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Minimax Estimation of Uncertain Systems in the Presence of

Bounded Disturbance

Wataru Kitamura∗ and Yasumasa Fujisaki∗∗

Minimax estimation is considered for a single-input single-output discrete-time uncertain system in the presence

of bounded disturbance. The given regressors are divided into two sets which have small and large amplitudes

respectively, where the amplitude ranges are assumed to be exclusive each other. Then, the nominal parameter

of the system is estimated so that the maximal output error is minimized. The bounds of the disturbance and

the parameter uncertainty are also estimated by using the output errors for these two sets. For this minimax

estimation, the estimation errors are evaluated when the regressors of each set are persistently exciting. Fur-

thermore, probabilistic estimation errors are derived when the regressors of each set are persistently exciting and

periodic and have the same amplitude, and the disturbance and the parameter uncertainty are random variables

which take their extreme values with a probability. The result implies that the errors converge to zero as the

number of samples tends to infinity.
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1. Introduction

Minimax estimation is frequently used in identifica-

tion of a system parameter in the presence of unknown

bounded disturbance 1)∼3). This estimation enables us to

obtain not only an estimate of the system parameter that

describes measured input-output data but also an esti-

mate of the upper bound of the disturbance. Then, the

estimates converge to the true values as the number of

samples tends to infinity if the regressor is assumed to be

persistently exciting and the disturbance is assumed to

be random variable which takes its extreme value with a

probability 4). However, the existing literature deals with

only a system with additive bounded disturbance, i.e.,

parameter uncertainty of the system has not been intro-

duced. It should be noticed that the existing estimation

algorithm cannot be used for an uncertain system with a

parameter uncertainty. This is because the parameter un-

certainty causes an output error of the system not as an

additive bounded noise but as an unbounded noise whose

amplitude depends on the magnitude of input signals.

In this paper, we investigate minimax estimation for

uncertain systems in the presence of unknown bounded

disturbance. We here propose an identification method

which gives not only an estimate of the nominal parame-

ter of the system but also estimates of the upper bounds of
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bounded disturbance and bounded parameter uncertainty.

The given regressors are divided into two sets which have

small and large amplitudes respectively, where the ampli-

tude ranges are assumed to be exclusive each other. Then,

the maximal output error is minimized so that the nom-

inal parameter of the system is estimated. The bounds

of the disturbance and the parameter uncertainty are also

estimated by using the output errors for these two sets. In

order to evaluate performance of this minimax estimation,

we derive deterministic bounds of the estimation errors

when the regressors of each set are persistently exciting.

Furthermore, we also derive probabilistic bounds of the

estimation errors for finite number of samples when the

regressors of each set are persistently exciting and periodic

and have the same amplitude, and the disturbance and the

parameter uncertainty are random variables which take

their extreme values with a probability. Then, we prove

that the errors converge to zero as the number of samples

tends to infinity. It should be noted that, even if there

is no parameter uncertainty of the system, the results of

this paper give some useful details relative to the existing

literature 4) which explored convergence property of the

estimation errors since the results here give an evaluation

of the errors with respect to number of samples.

2. Minimax estimation

Let us describe a single-input single-output (SISO) dis-

crete time system as

yi = φT
i (θ + ηi) + vi (1)

where subscript i means the time, yi ∈ R is the sys-
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tem output, φi ∈ R
m is the measurable regression vector,

θ ∈ R
m is a nominal parameter of the system to be iden-

tified, vi ∈ R is an unknown disturbance, and ηi ∈ R
m is

an unknown parameter uncertainty. The disturbance and

the parameter uncertainty are bounded, that is,

|vi| ≤ ε, ‖ηi‖2 ≤ δ (2)

where the bounds ε and δ are unknown, and ‖ • ‖2 is the

l2 norm

‖ηi‖2
.
=
`
ηT

i ηi

´1/2
.

In this paper, we consider an identification problem

which is to find estimates of the nominal parameter of

the system θ, the bound of disturbance ε, and the bound

of parameter uncertainty δ based on given input-output

data {yi, φi}. In the following, we derive the estimates in

the framework of minimax estimation.

