

3. 5 Subharmonics

The subharmonics level of the PRI map can be evalu-

ated by (8) as in the case of the PRI transform. We com-

pare this level with the noise threshold. If we approximate

the distribution of DN of (16) by a two-dimensional nor-

mal distribution, the distribution of its modulus |DN| is

approximated by the Rayleigh distribution, and its prob-

ability density function is written as

f(r) =
2r

λ
e−r2/λ, (24)

which becomes a good approximation when λ is large due

to the central limit theorem. Then the false alarm prob-

ability can be approximated by

PFA ∼
∫ ∞

Γ

f(r)dr = e−Γ2/λ, (25)

and solving that with respect to Γ and substituting (15)

yields

Γ ∼ (− log PFA)
√

bwρτ. (26)
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Fig. 6 Simulation result

We consider a pulse train with a PRI of p. Since the pulse

density is ρ = 1/p, the threshold at the subharmonics of

τ = lp becomes

Γ ∼ (− log PFA)
√

bwl. (27)

For example, if PFA = 10−6, b = 0.3 and w = 20, then

Γ ∼ 9.1l, which is much larger than l/2 on the RHS

of (8). Consequently, subharmonics levels are negligible

compared with the noise threshold.

3. 6 Numerical example

In Fig. 6, we show a numerical example of pulse train
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detection using the PRI map. The input pulse data are

identical as the example of Section 2, which contains five

signal sources, four of which are short pulse trains. For

these input data, the time-varying PRI spectrum and the

adaptive threshold of (23) are shown in Figs. 6a and b,

respectively. Here, we set the parameters of the PRI map

as b = 0.3 and w = 20. Also, we set the false alarm

probability that determines the threshold as PFA = 10−6.

The region where the time-varying PRI spectrum exceeds

the threshold is shown in Fig. 6c, which gives the detec-

tion result. As is apparent from this figure, by the PRI

map method, the pulse train from each signal source is

clearly detectable even if its PRI is jittered, if it is spo-

radic, or if some pulses are missing. Note, however, that

the detected intervals are a little narrower than the ac-

tual intervals. This reflects that the number of pulses in

the window is reduced at both ends of a pulse train, so

detection ability is slightly degraded there.

4. Performance analysis

4. 1 Assumptions and conditions of detectabil-

ity

The PRI map’s detection performance is affected by its

design parameters and the characteristics of pulse trains.

The design parameters are b, the relative width of the PRI

bins, and w, the relative width of the moving windows.

To characterize the pulse trains, we fix a pulse train from

a signal source to be detected and regard other pulses as

mixing pulses. We define the following three parameters:

ν : length of pulse train to be detected (number

of pulses)

ζ : PRI jitter width of pulse train to be detected

q : average number of mixing pulses in a period of

pulse train to be detected

Note that when the average PRI is τ and the PRI jitter
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Fig. 7 Average number of mixing pulses per period for a case

shown in Fig. 1a

width is ζ, PRIs are jittered in interval [(1 − ζ/2)τ, (1 +

ζ/2)τ ], where we assume that the distribution is uniform.

We also assume that mixing pulses occur in Poisson ar-

rival, as in Section 3. 2. We denote by ρ the pulse density

of an input pulse train. Then the average number of mix-

ing pulses is given by q = ρτ − 1. For the pulse train of

Fig. 1a, q varies in the range of 0 ≤ q ≤ 5.5, as shown in

Fig. 7.

Next, we specify the detectability condition for perfor-

mance analysis. We fix a PRI bin and a moving window

in which the pulse train to be detected is contained. Let

DS be the PRI map there. For the pulse train to be de-

tectable, given threshold Γ, it must satisfy

|DS| ≥ Γ. (28)

Since it is complicated to obtain the distribution of DS,

which is a random variable, we define the signal intensity

by

IS =
√

E|DS|2, (29)

and specify the detectability condition as

IS ≥ Γ. (30)

To calculate Γ, we use (20), whose argument λ is obtained

by (15). If we set ν′ = min(ν, w), since the average num-

ber of pulses in the moving window is qw + ν′, the pulse

density is given by ρ = (qw + ν′)/wτ , and we have

λ =
(qw + ν′)2b

w
. (31)

In addition, the false alarm probability in (20) is set as

PFA = 10−6, which was also used in the numerical exam-

ple.

