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Performance Analysis of a Recursive Maximum Filter

Ken’ichi Nishiguchi∗

A recursive maximum filter (RMF) is an algorithm devised to solve the problem of detecting small moving

targets in noisy image sequences. The RMF algorithm is simple and effective for enhancing small moving targets

with a low signal-to-noise ratio; however, its principle and performance limit are not clear because it is derived

heuristically. In this paper, we reformulate RMF based on Bayes estimation and show that it can be interpreted

as a Bellman equation of dynamic programming (DP). Although some DP-based algorithms have already been

proposed, RMF requires much less computation than previous algorithms because its state space is much smaller.

RMF includes two design parameters: neighborhood size and a forgetting factor. We derive approximation for-

mulae of the distributions of RMF outputs for various parameter values. By using the formulae, we show a

minimum SNR with which targets are detectable for each neighborhood size. We also show the conditions under

which targets can be detected by RMF with various parameter values.
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1. Introduction

Recently, the problem of detecting small targets with

low contrast from noisy image sequences has attracted

much attention 1)∼9). This problem arises, for instance,

when detecting far moving targets from an onboard in-

frared (IR) camera 1) and detecting meteors and artificial

satellites in the night sky from a telescope and a charge-

coupled device (CCD) 2). The problem’s difficulty is that

objects to be detected (targets) cannot be detected from

each single image since they are small with low signal-to-

noise ratio (SNR), which cannot be improved by length-

ening the integration time since the targets move.

Various methods have been proposed to solve the prob-

lem of small target detection. In the research’s early

stage, assuming that the velocity of the targets is known,

a maximum likelihood method 2) and a three-dimensional

matched filter 3), 4) were proposed. The performance of

these methods is degraded when the velocity disagrees

with the assumed one or when targets maneuver.

Afterwards, on the assumption that the velocities of

targets are constant but unknown, methods based on

dynamic programming (DP) have been proposed 1), 5).

These DP-based methods can prevent performance degra-

dation due to velocity disagreement since they estimate

targets’ velocity and can deal with low-maneuvering tar-

gets. Furthermore, the performance of DP-based methods
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was analyzed using false alarm and detection probabili-

ties 6)∼8). However, since the computational burden on

the methods that estimate target velocities is huge, real-

time processing is difficult. In addition, constant velocity

assumption is too restrictive in applications since appar-

ent random motions caused by camera vibration may be

added to the actual target’s motion.

We proposed an image processing algorithm called re-

cursive max filter or recursive maximum filter (RMF) 9)

to overcome these difficulties. This algorithm was applied

to the detection of small moving targets from an infrared

image sequence 9) and dim star detection from star sensor

images 10), 11). In these applications, the detection perfor-

mance was validated by simulations using generated and

field data. However, since the RMF algorithm was derived

heuristically, its principle and its detection performance

limit were not clear. In this paper, we interpret RMF

from the viewpoint of Bayesian estimation and clarify its

target detection performance by analysis and simulation.

The target motion model in this paper is Brownian mo-

tion in an image plane. A posteriori probability of the

target’s trajectory is obtained by applying Bayes’ rule to

an image sequence that includes both targets and noise.

Although a large-scale combinatorial optimization prob-

lem must be solved to obtain the optimal trajectory that

maximizes the a posteriori probability, the exact solution

is easily determined with a dynamic programming (DP)

approach. We show that the Bellman equation of DP for

this problem becomes the recursive formula of RMF.

In addition, we derive an approximate distribution of

RMF’s output with which we evaluate its performance.
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Output SNR can be increased indefinitely if input SNR

exceeds a certain value, which is referred to as limit SNR.

We obtain the values of the limit SNR . Moreover, we

clarify the conditions under which targets are detectable

in various situations.

The organization of this paper is as follows. In Section

2, RMF is interpreted from the viewpoint of Bayesian es-

timation. In Section 3, the distribution of RMF output

image intensities is obtained, which is necessary for per-

formance analysis. In Section 4, limit SNR and the SNR

improvement effect of RMF are discussed. In Section 5,

the false alarm and detection probabilities by RMF are

obtained. Finally, Section 6 draws some conclusions.

