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A Numerical Algorithm of Discrete Fractional Calculus by using

Inhomogeneous Sampling Data

Fujio Ikeda∗

This paper presents an efficient numerical method to realize discrete models of fractional derivatives and inte-

grals which imply derivatives and integrals of arbitrary real order. This approach is based on a class of Stieltjes

integrals transferred from the Riemann-Liouville definition. It is to calculate on inhomogeneous sampling periods

which are getting longer as the operation points go back toward the initial time. It leads to the effective quality

which has low computational costs and enough accuracy. The calculation times and precision of the proposed

procedure are compared with those of a conventional procedure for a practical numerical simulation and the

effectiveness of this procedure is verified.
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1. Introduction

Ordinarily, derivatives of functions are described in

terms of integers, for example, the first derivative of posi-

tion yielding speed, the second derivative yielding accel-

eration. The concept has been extended to non-integer

derivatives, which are known as fractional derivatives

(FD). Fractional integrals (FI) have also been defined, and

these together make up fractional calculus (FC) 1). The

concept of FC was known at the time of Leibniz during

the 17th century, but it has received little theoretical con-

sideration since then, because its physical meaning was

questionable and its mathematics was complicated. How-

ever, in recent years much research has been performed

in physics, rheology, fractals, control systems and other

fields where fractional differential equations made up of

FD and FI have been reported to show several advan-

tages 2)∼4).

In order to handle FC operators numerically, the sys-

tems must be transformed into discrete-time system mod-

els. It is easy to obtain very accurate and concise models

of integer-order differential operators using Tustin trans-

forms or other well-known trapezoidal integration meth-

ods. In contrast, FC operators are global with respect

to time, so there is a strict requirement for the calcula-

tions to include the entire time history of the operators.

If the size of the time step (i.e., sampling period) is small,

however, the satisfaction of this requirement necessitates

the use of large amounts of memory, which significantly

increases the computational expense of the procedure.
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It has been common to employ the G1-Algorithm 1)

or any of the many other similar approaches based on

the Grünwald-Letnikov differintegral, which is well suited

for constructing algorithms suitable for numerical analy-

sis 5)∼11). Recently, Podlubny 12) described both a geo-

metrical interpretation and physical meaning of FD. Ma

and Hori 13) employed these viewpoints in their proposal

for a numerical solution method that has a clear physical

analogue. However, these direct discrete procedures all

suffer from high calculation costs imposed by the require-

ment of previous history. Practical implementations of

these algorithms will need to get negotiate this problem

by reducing the computational burden.

The Short Memory Principle 4), which fixes the range of

calculations at some limited history and neglects whatever

occurred earlier, is one possible approach for reducing the

computations. However, the shorter the remaining calcu-

lation domain, the greater the error this principle intro-

duces, so the researcher is forced to trade-off calculation

time against precision.

This paper describes an inhomogeneous sampling algo-

rithm (IS-Algorithm) as an essential solution for the issue

of high computational costs 14), 15). It is based on the

Riemann-Liouville integral, a class of Stieltjes integrals,

which were used by Podlubny in the above publication to

obtain some of his geometrical interpretations. In con-

ventional methods, numerical integration is carried out in

the so-called Riemann sum over the variable t (“actual”

time) at step ∆τ , i.e., in a discretized model with a con-

stant sampling period. The present method, in contrast,

employs the Stieltjes integral, performed over variable Tq

(“transformed” time) at a constant step ∆T . The rela-

tion between “actual” time and “transformed” time is as
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follows: When the “actual” time steps are constant, the

“transformed” time is interpreted to pass at a gradually

decreasing rate. Conversely, in this method, when the

“transformed” time steps are set constant, the “actual”

time steps do not remain constant in length, but become

longer as one moves backward in time. As a result, fewer

points in the history are sampled than in the conventional

methods, greatly reducing the computational costs. Also,

since the influence of the damping characteristics in the

general case of physical dynamic phenomena diminishes

as one goes backward in time, this method is less prone to

lose computational precision, despite the large time steps

for calculations involving the distant past.