4. 2 Signal intensity

Under the condition of the preceding section, we ana-

lytically obtain the signal intensity of the pulse train to

be detected. By τ , we denote both the average PRI of the

pulse train to be detected and the center of the PRI bin

that contains the signal. Let t1, t2, · · · , tν be the TOAs of

the pulses in the pulse train to be detected, which satisfy

the following relations by the assumption of the preceding

section:

tn = tn−1 + τ(1 + Xn−1), n = 2, 3, · · · , ν, (32)

where Xn, n = 1, 2, · · · are random variables that repre-

sent the PRI jitter and they are mutually independent

and distributed uniformly in [−ζ/2, ζ/2].

When other pulses are mixed with the pulse train to be

detected, the PRI map at the PRI bin where the signal

exists can be approximated by
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DS =

ν∑
n=1

(1 + Un + Vn)e2πitn/τ + D′
N, (33)

where Un and Vn are the number of mixing pulses that

constitute a pulse pair whose left and right elements are

tn, respectively. Also, D′
N is part of the PRI map that is

attributed by pulse pairs whose both elements are mixing

pulses.

Since the density of mixing pulses is q/τ and the width

of the PRI bin is bτ , the expectations of Un and Vn are

given by

EUn = EVn = bq. (34)

If the mixing pulses are modeled by a Poisson model, the

expectations of the square of the above variables become

EU2
n = EV 2

n = bq + (bq)2. (35)

The expectation of the square of D′
N can be calculated in

the same way as (15) and (18), and then we have

E|D′
N|2 = q2bw. (36)

Using these relations, the signal intensity defined by (29)

is written as

I2
S = (1 + 2bq)2I2

0 + (qw + 2ν′)bq, (37)

where ν′ = min(ν, w) and I0 is the signal intensity in cases

of no mixing pulses and is given by

I2
0 = ν′

1 + sinc(ζ)

1− sinc(ζ)
− 2sinc(ζ)[1− sincν′(ζ)]

[1− sinc(ζ)]2
. (38)

The details of these signal intensity calculations are shown

in Appendix B.

4. 3 Detection performance of PRI map

The merits of the PRI map lie in the detectable char-

acteristics of pulse trains, even if they are so short that

they are only included in part of the observation time and

their PRIs are jittered. Questions remain: How short is

the detectable pulse train? What size of PRI jitter width

is allowable? We quantitatively evaluate these detection

abilities using analytical representations derived in the

preceding section.

(A) Minimum length of detectable pulse train

When the length of the pulse train to be detected is ν,

then in general, a moving window with w = ν width gives

the best result. This is because, if the moving window is

wider than that, then the noise intensity increases while

the signal intensity does not change, and conversely, if the

moving window is narrower than that, then the degree of

the reduction of the signal intensity is larger than the

noise intensity. Therefore, we investigate the detection
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ability under the condition where w = ν. As will be stated

afterward, there are also cases where the noise intensity

does not increase even if w increases, which happens when

q is very small; however these cases are exceptional.

In Fig. 8, signal intensity IS calculated by (37), noise

intensity IN calculated by (18), and threshold Γ calcu-

lated by (20) are plotted as a function of ν. The values

of the parameters are b = 0.3 and q = 5. As shown in

this figure, when ν is small the threshold is larger than

the signal intensity; as ν increases, the signal intensity

grows faster than the threshold, and the signal becomes

detectable at ν, denoted by ν∗min. ν∗min is a function of

b, ζ, and q. In Fig. 9, ν∗min is plotted as a function of

ζ, where we set b = 0.3. From this figure, when PRI

jitter is small (ζ ≤ 0.15), a short pulse train around 10

pulses is detectable, and even when ζ is larger than that,

a pulse train of less than 20 pulses is detectable under the

condition that q ≤ 5 and ζ ≤ 0.3.

A pulse train with a length of ν∗min is only detected in

cases in which the window width is equal to it. Actually

w must be determined previously; hence we must obtain

the length of a pulse train that is detectable by a window

with w width. We denote its minimum length by νmin,

which is a function of b, w, ζ, and q. In exceptional cases,

the pulse train is undetectable even if ν is increased to w.
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In this case νmin is indefinable. In Fig. 10, νmin is plot-

ted with w fixed. From this figure, for example, if jitter

width satisfies ζ ≤ 0.15 and the number of mixing pulses

satisfies q ≤ 5, then pulse trains with less than or equal

to 10 pulses are detectable by the w = 10 window (see

Fig. 10a). Also, if jitter width satisfies ζ ≤ 0.3 and the

number of mixing pulses satisfies q ≤ 5, then pulse trains

with less than or equal to 20 pulses are detectable by the

w = 20 window (see Fig. 10b). The latter case is close to

the condition of the numerical example in the preceding

section.