Note that, if no parameter uncertainty of the system is

presented in (1), the minimax estimate of θ is given bybθ .
= arg minθ̂ maxi |yi − φT

i θ̂|. Then, it turns out that an

estimate ε is given by the maximum value of output error

maxi |yi − φT
i
bθ| 1)∼3). However, if there exists parameter

uncertainty of the system, both upper bounds ε and δ have

to be estimated. One value such as the maximum value of

output error is clearly not sufficient for determining two

values ε and δ.

In order to estimate both upper bounds ε and δ, we

first divide given input-output data {yi, φi} into two sets,

which are described as {y(1)
i , φ

(1)
i } and {y(2)

i , φ
(2)
i }. Here

we classify {yi, φi} into {y(1)
i , φ

(1)
i } and {y(2)

i , φ
(2)
i } by am-

plitude of the regressor, that is,

a1 ≤ ‖φ(1)
i ‖2 ≤ b1,

a2 ≤ ‖φ(2)
i ‖2 ≤ b2, (3)

0 < a1 ≤ b1 < a2 ≤ b2 < ∞

where {y(1)
i , φ

(1)
i } and {y(2)

i , φ
(2)
i } contain N1 and N2

input-output data respectively.

Then, we obtain the minimax estimate bθ of θ as

bθj
.
= arg min

θ̂
max

i
|y(j)

i − (φ
(j)
i )Tθ̂|, j = 1, 2 (4)

by each input-output data set {y(j)
i , φ

(j)
i }, j = 1, 2. Defin-

ing the maximum output error as

ej
.
= max

i
|y(j)

i − (φ
(j)
i )Tbθj |, j = 1, 2, (5)

we can obtain estimates bε, bδ of ε, δ as

bε .
=

b2e1 − b1e2

b2 − b1
(6)

bδ .
=

e2 − e1

b2 − b1
. (7)

The identification proposed in this paper is a method us-

ing the equations (4), (6) and (7). In the following sec-

tions, we investigate the estimation errors between the

estimates bθj , bε and bδ and the true values θ, ε and δ, which

shows that the estimates bθj , bε and bδ are actually relevant.

Notice that the estimates bθj of θ can be computed by

solving a linear programming problem

min
θ̂,νj

νj

s.t. |y(j)
i − (φ

(j)
i )Tθ̂| ≤ νj , ∀i = 1, 2, . . . , Nj (8)

with each input-output data set {y(j)
i , φ

(j)
i }, j = 1, 2.

3. Deterministic analysis of the estima-
tion errors

In this section, we derive upper bounds of the estima-

tion errors in a deterministic setting.

Let us introduce a definition 5).

Definition 1. The regressor φi, i = 1, 2, . . . , N is

said to be persistently exciting (PE) if there exist some

n ∈ N, α ∈ N, and β ∈ N such that

α2I ≤
i0+n−1X

i=i0

φiφ
T
i ≤ β2I (9)

for any i0 ∈ N, 1 ≤ i0 ≤ N − n + 1. Here, N denotes the

set of positive integers and the matrix inequality A ≤ B

means that B − A is positive semidefinite.

Note that the regressor φi can be PE regardless of

whether it is a deterministic or a stochastic vector. If

the regressor is PE, θ̂ of (8) is bounded for all νj , and

thus the estimation error θ − bθj is bounded.

In the following, we assume that each set of the regres-

sors {φ(1)
i } and {φ(2)

i } satisfies PE condition (9). Then,

the indexes of PE condition are written as (n1, α1, β1)

and (n2, α2, β2) for {φ(1)
i } and {φ(2)

i } respectively, where

Nj = 
jnj and 
j is an integer for simplicity.

Then, we obtain the following theorem.