This paper is organized as follows. Section 2 provides

the definitions of the FC employed in this paper and

describes the geometrical interpretations of those oper-

ations and also summarizes conventional discrete proce-

dures. Section 3 shows the proposed discrete procedure

for the new FC based on the geometrical interpretation

introduced in Sec. 2. Section 4 compares the calculation

steps of the proposed method with that of conventional

procedures, and shows that the present procedure is ef-

fective at reducing the computational costs. An equation

for estimating the error of the proposed procedure is also

derived, and methods for estimating computational pre-

cision are discussed. Section 5 compares the calculation

times and precision of the proposed procedure with those

of a conventional procedure for a practical numerical sim-

ulation and verifies the effectiveness of this procedure.

Finally, the results of this study are summarized.

2. Fractional Calculus

2. 1 Definition of fractional calculus

In contrast to integer-order differentials dn/dtn,

fractional-order differentials (FC) are defined as operators

whose order has been extended to non-integer numbers.

Several definitions have been proposed 1), 4), 16), but here

the well-known Riemann-Liouville (R-L) and Grünwald-

Letnikov (G-L) definitions are used.

The R-L definition 4) is used as the basis for the discrete

procedure proposed in this paper. The definitions differ

according to the sign in the FC, i.e., whether it is differ-

entiation or integration. Let us first define the fractional

integral (FI). The q-th (q > 0, q ∈ �) FI of function f(t)

is given by

D−qf(t)
�
=

1

Γ(q)

∫ t

t0

(t − τ )q−1f(τ )dτ. (1)

Here, Γ(z) is the Gamma function:

Γ(z)
�
=

∫ ∞

0

e−ttz−1dt , (z > 0). (2)

Eq.(1) above is used to define the fractional derivative

(FD): The q-th (q ≥ 0, q ∈ �) derivative of function f(t)

is given by

Dpf(t)
�
=

dm

dtm

(
D−(m−p)f(t)

)
=

1

Γ(m − p)

dm

dtm

∫ t

t0

(t − τ )m−p−1f(τ )dτ, (3)

where m is a natural number satisfying m − 1 ≤ q < m.

The G-L definition 1) has been used as the basis for the

G1-Algorithm, a typical example of conventional discrete

procedures, and may be applied for assessing any arbi-

trary derivative. The q-th (q ∈ �) FC of function f(t) is

defined as

Dqf(t)
�
= lim

∆τ→0

∆τ=
t−t0

n

∆τ−q

n−1∑
j=0

(−1)j

(
q

j

)
f(t − j · ∆τ ).(4)

The above is a FD when q > 0, and a FI when q < 0, and

the binomial coefficients are given in the general form:(
q

0

)
= 1,

(
q

j

)
=

q(q − 1) · · · (q − j + 1)

j!

=
Γ(q − 1)

Γ(j + 1)Γ(q − j + 1)
.

(5)

2. 2 Geometrical interpretation of the frac-

tional integral

Let us describe geometrical interpretation of the FI pre-

sented by Podlubny 12), which is a foundation of the pro-

cedure suggested in this paper. The process here applies

to the FI, but it may equally be applied to justify the FD.

The definition of the FI given by Eq.(1) can be re-

written in the form of a Stieltjes integral 17), which ex-

presses a version of the ordinary Riemann form integra-

tion of τ as an integration of the variable Tq(τ ), itself a

function of τ :

D−qf(t) =

∫ t

t0

f(τ )dTq(τ ). (6)

The variable Tq(τ ) is given by

Tq(τ ) =
1

Γ(q + 1)
{(t − t0)

q − (t − τ )q} . (7)

If we consider the variable of integration τ in Eq.(1) as

the “actual” time, then the variable of integration Tq(τ )

in Eq.(6) can be interpreted as the “transformed” time,

while the degree of integration is here limited to 0 < q ≤ 1

without loss of generality.