2. Recursive maximum filter

2. 1 Model of small target detection

Let Yij(k), i, j = 1, · · · , n, k = 1, 2, · · · be the image se-

quences to be processed, where (i, j) denotes the pixel

number and k the frame number at time tk. The image

data contain targets, a structured background, clutter,

and noise. Except for the noise, here we assume that the

backgrounds are negligible or have already been whitened

by preprocessing. We assume that the targets move ran-

domly from frame to frame. This assumption does not ex-

clude the possibility of constant velocity movement, but

implies a lack of knowledge about the motion of targets.

We also assume that the maximum velocity of a target

is known, which is denoted by vmax. For pixel (i, j), we

define neighborhood Dij as a region where the target,

which is present at pixel (i, j) in one image, may have

existed in the preceding image. Let ν be the number of

pixels contained in Dij . Here Dij and ν are determined

by the maximum velocity of the targets. For example,

when vmax ≤ 1 pixels/frame, Dij is given by

Dij = {(i′, j′) ; i′ = i, i± 1, j′ = j, j ± 1}, (1)

and ν = 9.

We assume that background noise Wij(k) is Gaussian

with a mean of µ and a variance of σ2, and it is white

both in time and space, i.e.:

E(Wij(k)) = µ, (2)

E((Wij(k)− µ)(Wi′j′(k
′)− µ)) = σ2 δii′ δjj′ δkk′ ,

(3)

where E( · ) denotes the expectation and δii′ is Kro-

necker’s delta.

Let A be the intensity of a target. Then the image data

are represented as

Yij(k) =

{
A + Wij(k), if a target is present

Wij(k), otherwise
(4)

We define the input SNR of a target as

SNRin =
A− µ

σ
. (5)

If we detect targets in a single frame of image data by

thresholding, then SNRin must be greater than 6 or 7.

The problem treated in this paper is the detection of tar-

gets that cannot be detected in a single frame of image

data. Therefore, the SNRin value we are concerned with

is less than 2 or 3.

2. 2 RMF algorithm

If a target is present at location (i, j) at time k, then

it must have been in neighborhood Dij at time k − 1, so

quantity Yij(k)+max(i′,j′)∈Dij
Yi′j′(k− 1) is expected to

take a larger value than in the case of no targets. If the

target is assumed to have been at location (i′, j′) at time

k − 1, then it must have been in neighborhood Di′j′ at

time k − 2, so quantity Yij(k) + max(i′,j′)∈Dij
{Yi′,j′(k −

1)+max(i′′,j′′)∈Di′j′ {Yi′′,j′′(k−2)}} is expected to take a

much larger value and so on. Thus the summation of the

maximum value of the neighborhood back to its former

location

Xij(k) = Yij(k) + max
(i′,j′)∈Dij

{
Yi′j′(k − 1)

+ max
(i′′,j′′)∈Di′j′

{Yi′′j′′(k − 2) + · · ·}
}

(6)

can be expected to take a large value when the target is

present at location (i, j). On the other hand, when targets

are absent, the above quantity is the summation of tem-

porally uncorrelated noise. As a result, it is expected to

take a relatively small value. Therefore the quantity be-

haves to enhance the moving targets and suppress noise.

Xij(k) can be calculated by the recursive algorithm as

Xij(k) = Yij(k) + max
(i′,j′)∈Dij

Xi′j′(k − 1),

k = 1, 2, · · · (7)

where we set Xij(0) = 0. The above algorithm, how-

ever, has drawbacks. First, the recursive procedure cor-

responds to putting equal weights on all the past data

while it is desirable to put additional weight on the later

data. Second, since Xij(k) becomes larger and larger with

time, resetting Xij(k) is required while temporally homo-

geneous processing is preferable because the time of the

appearance of the targets is not known. To avoid such

drawbacks, we modify algorithm (7) using a forgetting

factor α as
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Fig. 1 Block diagram of recursive maximum filter

Xij(k) = Yij(k) + α max
(i′,j′)∈Dij

Xi′j′(k − 1),

k = 1, 2, · · · (8)

which we call the recursive max filter (RMF) 9). The

closer the value of α is to one, the greater the integra-

tion effect; however when α equals one, RMF will diverge

as time goes on. Therefore, we set the value of α less

than one (for example, 0.9 or 0.95) for the persistent use

of RMF in such cases to await the appearance of targets.

On the contrary, if RMF is reset at fixed intervals, we set

α = 1.