Theorem 1. Consider the system (1). Assume that

the regressor φ
(j)
i , j = 1, 2 is deterministic and PE. Then,

‖θ − bθj‖2 ≤ 2
√

nj

αj
(ε + bjδ), j = 1, 2. (10)

Proof. In the following, j is fixed as 1 or 2 since the

proof is the same. Let us describe Φj
N as

Φj
N

.
=

2666664
(φ

(j)
1 )T

(φ
(j)
2 )T

...

(φ
(j)
Nj

)T

3777775 ∈ R
Nj×m.

Recall that the regressor φ
(j)
i is PE and Nj = 
jnj . Then,
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we have

(Φj
N )TΦj

N =

�jnjX
i=1

φ
(j)
i (φ

(j)
i )T ≥ α2

j
jI

from the left inequality of (9). Hence, we obtain

‖{(Φj
N )TΦj

N}−1(Φj
N )T‖i2 ≤ 1

αj

p

j

(11)

where ‖ • ‖i2 is the induced l2 norm

‖A‖i2
.
= sup

x �=0

‖Ax‖2

‖x‖2
=

q
λ(AAT)

and λ(AAT) is the maximum eigenvalue of AAT for real

matrix A. Noting that the estimate bθ of θ is obtained

from (4), we have

|y(j)
i − (φ

(j)
i )Tbθj | ≤ max

i
|y(j)

i − (φ
(j)
i )Tbθj |

= min
θ̂

max
i

|y(j)
i − (φ

(j)
i )Tθ̂|

≤ max
i

|y(j)
i − (φ

(j)
i )Tθ|. (12)

On the other hand, from (1), (2), and (3), we have

|y(j)
i − (φ

(j)
i )Tθ| = |vi + (φ

(j)
i )Tηi|

≤ ε + δbj . (13)

From (12) and (13), we see that

|y(j)
i − (φ

(j)
i )Tbθj | ≤ max

i
|y(j)

i − (φ
(j)
i )Tθ|

≤ ε + δbj . (14)

Using these inequalities (13) and (14), we see that

|(φ(j)
i )T(θ − bθj)| = |y(j)

i − (φ
(j)
i )Tbθj − {y(j)

i − (φ
(j)
i )Tθ}|

≤ |y(j)
i − (φ

(j)
i )Tbθj | + |y(j)

i − (φ
(j)
i )Tθ|

≤ 2(ε + δbj) (15)

holds for any i = 1, 2, . . . , N . This implies

‖Φj
N (θ − bθj)‖2 ≤ 2

p

jnj(ε + δbj).

With (11), we conclude

‖θ − bθj‖2 ≤ ‖{(Φj
N )TΦj

N}−1(Φj
N )T‖i2‖Φj

N (θ − bθj)‖2

≤ 2
√

nj

αj
(ε + δbj). (16)

This completes the proof. �

Theorem 1 shows that the upper bound of the estima-

tion error of θ is linear with respect to ε and δ. That

is, bθ1 = bθ2 = θ if ε = δ = 0. We therefore see that the

proposed minimax estimation is relevant.

Note that the diameter of the membership set in the

presence of disturbance and parameter uncertainty is dis-

cussed in Theorem 1 6), where it is shown that there exist

input-output data {yi, φi} such that the diameter does not

converge to zero even if the number of samples increases.

The upper bound of the estimation error in Theorem 1

also does not depend on the number of samples, which is

consist with the previous result 6).

We further obtain a similar result on ε and δ.

Theorem 2. Consider the system (1). Assume that

the regressor φ
(j)
i , j = 1, 2 is deterministic and PE. Then,

− b1(ε + b2δ)

b2 − b1
≤ ε − bε ≤ b2(ε + b1δ)

b2 − b1
(17)

− ε + b1δ

b2 − b1
≤ δ − bδ ≤ ε + b2δ

b2 − b1
. (18)

Proof. Using the inequalities (12) and (13), the maxi-

mum output error ej is evaluated as

ej = max
i

|y(j)
i − (φ

(j)
i )Tbθj |

≤ max
i

|y(j)
i − (φ

(j)
i )Tθ|

≤ ε + δbj , j = 1, 2. (19)

That is,

0 ≤ ej ≤ ε + δbj , j = 1, 2.