The geometrical interpretation of the Stieltjes inte-

gral in Eq.(6) is given in Figure 1. The function used
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L

Fig. 1 The ”fence” of f(τ) = τ + 0.5 sin(2πτ)and its projec-

tion D−1f(t) and D−0.5f(t), for a constant ”actual”

time step ∆τ .

for the example in Fig.1 is f(τ ) = τ + 0.5 sin(2πτ),

q = 0.5, 0 ≤ τ ≤ 2. A three-dimensional Cartesian space

is drawn with axes (τ, Tq , f(τ )) with the function in Eq.(7)

graphed on the (τ, Tq) plane. Values of f(τ ) are drawn

vertically above the plane for this domain of τ , to pro-

duce the curved “fence” in the figure. The area of this

“fence” corresponds to the line integral along the integra-

tion path Tq of function f(τ ). The area projected from

the “fence” onto the (τ, f) plane is the so-called “ordinary

first integral” over τ :

D−1f(t) =

∫ t

0

f(τ )dτ. (8)

In contrast, the area of the projection on the (Tq, f) plane

corresponds to the value of the FI in Eq.(6) over integra-

tion variable Tq (or in defining Eq.(1)).

As shown in the figure, if “actual” time τ is divided

into constant time steps ∆τ , the corresponding steps ∆T

of “transformed” time Tq are not of constant length; the

more distant in the past they are, the shorter they are

(the finer the divisions), while the further they are in the

future, the longer (coarser) they are.

2. 3 Discretization procedure (G1-Algorithm)

for conventional fractional calculus

One of the most simple and direct procedures for dis-

cretizing FC is given in Eq.(4) by simply omitting the

limit notation. It is called the G1-Algorithm 1):

(Dqf(t))G1 = ∆τ−q

n−1∑
j=0

(−1)j

(
q

j

)
f(t − j · ∆τ ),(9)

where the symbol (·)G1 is used to designate the G1-

Algorithm. An equivalent of the above expression is

also obtained if a power series expansion (PSE) is car-

ried out for the fractional differential operator Dq(z−1) =(
(1 − z−1)/∆τ

)q
. An expression for the discretized model

obtained by z-transform in the above equation is given by

(
Dq(z−1)

)
G1

= ∆τ−q

n−1∑
j=0

(−1)j

(
q

j

)
z−j , (10)

where z−1f(t) = f(t − ∆τ ).

The sampling period ∆τ in “actual” time τ is constant

in conventional discretization procedures such as the G1-

Algorithm as shown in Fig.1. In other words, this means

that the sampling period ∆T on the “transformed” time

axis Tq is not constant, but increases in length as time

approaches the present, and, correspondingly, decreases

in length as time moves further into the past. As a re-

sult, the greater the time span in the past for which this

calculation is performed, the greater the computation is

devoted to that past history, and so increasing the time

span results in a extremely large increase in computa-

tional costs. The Short Memory Principle 4) and other

approaches have been employed to overcome this prob-

lem. When the Short Memory Principle is employed, the

function is not evaluated for the entire domain [t0, t],

but rather, over some abbreviated “window” [t − L, t]

(see Fig.1) in order to prevent the demand for computa-

tional resources. However compressing the domain also

increases computational error. This problem has ham-

pered attempts to make the conventional procedures more

efficient.

3. Inhomogeneous Sampling Algorithm

3. 1 Procedure for discretizing the fractional

integral by inhomogeneous sampling

This paper proposes an inhomogeneous sampling algo-

rithm (IS-Algorithm) which promises to solve the prob-

lems faced by conventional procedures. The sampling pe-

riod ∆T of “transformed” time Tq(τ ) is set to a constant

value, resulting in a discrete model with inhomogeneous

“actual” time sampling period ∆τk.

Since the calculations of this procedure are performed

in “actual” time, it is necessary to obtain the sampling

points τk, as shown below. Firstly, when the “trans-

formed” time sampling period is set at ∆T , we obtain

the following relationship from Eq.(7):

∆T = Tq(τk−1) − Tq(τk)

=
1

Γ(q + 1)
{(t − τk)q − (t − τk−1)

q} . (11)

If the initial time point τ0 is set equal to the present time,
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Fig. 2 The function f(τ) is the same as Fig.1, but for the

changing ”actual” time steps ∆τ and the constant

”transformed” time step ∆T .