In general, if the width of a moving window increases,

then νmin increases. Cases in which q is very small (in

Fig. 10, only the case of q = 0 corresponds to it) are ex-

ceptional; if w increases, then νmin decreases. This re-

flects the fact that in this case the λ of (31) becomes a

decreasing function of w and the threshold is decreasing.

Figure 10c shows a case in which the width of the mov-

ing window is very large (w = 100). In this case, the

values of νmin are very large; for example, when q = 5

and ζ = 0.3, it exceeds 60. The PRI transform can ba-

sically be regarded as a PRI map with very wide moving

windows. In this case, however, the the length of the

pulse train required for detection becomes too large (as

seen above), and it is interpreted as a drawback of the

PRI transform.

(B) Maximum jitter width of detectable pulse

train

So far, we have analyzed the performance by fixing the

width of the PRI bin to b = 0.3. Here, we vary b and

analyze to what extent PRI jitter is allowable.

In Fig. 11, signal-to-threshold ratio IS/Γ is plotted as

a function of PRI jitter width ζ, where the values of the

parameters are b = 0.2 and w = ν = 20. If ratio IS/Γ

is larger than one, then a pulse train is detectable. In

this calculation, when ζ is greater than b, we assume that

signal intensity is reduced to b/ζ times of I0, and instead

of (37) we used

I2
S = [(1 + 2bq)(b/ζ)I0]

2 + (q2 + 2q)bν. (39)

Fig. 11 shows that if we increase ζ, IS/Γ gradually de-

creases and reaches one at some ζ, denoted by ζmax. This

ζmax is a function of b, w, ν, and q. In Fig. 12, ζmax

is plotted as a function of b, where we set w = ν = 20.

From the figure, we find that since ζmax > b when q ≤ 5,

ζ ≤ 0.3, we can cope with PRI jitter by setting b to the

possible maximum jitter width. We also find that by in-

creasing b to 0.4, ζmax can be increased to about 0.35.
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Fig. 10 Minimum length of pulse train when w is fixed:

b = 0.3

On the contrary, from the viewpoint of resolution,

smaller b is better, because the difference between PRIs

must be greater than b × PRI to distinguish two pulse

trains; the larger b is, the less resolution. Consequently,

b must be determined in consideration for the above two

conflicting requirements.

5. Conclusion

We proposed the PRI map method that enables detec-

tion of short pulse trains whose PRIs are possibly jittered.

This method is an extension of PRI transform. The ex-

tension resembles that from Fourier transform to wavelet

transform, and the PRI map obtained by the extension

is a function of both time and PRI. Simulation and per-
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Fig. 12 Maximum width of PRI jitter: w = ν = 20

formance analyses verified that it can detect short pulse

trains with lengths from 10 to 20 pulses whose PRIs are

possibly jittered. From these characteristics, the PRI map

method is expected to be extensively applied to PRI anal-

ysis.
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Appendix A. Derivation of false alarm prob-
ability

To calculate the false alarm rate, the probability den-

sity function (pdf) of the noise of the PRI transform is

needed. In general, a pdf is the Fourier transform of the

corresponding characteristic function; hence, we may ob-

tain the characteristic function. Since the PRI map is a

complex-valued random variable, its pdf and also its char-

acteristic function are two-dimensional functions. When

there is one input in a PRI bin, the PRI map becomes

D1 = eiΘ, (A. 1)

where Θ is a random variable with uniform distribution on

[0, 2π]. Let ξ, η be the parameters of the two-dimensional

characteristic function of the PRI map. The charac-

teristic function of D1, which only depends on distance

s =
√

ξ2 + η2 in ξ, η space, is calculated as

φ1(s) = E exp[i(ξ cosΘ + η sinΘ)]

=
1

2π

∫ 2π

0

exp[i(ξ cos θ + η sin θ)]dθ

=
1

2π

∫ 2π

0

exp[is cos θ]dθ = J0(s), (A. 2)

where J0(·) is the zeroth order Bessel function. When

there are ` inputs in a PRI bin, the PRI map becomes

D` =
∑̀
j=1

eiΘj , (A. 3)

whose characteristic function equals the `-th power of that

with one input, because Θj , j = 1, · · · , ` are independent

of each other. Since the number of arrivals L to a PRI

bin follows a Poisson distribution with parameter λ, the

pdf becomes
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p` ≡ P(L = `) =
λ`