Then, we obtain

bε ≥ − b1e2

b2 − b1
≥ − b1(ε + δb2)

b2 − b1

bε ≤ b2e1

b2 − b1
≤ b2(ε + δb1)

b2 − b1bδ ≥ − e1

b2 − b1
≥ − ε + δb1

b2 − b1bδ ≤ e2

b2 − b1
≤ ε + δb2

b2 − b1
.

Evaluating ε− bε, δ − bδ with the above bounds, we obtain

the results (17) and (18). �

Theorem 2 shows that the lower and upper bounds of

the estimation errors of ε and δ are linear with respect to ε

and δ, which is similar to the situation on θ in Theorem 1.

4. Probabilistic analysis of the estima-
tion errors

In this section, we derive upper bounds of the estima-

tion errors in a stochastic setting. Let us first introduce

the following definitions on the disturbance 4) and the pa-

rameter uncertainty 6).

Definition 2. Suppose that the disturbance vi is a

random variable satisfying |vi| ≤ ε. The bound ε is said

to be tight if for any ρ > 0 and each i, there exists some

pv(ρ) > 0 such that

Prob{−ε ≤ vi ≤ −(ε − ρ)} ≥ pv(ρ)

Prob{ε − ρ ≤ vi ≤ ε} ≥ pv(ρ)

where Prob{•} is the probability that the event • occurs.

Definition 3. Suppose that the parameter uncer-

tainty ηi is a random vector satisfying ‖ηi‖2 ≤ δ. The
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bound δ is said to be tight if for any μ > 0, each i, and

any φi, there exists some pη(μ) > 0 such that

Prob{−δ‖φi‖2 ≤ φT
i ηi ≤ −(δ − μ)‖φi‖2} ≥ pη(μ)

Prob{(δ − μ)‖φi‖2 ≤ φT
i ηi ≤ δ‖φi‖2} ≥ pη(μ).

Definitions 2 and 3 introduce stochastic properties into

the disturbance vi and the parameter uncertainty ηi, and

the tightness means that vi and ηi take around their ex-

treme values with nonzero probability.

Then, the next lemma is obtained 6).

Lemma 1. Assume that the disturbance vi and the pa-

rameter uncertainty ηi are independent random variables,

and their bounds ε and δ are tight. Then, for any ρ > 0,

μ > 0, each i, and any φi,

Prob
˘−(ε + δ‖φi‖2) ≤ vi + φT

i ηi

≤ −(ε − ρ) − (δ − μ)‖φi‖2

¯
≥ pv(ρ)pη(μ) > 0

Prob
˘
ε − ρ + (δ − μ)‖φi‖2 ≤ vi + φT

i ηi ≤ ε + δ‖φi‖2

¯
≥ pv(ρ)pη(μ) > 0.

This lemma means that, if both of the bounds ε and δ

are tight, the bound ε + δ‖φi‖2 of vi + φT
i ηi is also tight.

In the following, for simplicity, we assume that the re-

gressor φ
(j)
i is nj (nj ≥ m) periodic and Nj = 
jnj , i.e.,

φ
(j)
ip+knj

= φ
(j)
ip

where ip = 1, 2, . . . , nj , k = 0, 1, 2, . . . , 
j − 1, 
j ≥ 1. We

also assume that aj = bj , j = 1, 2. Note that, if the re-

gressors φ
(1)
ip

and φ
(2)
ip

are PE, we can set n = nj in (9)

without loss of generality, and there exists αj such that

α2
jI ≤ (Φj

n)TΦj
n, j = 1, 2 (20)

where

Φj
n

.
=

2666664
(φ

(j)
1 )T

(φ
(j)
2 )T

...

(φ
(j)
nj )T

3777775 ∈ R
nj×m.

Then, we obtain the following theorem.