The algorithm of (8) can be implemented by the archi-

tecture shown in Fig. 1. The RMF in Fig. 1 has a local

maximum filter in its loop. Targets are enhanced by RMF

with elapsed time and detected by thresholding with an

adequate threshold; even though RMF is very simple, it

detects dim moving targets well.

2. 3 RMF formulation by Bayesian estimation

and DP

Although RMF was originally derived in a heuristic

manner, as stated in the preceding section, the problem

can be formulated as a Bayesian estimation problem and

the RMF algorithm can be derived as a Bellman equation

of DP. In this section, we derive RMF in such a manner.

Let φ(k) = (ik, jk) be the pixel where a target ex-

ists at time k, and φk = (φ(1), · · · , φ(k)) be the tar-

get’s trajectory to time k. When image data to time k,

Y k = ({Yij(1)}, · · · , {Yij(k)}) are given, let P (φk |Y k) be

the a posteriori probability of target trajectory φk. By

Bayes’ rule this probability is represented as

P (φk |Y k) =
P (Y k |φk)P (φk)

P (Y k)
, (9)

where P (φk) is the a priori probability of target trajec-

tory, and by the assumption that target’s motion is ran-

dom it is represented as

P (φk) = P (φ(1))

k∏
l=2

P (φ(l) |φ(l − 1)). (10)

The initial distribution is P (φ(1)) = 1/N2 since all pixels

are equally likely, and the transition probability is nonzero

only when φ(l−1) is included in the neighborhood of φ(l)

by definition of the neighborhood, i.e.:

P (φ(l) |φ(l − 1))

=

{
1/ν, if φ(l − 1) ∈ Dφ(l),

0, otherwise.
(11)

Consequently, P (φk) takes the same value of 1/νk−1N2

on possible trajectories and zero otherwise. Conditional

probability P (Y k |φk) on the right-hand side of (9) is the

probability density of observed values given a target tra-

jectory. Since the observation noise is white both in time

and space, it is represented as

P (Y k |φk) =

k∏
l=1

N∏
i,j=1

p(Yij(l) |φ(l)). (12)

Since each term on the right-hand side is given by

p(Yij(l) |φ(l)) =
1√

2πσ2

×





exp

[
− (Yij(l)− µ−A)2

2σ2

]
, (i, j) = φ(l)

exp

[
− (Yij(l)− µ)2

2σ2

]
, (i, j) 6= φ(l)

(13)

we obtain

P (Y k |φk)

= M1

k∏
l=1

exp
{
− 1

2σ2

[
−2A(Yφ(l)(l)− µ) + A2

]}
,

(14)

which is substituted into (9) to get

P (φk |Y k) = M2P (φk)

× exp

{
− 1

2σ2

k∑
l=1

[
−2A(Yφ(l)(l)− µ) + A2

]
}

,

(15)

where M1 and M2 are constants that do not depend on
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the target trajectory. The maximization of (15) with re-

spect to φk is equivalent to maximizing

J(k) = P (φk)

k∑
l=1

Yφ(l)(l), (16)

regardless of the value of A. So far, we have considered the

problem on the basis that targets exist from the outset;

however, there are applications where targets are absent

at the outset but we want to detect them as rapidly as

possible after their appearance. Therefore, we introduce

an object function defined by

J(k) = P (φk)

k∑
l=1

αk−lYφ(l)(l), (17)

where α (0 < α ≤ 1) is the forgetting factor introduced

in the preceding section.

The goal is to obtain a trajectory that maximizes ob-

ject function J(k) among all possible trajectories. This

becomes an extremely large-scale combinatorial optimiza-

tion problem in which the number of trajectories is

νk−1N2; for example, if ν = 7 × 7, k = 30 and N = 512,

then the number of trajectories is 2.7× 1054. However, in

this case we can effectively obtain the exact solution with

DP.

We introduce function Xij(k) defined by

Xij(k) = max
φk;φ(k)=(i,j)

νk−1N2J(k), (18)

and then it holds

max
φk

νk−1N2J(k) = max
i,j

Xij(k), (19)

so that the maximization of J(k) with respect to all tra-

jectories is equivalent to maximizing Xij(k) with respect

to i and j.