τ0 = t, then, from the above expression, the “actual” time

sampling points τk (k = 1, 2, · · ·) are consecutively cal-

culated thus:

τ1 = t − {∆T · Γ(q + 1)} 1
q

τ2 = t − {2∆T · Γ(q + 1)} 1
q . (12)

...

They are given in general by this expression:

τk = t − KI · k 1
q , (13)

in which

KI
�
= {∆T · Γ(q + 1)} 1

q . (14)

Theorem 1. (Discretization of FI by IS-Algorithm)

By numerical integration methods such as the trape-

zoidal rule, the discrete model of IS-Algorithm is given

by this expression:

(
D−qf(t)

)
IS

=

m∑
k=1

f(τk−1) + f(τk)

2
∆T, (15)

where the symbol (·)IS is used to designate the IS-

Algorithm.

Proof. It is obtained by using the trapezoidal rule as

an numerical integration method for Eq.(6).

The upper limit of summation m can be calculated us-

ing Eq.(7):

m =

[
Tq(t)

∆T

]
=

[
(t − t0)

q

∆T · Γ(q + 1)

]
, (16)

where [x] means truncation to the nearest integers. Simi-

lar to the conventional procedure, this procedure can use

T

T0.5 ( )

Fig. 3 If the “transformed” time T0.5(τ) ticks steady by the

constant ∆T , the “actual” time points ∆τk become

coarser in the past.

the Short Memory Principle 4), limiting the calculation

window to some fixed time span L (Fig.2). The upper

limit of summation then takes the value

m =

[
Lq

∆T · Γ(q + 1)

]
. (17)

If the discretization procedure in Eq.(15) is re-written as

a model discretized using the z-transform, we obtain

(
D−q(z−1)

)
IS

=

m∑
k=1

∆T

2

⎧⎨
⎩z

−
[

KI
∆τ

(k−1)
1
q

]
+ z

−
[

KI
∆τ

·k
1
q

]⎫⎬
⎭ (18)

=
∆T

2

⎧⎨
⎩1 + 2z

−
[

KI
∆τ

]
+ 2z

−
[

KI
∆τ

·2
1
q

]
+ · · ·

⎫⎬
⎭ .

Let us now consider specific design parameters for this

procedure: order of integral q, sampling period ∆T in

“transformed” time , and calculation window length L if

necessary. When the sampling period in “actual” time

∆τ = 0.1, for example, then, setting the parameters

q = 0.5, ∆T = 0.1 determines KI
∼= 7.9 × 10−3. The

full model expression would then be written as:

(
D−0.5(z−1)

)
IS

=
∆T

2

(
1 + 2z−[0.08] + 2z−[0.31]

+2z−[0.71] + 2z−[1.26] + 2z−[1.96] (19)

+2z−[2.83] + 2z−[3.85] + 2z−[5.03] + · · ·
)

= 0.05
(
7 + 4z−1 + 2z−2 + 2z−3 + 2z−5 + · · ·

)
.

Figure 3 represents the relationship between the two time
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Tq ( )

q=1.0

q=0.9

q=0.1

Fig. 4 The slopes of the transformed time Tq(τ) vary corre-

sponding to the values of q varying from 0 to 1.

axes τ and Tq for q = 0.5 of Eq.(7) which result the val-

ues of τk from a constant ∆T . Thus, the periods between

consecutive sampling points τk become shorter as time ap-

proaches the present, while the points are getting coarser

in the past. This reduces the rate of growth in number of

sampling points even though the overall time span is ex-

tended, preventing the extreme increase in computational

costs.

Figure 4 also represents the slopes of the transformed

time Tq(τ ) corresponding to the values of q varying from

0 to 1. It describes that the smaller the order, the higher

the performance of reducing the computational costs. It

is known that several real systems such as the viscoelas-

tic materials have the value of their order of derivative

around 0.5 18).

3. 2 Discretization procedure for FD by inho-

mogeneous sampling

The R-L definition of the FD (Eq.(3)) involves taking

an integer-order derivative of the FI, so the proposed FD

discretization procedure consists of the simple backward

difference of the FI described in the previous chapter.