Theorem 3. Consider the system (1). Assume that

the regressor φ
(j)
i is deterministic, periodic, PE, and

a1 = b1, a2 = b2. Furthermore, vi and ηi are independent

random variables, and their bounds are tight. Then, the

estimation error of θ is evaluated as

Prob

j
‖θ − bθj‖2 ≤

√
nj

αj
(ρ + bjμ)

ff
≥ cpj , j = 1, 2

(21)

where cpj is a positive constant satisfying

cpj ≤
n

1 − 2 (1 − pv(ρ)pη(μ))�j

onj

, j = 1, 2. (22)

Proof. In the following, j is fixed as 1 or 2 since the

proof is the same. We first fix ip. Then, we have

(φ
(j)
ip

)T(θ − bθj)

= y
(j)
ip+knj

− (φ
(j)
ip

)Tbθj − {vip+knj + (φ
(j)
ip

)Tηip+knj}
from (1). Since bθj is obtained by (4), with (14), we have

−(ε + δbj) ≤ y
(j)
ip+knj

− (φ
(j)
ip

)Tbθj ≤ ε + δbj

for any k. If there exists ku satisfying

ε − ρ + (δ − μ)‖φ(j)
ip

‖2 ≤ vip+kunj + (φ
(j)
ip

)Tηip+kunj

≤ ε + δ‖φ(j)
ip

‖2, (23)

then, with ‖φ(j)
ip

‖2 = bj , we obtain

(φ
(j)
ip

)T(θ − bθj) ≤ ρ + μbj .

On the other hand, if there exists kl satisfying

−ε − δ‖φ(j)
ip

‖2 ≤ vip+klnj + (φ
(j)
ip

)Tηip+klnj

≤ −(ε − ρ) − (δ − μ)‖φ(j)
ip

‖2, (24)

then, in the same way, we have

−(ρ + μbj) ≤ (φ
(j)
ip

)T(θ − bθj).

Hence, if there exist both of such ku and kl, we have

|(φ(j)
ip

)T(θ − bθj)| ≤ ρ + μbj . (25)

We therefore see that, for some fixed ip,

Prob
n
|(φ(j)

ip
)T(θ − bθj)| ≤ ρ + μbj

o
≥ 1 − 2 (1 − pv(ρ)pη(μ))�j . (26)

This is because Lemma 1 says that the probability that

vip+knj + (φ
(j)
ip

)Tηip+knj does not satisfy (23) and (24)

for all k = 0, 1, . . . , 
1 − 1 is less than (1 − pv(ρ)pη(μ))�j .

Now, if (25) satisfies for each ip = 1, 2, . . . , nj , we have

‖Φj
n(θ − bθj)‖2 ≤ √

nj(ρ + μbj).

Then, following an evaluation similar to (16), we see

‖θ − bθ1‖2 ≤ ‖{(Φj
n)TΦj

n}−1(Φj
n)T‖i2‖Φj

n(θ − bθj)‖2

≤
√

nj

αj
(ρ + μbj)

where ‖{(Φj
n)TΦj

n}−1(Φj
n)T‖i2 ≤ 1/αj . We therefore ob-

tain the theorem since the probability that (26) holds for

all ip = 1, 2, . . . , nj is {1 − 2 (1 − pv(ρ)pη(μ))�j}nj . �

Theorem 3 shows that the evaluation of the estimation

error of θ is linear with respect to the indexes ρ and μ

of tightness. That is, the estimation error depends on

how close the disturbance and the parameter uncertainty

take their extreme value in the data used for identifica-

tion. The error is independent of the upper bounds of the

disturbance and the parameter uncertainty.
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We then discuss the estimation errors of ε and δ. To

this end, we need the following lemma.

Lemma 2. Under the same assumptions in Theorem 3,

Prob
˘
ε − 2ρ + (δ − 2μ)bj ≤ ej ≤ ε + δbj

¯ ≥ cpj ,

j = 1, 2. (27)

Proof. In the following, j is fixed as 1 or 2 since the

proof is the same. The upper bound of ej is obvious from

(19). Thus, we only discuss the lower bound of ej . We

first fix ip. For the system (1),

vip+knj + (φ
(j)
ip

)Tηip+knj

= {y(j)
ip+knj

− (φ
(j)
ip

)Tbθj} − (φ
(j)
ip

)T(θ − bθj).