Note that the object function can be written in the fol-

lowing recursive form:

J(k) = P (φk)Yφ(k)(k) + αP (φ(k) |φ(k − 1))J(k − 1),

k = 1, 2, · · · (20)

with J(0) = 0. By substituting (20) into (18) and using

(11) we obtain a Bellman equation with respect to Xij(k)

such that

Xij(k) = Yij(k) + α max
{φk−1;φ(k−1)∈Dij}

J(k − 1)

= Yij(k) + α max
(i′,j′)∈Dij

Xi′j′(k − 1) (21)

with initial value Xij(0) ≡ 0, which is exactly the RMF

in the preceding section.

In this way, RMF can be interpreted as a DP-based

algorithm; however, the amount of calculation is much

smaller than by conventional DP-based methods for small

target detection. This is because, while the search space

of the conventional methods is a set of the trajectories of

both positions and velocities, RMF’s set only includes the

trajectories of positions, enabled by assuming the movable

regions of targets. The dominant calculation of RMF is

the N2 operation of the local maximization at each time.

Since search space is the product space of the position and

velocities in the conventional methods, if the number of

cells in the velocity space is M2, then N2×M2 operations

of local maximization are needed. For example, Tonissen

et al. 7) and Johnston et al. 8) use 6 × 6 velocity cells, so

the amount of calculation for RMF is reduced 1/36.

3. Distribution of output image intensities of
RMF

In this section, we investigate the distribution of the

intensities of RMF output images when a target is both

absent and present. Without loss of generality, we assume

µ = 0 and σ = 1; otherwise, we may replace (Yij(k)−µ)/σ

by Yij(k). Under this assumption, the intensity of target

A in itself becomes the input SNR.

3. 1 Distribution of output noise

Here we refer to RMF output when input images only

contain noise as output noise. Although, the distribution

of the output noise must be determined to obtain the false

alarm probability, determining the distribution exactly is

difficult since RMF output includes the maximum of the

correlated variables, as seen in (8). So we obtain an ap-

proximate distribution.

First, under the assumption that output noise is inde-

pendent and an identically distributed normal variable in

the neighborhood, the mean of output noise µout(k) is

approximated by

µout(k) ∼





(k − 1)µ0(ν, 1), α = 1,

α
1− αk−1

1− α
µ0(ν, α), α < 1,

(22)

where

µ0(ν, α) =
µ(ν)√

1− (ασ(ν))2
(23)

and µ(ν) and σ2
(ν) are the mean and the variance of the

sample maximum of ν standard normal variables, respec-

tively, which take values shown in Table 1 12). The

derivation of (22) is shown in Appendix A. Equation (22)

shows that the mean increases linearly when α = 1. In

Fig. 2, both the mean calculated by (22) and the sample

mean
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Table 1 Means and variances of maximum of standard nor-

mal variables

number of variables mean variance

ν µ(ν) σ2
(ν)

9 (= 3× 3) 1.485 0.3574

25 (= 5× 5) 1.965 0.2585

49 (= 7× 7) 2.241 0.2168

81 (= 9× 9) 2.431 0.1930
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Fig. 2 Mean of output noise

µs(k) =
1

N2

N∑
i,j=1

Zij(k) (24)

are plotted when α = 1 and 0.96. Here, the image size

in the simulation is N = 1024. As is shown in the figure,

(22) gives an excellent approximation despite being based

on a rough assumption.

Next, we denote the variance of output noise as σ2
out(k).

Unlike the mean of output noise, analytically deriving an

approximate expression of σ2
out(k) is difficult. This is be-

cause such global statistical properties as a long-range

correlation affect σ2
out(k), while in the case of µout(k) we

may only assume local statistical properties in the neigh-

borhood. For this reason, we derive an approximation

expression with the aid of simulation results. We define

the local maximum of output noise as

Zij(k) = max
(i′,j′)∈Dij

Xi′j′(k). (25)
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Fig. 3 Square of variance of Zij(k) (simulation, α = 1)

Assuming that the time increments of Zij(k) are indepen-

dent, Nishiguchi et al. 9) derived an approximation expres-

sion:

σ2
Z(k) = (1 + α2 + · · ·+ α2(k−1))σ2

(ν)

=
1− α2k

1− α2
σ2

(ν), (26)

from which, when α = 1, the variance increases in propor-

tion to time. On the other hand, Fig. 3 shows the time

evolution of the square of Zij(k)’s sample variance, where

sample variance is defined by

σ2
s (k) =

1

N2

N∑
i,j=1

(Zij(k)− µs(k))2. (27)