`!
e−λ, ` = 0, 1, 2, · · · , (A. 4)

and both its mean and variance are equal to λ. From the

above expression, the characteristic function of the noise

component of the PRI map can be expressed in terms of

distance variable s such that

φ(s) =

∞∑
`=0

p`J
`
0(s) =

∞∑
`=0

λ`

`!
e−λJ`

0(s)

= exp[λ(J0(s)− 1)]. (A. 5)

Taking the 2-dimensional Fourier transform of φ(s), we

obtain the 2-dimensional pdf of DN:

φ̂(r) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
φ(s)e−i(xξ+yη)dξdη

=
1

(2π)2

∫ ∞

0

∫ 2π

0

φ(s)e−irs cos θsdθds

=
1

2π

∫ ∞

0

sφ(s)J0(rs)ds, (A. 6)

from which the pdf of |DN| is obtained as follows:

p(r) = 2πrφ̂(r) =

∫ ∞

0

rsφ(s)J0(rs)ds. (A. 7)

The false alarm probability for threshold Γ is expressed

as

PFA(Γ) ≡ P(|DN| > Γ) = 1− P (Γ), (A. 8)

where P ( · ) is a cumulative distribution function (cdf).

By calculating the cdf using (A. 7), we obtain

P (u) = P(|DN| ≤ u) =

∫ u

0

p(r)dr

=

∫ ∞

0

φ(s)

∫ u

0

rsJ0(rs)drds

=

∫ ∞

0

φ(s)uJ1(us)ds, (A. 9)

where J1(·) is a first order Bessel function and the follow-

ing relation is used:
∫ u

0

rsJ0(rs)dr = uJ1(su). (A. 10)

Substituting (A. 9) into (A. 8), we obtain the false alarm

probability as follows:

PFA(Γ) = 1− Γ

∫ ∞

0

φ(s)J1(Γs)ds. (A. 11)

Appendix B. Calculation of signal intensities

Without loss of generality, we assume ν ≤ w; otherwise,

we may replace ν by ν′ = min(ν, w). First, we investigate

the signal intensity when there is no mixing pulse, i.e.,

q = 0. In this case the PRI map at the PRI bin corre-

sponding to τ is

D0 =

ν∑
n=1

e2πitn/τ . (B. 1)

In general, let X be a random variable that is distributed

uniformly in [−ζ/2, ζ/2], and then it holds that

Ee2πiX =

∫ ζ/2

−ζ/2

e2πix 1

ζ
dx =

[
1

2πiζ
e2πix

]ζ/2

−ζ/2

=
eπiζ − e−πiζ

2πiζ
=

sin(πζ)

πζ
≡ sinc(ζ).(B. 2)

Substituting (32) into (B. 1) and calculating the expecta-

tion of |D0|2 by (B. 2) yields

I2
0 ≡ E|D0|2 = E

ν∑
n,m=1

e2πi(tm−tn)/τ

=

ν∑
n,m=1

sinc|m−n|(ζ)

= ν
1 + sinc(ζ)

1− sinc(ζ)
− 2sinc(ζ)[1− sincν(ζ)]

[1− sinc(ζ)]2
. (B. 3)

Next, using the above result, we calculate the signal in-

tensity when there are mixing pulses as follows:

I2
S ≡ E

∣∣∣∣∣
ν∑

n=1

(1 + Un + Vn)e2πitn/τ

∣∣∣∣∣

2

+ E|D′
N|2

=

ν∑
m,n=1

E [(1 + Um + Vm)(1 + Un + Vn)

· e2πi(tm−tn)/τ
]

+ q2bw

=

ν∑
m,n=1

E(1 + Um + Vm)(1 + Un + Vn)

·Ee2πi(tm−tn)/τ + q2bw, (B. 4)

whose first expectation is further calculated as

E(1 + Um + Vm)(1 + Un + Vn)

= (1 + 2bq)2 + E(Um − bq)(Un − bq)

+ E(Vm − bq)(Vn − bq)

=

{
(1 + 2bq)2 + 2bq, n = m

(1 + 2bq)2, n 6= m
(B. 5)

Substituting this into (B. 4) and using (B. 3), we obtain

I2
S =

ν∑
n,m=1

sinc|m−n|(ζ)(1 + 2bq)2 + 2νbq + q2bw

= (1 + 2bq)2I2
0 + (qw + 2ν)bw. (B. 6)
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