Hence, we see

|y(j)
ip+knj

− (φ
(j)
ip

)Tbθj |

≥ |vip+knj + (φ
(j)
ip

)Tηip+knj | − |(φ(j)
ip

)T(θ − bθj)|.
Then, we have

max
k

|y(j)
ip+knj

− (φ
(j)
ip

)Tbθj |

≥ max
k

|vip+knj + (φ
(j)
ip

)Tηip+knj | − |(φ(j)
ip

)T(θ − bθj)|.
(28)

If there exist both of ku and kl satisfying (23) and (24),

we see that the inequality (25) and

(ε − ρ) + (δ − μ)‖φ(j)
ip

‖2 ≤ |vip+knj + (φ
(j)
ip

)Tηip+knj |
hold. Thus, we have

(ε − ρ) + (δ − μ)‖φ(j)
ip

‖2

≤ max
k

|vip+knj + (φ
(j)
ip

)Tηip+knj |. (29)

Substituting these (25) and (29) into (28), we obtain

ε − 2ρ + (δ − 2μ)‖φ(j)
ip

‖2 ≤ max
k

|y(j)
ip+knj

− (φ
(j)
ip

)Tbθj |.
Note that this inequality holds if there exist both ku and

kl satisfying (23) and (24). Thus, for fixed ip, we have

Prob
˘
ε − 2ρ + (δ − 2μ)bj ≤ max

k
|y(j)

ip+knj
− (φ

(j)
ip

)Tbθj |
¯

≥ 1 − 2(pv(ρ)pη(μ))�j .

If the above inequality holds for all ip = 1, 2, . . . , nj , from

a representation of the maximum output error

ej = max
ip

max
k

|y(j)
ip+knj

− (φ
(j)
ip

)Tbθj |

we see that

ε − 2ρ + (δ − 2μ)bj ≤ ej (30)

which holds with probability {1 − 2(pv(ρ)pη(μ))�j}nj .

This completes the proof. �

Then, we obtain the following theorem on the estima-

tion errors of ε and δ.

Theorem 4. Consider the system (1). Assume that

the regressor φ
(j)
i is deterministic, periodic, PE, and

a1 = b1, a2 = b2. Furthermore, vi and ηi are independent

random variables, and their bounds are tight. Then, the

estimation errors of ε and δ are evaluated as

Prob

j
−2b1(ρ + b2μ)

b2 − b1
≤ ε − bε ≤ 2b2(ρ + b1μ)

b2 − b1

ff
≥ cp1cp2

(31)

Prob

j
−2(ρ + b1μ)

b2 − b1
≤ δ − bδ ≤ 2(ρ + b2μ)

b2 − b1

ff
≥ cp1cp2 .

(32)

Proof. When the inequality of ej (30) of Lemma 2

holds for j = 1, 2, the estimate bε can be evaluated as

bε ≥ b2{ε − 2ρ + (δ − 2μ)b1} − b1(ε + δb2)

b2 − b1

= ε − 2b2(ρ + b1μ)

b2 − b1

bε ≤ b2(ε + δb1) − b1{ε − 2ρ + (δ − 2μ)b2}
b2 − b1

= ε +
2b1(ρ + b2μ)

b2 − b1
.

In the same way, the estimate bδ can also be evaluated as

bδ ≥ ε − 2ρ + (δ − 2μ)b2 − (ε + δb1)

b2 − b1

= δ − 2(ρ + b2μ)

b2 − b1bδ ≤ {ε + ρ + (δ + μ)b2} − {ε − 2ρ + (δ − 2μ)b1}
b2 − b1

= δ +
2(ρ + b1μ)

b2 − b1
.

Using these inequalities, we have the estimation errors in

(31) and (32). Note that these inequalities require that

the evaluation of ej of Lemma 2 holds for both j = 1, 2.