As shown in the figure, the square of the variance linearly

increases instead of the variance itself. This nontrivial

property must be clarified theoretically; however, it has

been an open problem up to now. Accordingly, we exploit

only the property and modify the approximation expres-

sion of Zij(k)’s variance as

σ2
Z(k) =





√
kσ2

0(ν, 1) α = 1√
1− α2k

1− α2
σ2

0(ν, α), α < 1
(28)

where σ0(ν, α) is an unknown parameter to be deter-

mined by simulation. Here we determined σ0(ν, α) by

fitting σ2
Z(k) of (28) to sample variance σ2

s (k) using a

least squares method because the sample variance is ap-

proximately normally distributed by the central limit the-

orem. Figure 4 shows examples where sample standard

deviation σs(k) is approximated by σZ(k) of (28). Other

than these examples, the approximation is quite good. In

Fig. 5, we show the values of σ0, determined by simula-

tion for each α and ν.

Note that when the input is only noise, the recursive

formula for RMF can be written as

Xij(k) = Wij(k) + αZij(k − 1), (29)
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Fig. 5 Estimates of model parameter σ0

from which the variance of output noise is given by

σ2
out(k) = 1 + α2σ2

Z(k − 1). (30)

If α < 1, Xij(k) has a stationary state, and the mean and

the variance at the stationary state are given by

µout =
αµ0(ν, α)

1− α
, (31)

σ2
out = 1 +

α2σ2
0(ν, α)√

1− α2
. (32)

3. 2 Output image pixel intensities in the pres-

ence of a target

In the input image, the mean and the variance of the

intensity of a pixel that contains a target are A and 1, re-

spectively. In the output image, if A is sufficiently large,

the pixel intensity that contains a target is considered the

sum of pixel intensities returning to the past with forget-

ting factors along the target trajectory. Since weight αl

is multiplied to the image of l frames ago, the mean and

the variance of the element of the sum are αlA and α2l,

respectively. As a result, the mean and the variance of

the target pixel intensity are given by

µT(k) =





kA, α = 1

1− αk

1− α
A, α < 1

(33)

σ2
T(k) =





k, α = 1

1− α2k

1− α2
, α < 1.

(34)

In addition, if α < 1, there is a stationary state in the

RMF, and if it has attained the stationary state when a

target appears, then the mean and the variance of the

target pixel intensity become

µT(k) =
1− αk

1− α
A + αkµout, (35)

σ2
T(k) =

1− α2k

1− α2
+ α2kσ2

out. (36)

4. Target enhancement by RMF

4. 1 Output SNR and limit SNR

RMF has an enhancement effect on low-SNR targets

that are buried in noise. We quantitatively evaluate the

effect by regarding it as an improvement effect on output

SNR. Assuming that RMF is in a stationary state when

a target appears, we define the output SNR of RMF by

SNRout(k) =
µT(k)− µout

σout
, (37)

into which, substituting (35), (31), and (32), we have

SNRout(k) =

1− αk

1− α
(A− αµ0(ν, α))

√
1 +

α2σ2
0(ν, α)√

1− α2

. (38)

When k →∞, it approaches

SNRout(∞) =
A− αµ0(ν, α)

(1− α)

√
1 +

α2σ2
0(ν, α)√

1− α2

. (39)

Furthermore, when α → 1, it holds that

SNRout(∞) ∼ (2/π)1/4

(1− α)3/4

A− µ0(ν, 1)

σ0.(ν, 1)
. (40)

Therefore, if A (= SNRin) is greater than µ0(ν, 1), SNRout

can be increased indefinitely by approaching α to 1. Con-

versely, if A is less than µ0(ν, 1), the target cannot be en-

hanced, regardless how many image frames are processed.
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In this sense,

SNRmin
def
= µ0(ν, 1) =

µ(ν)√
1− σ2

(ν)

(41)

gives a performance limit of the RMF. Figure 6 shows

SNRmin for each neighborhood size ν. Since SNRin must

be at least six to detect a target from an image, as stated

previously, RMF can reduce it from 1/2 to 1/3.

4. 2 SNR improvement effect in the transient

state

In the preceding section, we assumed the number of in-

put images is infinite; however, targets must be detected

within a finite time. Here, we analyze the growth of out-

put SNR in a transient state.