We shall therefore skip over the portion of the procedure

which is identical to that followed in the preceding chap-

ter and proceed to the main results. If we limit the order

of the differential to 0 ≤ q < 1, then, without loss of

generality, the FD in Eq.(3) becomes

Dqf(t) =
d

dt

∫ t

t0

f(τ )dT1−q(τ ). (20)

Theorem 2. (Discretization of FD by IS-Algorithm)

The trapezoidal calculation for the FD corresponding

to Eq.(15), becomes

(Dqf(t))IS =

l∑
k=1

ḟ(νk−1) + ḟ(νk)

2
∆T, (21)

where

ḟ(νk)
�
=

f(νk) − f(νk − ∆τ )

∆τ
, (22)

νk = t − KD · k 1
1−q , (23)

KD = {∆T · Γ(2 − q)} 1
1−q . (24)

Proof. Eq.(21) is obtained by using the trapezoidal

rule as an numerical integration method for Eq.(20).

The upper limit of summation l is

l =
[
(t − t0)

1−q/ (∆T · Γ(2 − q))
]

when the calculation is carried out over the entire domain,

and

l =
[
L1−q/ (∆T · Γ(2 − q))

]
when it is carried out only over window L.

The above is then re-written as a z-transform model:

(
Dp(z−1)

)
IS

=

l∑
k=1

∆T

2

1 − z−1

∆τ

{
z
−
[

KD
∆τ

(k−1)
1

1−p

]
+ z

−
[

KD
∆τ

·k
1

1−p

]}

=
∆T

2∆τ

{
1 − z−1 + 2(1 − z−1)z

−
[

KD
∆τ

]
(25)

+2(1 − z−1)z
−
[

KD
∆τ

·2
1

1−p

]
+ 2(1 − z−1)z

−
[

KD
∆τ

·3
1

1−p

]
+ · · ·

}
.

If the sampling period ∆τ is set at 0.1, for example, and

the design parameters are set to q = 0.5 and ∆T = 0.1,

the model is then expressed thus:

(
D0.5(z−1)

)
IS

=
(
0.5 − 0.5z−1

)
+

(
z−[0.08] − z−1−[0.08]

)
+

(
z−[0.31] − z−1−[0.31]

)
+

(
z−[0.71] − z−1−[0.71]

)
+

(
z−[1.26] − z−1−[1.26]

)
+

(
z−[1.96] − z−1−[1.96]

)
+

(
z−[2.83] − z−1−[2.83]

)
+

(
z−[3.85] − z−1−[3.85]

)
+

(
z−[5.03] − z−1−[5.03]

)
+

(
z−[6.36] − z−1−[6.36]

)
+

(
z−[7.85] − z−1−[7.85]

)
= 3.5 − 1.5z−1 − z−2 − z−4 + z−5 − z−8 + · · · . (26)

4. Assessment of the Proposed Procedure

4. 1 Comparison of calculation steps

Let us compare the number of calculations needed by

the conventional procedures with those needed by the pro-

cedure proposed here. For simplicity, the following discus-

sion counts a single time step for any one of the numerical
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Fig. 5 Comparison between the proposed method’s calcula-

tion steps and the conventional one.

integrations as a single iteration. The single iterations ac-

tually would consume different amounts of time, however,

since they consist of various operations - calculation of

binomial coefficients for the conventional procedure, and

algebraic computations for the trapezoidal or other meth-

ods of the proposed technique.