These events are independent each other, and thus the

probabilities of the theorem are cp1cp2 . �

Theorem 4 shows that the estimation errors of ε and δ

are linear with respect to the indexes ρ and μ of tightness,

which is similar to the case of θ.

If we choose the confidence cpj in Theorems 3 and 4 as

cpj =
n

1 − 2 (1 − pv(ρ)pη(μ))�j

onj

, j = 1, 2

we see that, for any ρ and μ,

cp1 → 1, cp2 → 1 as 
j → ∞, j = 1, 2.

This leads to the following corollary.

Corollary 1. Under the same assumptions in Theo-

rems 3 and 4, the estimates bθj , bε, and bδ converge to θ,

ε, and δ in probability as 
j → ∞, j = 1, 2.

The existing literature 4) shows that the estimates of θ

and ε converge to their true values for a system without

parameter uncertainty (i.e., δ = 0). On the other hand,
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this paper presents not only its counterpart for the case

δ 
= 0 as Corollary 1 but also quantitative evaluations of

the estimation errors as Theorems 3 and 4.

In this section, we derive the probabilistic evaluations of

the estimation errors under the assumptions that the re-

gressor is not only PE but also periodic and aj = bj , j =

1, 2. If the assumption aj = bj , j = 1, 2 does not hold,

the estimate bθj is not uniquely determined from (8) (See

more details in Appendix). Thus, we cannot expect that

the estimation errors converge to zero. In other words,

in order that the estimation errors converge to zero, it

should be required that (1) is an FIR system, the regres-

sor φi consists of identification input, and its amplitude

can be tuned. On the other hand, the periodicity as-

sumption can be removed if an involved discussion 7), 8) is

employed.

If we know some information about the distributions of

the disturbance and the parameter uncertainty so that we

can estimate pv(ρ), pη(μ), Theorem 3 gives the necessary

number of samples explicitly


j ≥
ln

 
1 − (cpj )

1/nj

2

!
ln(1 − pv(ρ)pη(μ))

, j = 1, 2 (33)

where ρ, μ and cpj are our specified values. A similar

remark can be established for Theorem 4.

Note that Theorems 3 and 4 give not only probabilis-

tic upper bounds of the estimation errors but also their

deterministic upper bounds. In fact, setting ρ = 2ε and

μ = 2δ so that cpj = 1, we obtain

‖θ − bθj‖2 ≤ 2
√

nj

αj
(ε + bjδ), j = 1, 2

−4b1(ε + b2δ)

b2 − b1
≤ ε − bε ≤ 4b2(ε + b1δ)

b2 − b1

−4(ε + b1δ)

b2 − b1
≤ δ − bδ ≤ 4(ε + b2δ)

b2 − b1
.

Thus, the deterministic upper bound of θ from Theorem 3

is identical to that of Theorem 1, while the deterministic

upper bounds of ε and δ from Theorem 4 is four times as

conservative as that of Theorem 2.

5. Numerical examples

In this section, we give a numerical example. Let us

consider a system

y
(j)
i = (φ

(j)
i )T(θ + ηi) + vi,

θ =

"
−1

1

#
, φ

(j)
i =

"
u

(j)
1i

u
(j)
2i

#
, ηi =

"
η1i

η2i

#
where vi and ηi are independent random variables with

uniform distributions on |vi| ≤ 1 and ‖ηi‖2 ≤ 2, i.e., ε = 1
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1
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−

b θ j
‖ 2

ε
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bε
δ
−

b δ
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Fig. 1 Estimation errors of θ, ε, and δ

and δ = 2. The regressor is periodic with n = 3, that is

φ
(1)
1 =

" √
3/2

1/2

#
, φ

(1)
2 =

"
0

−1

#
, φ

(1)
3 =

"
−√

3/2

1/2

#
,

φ
(2)
1 =

"
0

10

#
, φ

(2)
2 =

"
5
√

3

−5

#
, φ

(2)
3 =

"
−5

√
3

−5

#
where a1 = b1 = 1, a2 = b2 = 10. The indexes of PE for

{φ(1)
i } and {φ(2)

i } are (3, 1.5, 1.5) and (3, 150, 150).