If we assume that a target is present in the initial state

of RMF, then its output SNR is written as

SNRout(k) =
µT(k)− µout(k)

σout(k)
. (42)

The values of this SNRout(k) calculated by substituting

(33), (22), and (30) with α = 1 and 0.96 are plotted in

Fig. 7. This figure shows the SNR improvement effect;

if input SNR is greater than αµ0(ν, α), then output SNR

increases as k increases. In Fig. 7(d)–(f), the SNR im-

provement effect is plotted in both cases where RMF has

been in stationary and initial states when a target ap-

pears. These were calculated by (38). As seen in this

figure, the SNR improvement effect does not depend on

what states a target appears in but on the number of

frames from the appearance of the target.

5. Detection performance of targets

Generally, false alarm and detection probabilities are

used to evaluate the performance of target detection algo-

rithms. For each threshold, the detection and false alarm

probabilities are defined as the probabilities in which the

output exceeds the threshold in the presence and the ab-

sence of targets, respectively.

5. 1 False alarm probability

For RMF output, we set

Xmax(k) = max
i,j

Xij(k). (43)

Let H(k) be the detection threshold of RMF, and then

the false alarm probability is represented as

PFA = Pr(Xmax(k) ≥ H(k) | no target). (44)

For clarification, we normalize Xmax by the mean and the

variance of the RMF output noise as

Xmax(k) =
Xmax(k)− µout(k)

σout(k)
, (45)

and also we normalize the threshold as

H(k) = µout(k) + hσout(k), (46)

where h is a threshold parameter. Then, false alarm prob-

ability is rewritten as

PFA(h) = Pr(Xmax(k) ≥ h |no target). (47)

Since Xmax(k) is a sample maximum, its distribution is

an extremal value distribution that is known as a heavy

tail distribution. In addition, Xmax(k) is regarded as al-

most a stationary process because it is normalized. In

simulation, we calculated 105 samples of Xmax(k) for fixed

ν and α and obtained the empirical distribution of false

alarm probability (Fig. 8). As is seen in this figure, the

dependency of the false alarm probability on ν is small.

With respect to α, the closer it is to 1, the higher the false

alarm probability is. For example, if 0.9 ≤ α ≤ 0.98, then

it is only necessary to set h = 7.5 to keep PFA < 10−4.

On the other hand, if X is a standard normal variable,

then Pr(X ≥ 3.72) = 10−4. This is the consequence of

the distribution of Xmax(k) having a heavy tail.

5. 2 Detection probability

Let XT(k) be the output pixel intensity of RMF in

which a target exists. As defined in Section 3. 2, its mean

and variance are µT(k) and σ2
T(k), respectively. If we as-

sume that XT(k) follows a normal distribution, its prob-

ability density function is written as

pT(x; k) =
1√

2πσ2
T(k)

exp

[
− (x− µT(k))2

2σ2
T(k)

]
, (48)

from which the detection probability for threshold H(k)

is given by

Pd(k) =

∫ ∞

H(k)

1√
2πσ2

T(k)
exp

[
− (x− µT(k))2

2σ2
T(k)

]
dx.

(49)

We normalize XT(k) by the mean and the standard devi-

ation of the output noise as
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(a) α = 1, ν = 3× 3
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(b) α = 1, ν = 5× 5

5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

k

S
N

R
ou

t

SNR
in

 = 2.8

3.0

3.2

3.4

3.63.84.0

(c) α = 1, ν = 7× 7
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(d) α = 0.96, ν = 3× 3
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(e) α = 0.96, ν = 5× 5
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(f) α = 0.96, ν = 7× 7

Fig. 7 SNR improvement effect
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Fig. 8 False alarm probability

XT(k) =
XT(k)− µout(k)

σout(k)
, (50)

whose mean and variance are given respectively by

EXT(k) =
µT(k)− µout(k)

σout(k)
= SNRout(k), (51)

E(XT(k)− SNRout(k))2 =

(
σT(k)

σout(k)

)2

. (52)

Therefore, since the probability density function of XT(k)

is given by

pT(x; k) =
1√

2π(σT(k)/σout(k))2

× exp

[
− (x− SNRout(k))2

2σ2
T(k)/σ2

out(k)

]
, (53)

the detection probability can be written as:

Pd(k) =

∫ ∞

h

pT(x; k)dx

= 1− Φ

(
h− SNRout(k)