Fig. 1 shows the estimation errors of θ, ε, and δ at each

5000 steps from 
j = 1 to 5000, where the broken line

represents the estimation errors of bθ1 and the solid line

represents that of bθ2. After 5000 steps calculation, we

obtained the estimates

bθ1 =

"
−0.9802

1.0105

#
, bθ2 =

"
−1.0241

1.0249

#
,

bε = 0.9787, bδ = 1.9637.

The result shows that the estimation errors converge to

zero as the number of samples increases, which is consis-

tent with Corollary 1.

6. Concluding remarks

In this paper, we have investigated a minimax estima-

tion of uncertain systems in the presence of disturbance

and parameter uncertainty. The proposed identification

method gives estimates of not only the system parame-

ter but also the upper bound of the disturbance and the

parameter uncertainty. We have studied these estimation

errors and have shown that, under some conditions, the

estimation errors converge to zero as the number of sam-

ples tends to infinity.
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Appendix A. An example that ̂θj is not
determined uniquely

Through an example, we show that, if the condition

aj = bj , j = 1, 2 does not hold, bθj is not determined

uniquely even if the other assumptions in Corollary 1 are

satisfied. Here, we fix j as 1 or 2 since the discussions are

similar for both cases of bθ1 and bθ2.

Let us consider a system

y
(j)
i = (φ

(j)
i )T(θ + ηi) + vi, θ =

"
1

1

#
where |vi| ≤ 1 and ‖ηi‖2 ≤ 1, i.e., ε = δ = 1. The regres-

sor is periodic with nj = 2, that is,

φ
(j)
i =

"
2

0

#
,

"
0

1

#
,

"
2

0

#
,

"
0

1

#
, . . . .

This is PE with αj = 1 and βj = 2, where aj 
= bj since

aj = 1 and bj = 2. We consider 4 periodic vi and ηi

vi = −1,−1, 1, 1, . . .

ηi = −
"

1

0

#
,−
"

0

1

#
,

"
1

0

#
,

"
0

1

#
, . . . .

Then, the output y
(j)
i is 4 periodic as

y
(j)
i = −1,−1, 5, 3, . . . .

Note that Corollary 1 is established by using a set of

vi and ηi satisfying both (23) and (24) with ρ = μ � 0,

where the assumptions of tightness ensure the existence

of such vi and ηi. Now, for vi and ηi given above, we have

vi + (φ
(j)
i )Tηi = −3,−2, 3, 2, . . . ,

= −(ε + δ‖φ(j)
1 ‖2),−(ε + δ‖φ(j)

2 ‖2),

ε + δ‖φ(j)
1 ‖2, ε + δ‖φ(j)

2 ‖2, . . . ,

which implies that (23) and (24) are satisfied with ρ = μ =

0. Thus, these vi and ηi can correspond to the assumption

of tightness. In fact, even if vi and ηi are random vari-

ables whose bounds are tight, there exists no better value

of vi +(φ
(j)
i )Tηi to improve the estimation error since this

sequence of vi + (φ
(j)
i )Tηi takes all extreme value.

From (8), bθj is obtained by solving an LP

min
θ̂,νj

νj

s.t. | − 1 − 2θ̂1| ≤ νj

| − 1 − θ̂2| ≤ νj

|5 − 2θ̂1| ≤ νj

|3 − θ̂2| ≤ νj (A. 1)

where θ̂ = [θ̂1 θ̂2]T. Notice here that, from (12) and (13),

νj ≤ ε + δbj

= 3

holds. Since θ̂1 satisfying (A. 1) does not exist if νj < 3,

we see νj = 3. Then, solving (A. 1), we have

θ̂1 = 1, 0 ≤ θ̂2 ≤ 2.

This means that any θ̂ satisfying the inequality above can

be an minimax estimate. Obviously, this is not unique.
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