σT(k)/σout(k)

)
, (54)

where

Φ(x) =

∫ x

−∞

1√
2π

exp(−x2

2
)dx (55)

is a cumulative error function. From this, we easily find

that when output SNR equals h, which is a threshold pa-

rameter, detection probability is 50 %. Figure 9 shows

detection probability in a stationary state of RMF calcu-

lated by (54). Here we set h = 7.5. From this figure, we

find that when ν = 3 × 3 and ν = 7 × 7 it is sufficient

that input SNR is greater than 2.6 and 3.2, respectively,

for target detection with probability of 90%.
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Fig. 9 Detection probability

6. Conclusion

We formulated RMF, which was previously proposed as

an image processing algorithm for the detection of small

moving targets, from a Bayesian viewpoint and showed

that it could be interpreted as a Bellman equation of DP.

We also derived approximate expressions to describe

the distribution of RMF outputs and used them to an-

alyze RMF performance. In performance analysis, first,

we showed that output SNR can be increased indefinitely,

if input SNR is greater than a certain value, and we ob-

tained the values of the limit SNR. Next, we obtained

the false alarm and detection probabilities with the aid of

simulation and approximate expressions and clarified the

condition under which targets were detectable.

Though we clarified the fundamental features of RMF

assuming that the background noise is white and Gaus-

sian, there are many applications where this assump-

tion is not satisfied at the outset. In these applications,

some preprocessing will be required before applying RMF,

which is a future task for expanding applications.
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Appendix A. Approximation of the mean of
output noise

In this appendix, we derive (22), which is an approxi-

mation expression of the mean of output noise. In prepa-

ration, we define the local mean and local variance by

Xij(k) =
1

ν

∑
(i′,j′)∈Dij

Xi′j′(k), (A. 1)

VX,ij(k) =
1

ν − 1

∑
(i′,j′)∈Dij

(Xi′j′(k)−Xij(k))2,

(A. 2)

respectively, and represent the expectation of the local

variance as

σ2
X,loc(k) = EVX,ij(k) (A. 3)

where coefficient 1/(ν − 1) of (A. 2) is determined so that
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if {Xij(k)} are i.i.d. in neighborhood Dij , then σ2
X,loc(k)

equals the variance of {Xij(k)}.
Now, let X1, X2, · · · , Xν be i.i.d. normal variables with

mean µX and variance σ2
X , and we define the sample max-

imum by

Z = max
i=1,···,ν

Xi, (A. 4)

and then the mean and the variance of Z are given by

EZ = µX + µ(ν)σX , (A. 5)

E(Z − EZ)2 = σ2
(ν)σ

2
X . (A. 6)

To derive approximation expressions, we assume sim-

ilar relations with respect to output noise and its local

maximum defined by (25) as:

Assumption 1.

EZij(k) = µout(k) + µ(ν)σX,loc(k) (A. 7)

σ2
Z,loc(k) = σ2

(ν)σ
2
X,loc(k) (A. 8)

where µout(k) = EXij(k), and σ2
Z,loc(k) is the expecta-

tion of the local variance of {Zij(k)}. Assumption 1 holds

exactly when {Xi′j′(k)}(i′,j′)∈Di,j
are i.i.d. normal vari-

ables.

Under assumption 1, the expectations of Xij(k) and of

the local variance of Xij(k) follow the recursive formula:

µout(k) = α
[
µout(k − 1) + µ(ν)σX,loc(k − 1)

]
,

(A. 9)

σ2
X,loc(k) = 1 + α2σ2

(ν)σ
2
X,loc(k − 1), (A. 10)

which can be solved explicitly under the initial condition

µout(1) = 0 and σ2
X,loc(1) = 1, so we have

µout(k) = µ(ν)

k−1∑
l=1

αlσX,loc(l), (A. 11)

σ2
X,loc(k) =

1− (ασ(ν))
2k

1− (ασ(ν))2
. (A. 12)

When k increases, local variance is saturated and becomes

σ2
X,loc(k) ∼ 1

1− (ασ(ν))2
(A. 13)

, and the mean becomes

µout(k) ∼





α
1− αk−1

1− α
µ0(ν, α), α < 1

(k − 1)µ0(ν, 1), α = 1
(A. 14)

where µ0(ν, α) is the variable defined by (23).
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