For the case of conventional computations (G1), if the

calculation time is t − t0 and the sampling period is ∆τ ,

then the total number of samples is n = (t− t0)/∆τ . The

number of calculations necessary for the integration of the

k-th point is k, so the total number of calculations (Nc)

of G1 is

(Nc)G1 =

n∑
k=1

k =
t − t0
2∆τ

(
t − t0
∆τ

+ 1
)

=
(t − t0)

2

2∆τ2

(
1 +

∆τ

t − t0

)
. (27)

In the proposed procedure, however, the number of cal-

culations required for integration at the k-th point is

T (k · ∆τ )/∆T . Substituting this relationship in Eq.(7),

we find the total number of calculations (Nc) of IS is

(Nc)IS =

n∑
k=1

T (k · ∆τ )

∆T
=

t−t0
∆τ∑
k=1

[
(k · ∆τ )q

Γ(q + 1) · ∆T

]
(28)

∼= (t − t0)
q+1

Γ(q + 1) · ∆T · ∆τ

{
1

q + 1
+

∆τ

2(t − t0)

}
.

The final approximation of Eq.(28) is obtained by substi-

tuting in the approximation for the summation

n∑
k=1

kq ∼= nq+1

(
1

q + 1
+

1

2n

)
. (29)

Figure 5 shows the numbers of calculations specifically re-

quired by each method when, for example, the degree of

integration is set at q = 0.5, ∆τ = ∆T = 0.01, and the

calculation window t−t0 = 100[s]. Thus, Nc is observed to

increase with the square of the number of sampling points

in the conventional method, i.e. Nc ∼ O(n2), while the

proposed method suppresses the rate of increase; it is a

more efficient calculation method.

4. 2 Assessing error in the proposed method

The accuracy of the calculations performed by the pro-

posed method was also investigated. The operation ex-

amined here is FI, but the results are equally applicable to

FD. Since the proposed method is numerical, uses trape-

zoids and is based in the Stieltjes integral in Eq.(6), the

Euler-Maclaurin formula for the error of the trapezoidal

rule 19) can be applied.

Lemma 1. (Assessment of the error of the trape-

zoidal rule) Let f(x) ∈ C2[a, b], n = (b − a)/h. Then,

the error given by the trapezoidal rule will be given by

ε =

∣∣∣∣∣
∫ b

a

f(x)dx − h

2

n∑
k=1

{f (a + (k − 1)h) + f(a + kh)}
∣∣∣∣∣

≤ b − a

12
h2 max

a≤θ≤b

∣∣f (2)(θ)
∣∣ . (30)

Proof. See 19).

The total error of IS-Algorithm is given by a theorem

below.

Theorem 3. (Assessment of the error of the IS-

Algorithm)

ε =
∣∣D−qf(t) −

(
D−qf(t)

)
IS

∣∣
≤ (t − t0)

q+1 · ∆T 2

12 · Γ(q + 1) · ∆τ
· (31){

1

q + 1
+

∆τ

2(t − t0)

}
max

t0≤θ≤t

∣∣f (2)(θ)
∣∣

Proof. The error of Eq.(15) at “actual” time k · ∆τ

is evaluated by

ε =
∣∣D−qf(k · ∆τ ) −

(
D−qf(k · ∆τ )

)
IS

∣∣
≤ Tq(k · ∆τ ) − Tq(t0)

12
∆T 2 · max

t0≤θ≤k·∆τ

∣∣f (2)(θ)
∣∣

=
1

12

{
(k · ∆τ )q

Γ(q + 1)

}
∆T 2 · max

t0≤θ≤k·∆τ

∣∣f (2)(θ)
∣∣ . (32)

Then the error over the entire calculation domain can be

found by summation k = 1 ∼ n (n = (t − t0)/∆τ):

ε ≤
n∑

k=1

1

12

{
(k · ∆τ )q

Γ(q + 1)

}
∆T 2 · max

t0≤θ≤k·∆τ

∣∣f (2)(θ)
∣∣
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Table 1 Calculation times of the two numerical results of

D±0.5t2 for ∆τ = ∆T = 0.01.

t [s] 5 10 20 50

G1 0.66 4.92 37.9 576.6

IS(FI) 0.06 0.13 0.36 1.31

IS(FD) 0.25 0.67 1.90 7.19

≤ 1

12

n∑
k=1

kq · ∆τ q · ∆T 2

Γ(q + 1)
max

t0≤θ≤t

∣∣f (2)(θ)
∣∣ , (33)

which ends the proof of the theorem.

The approximate error is estimated by Eq.(31), and the

accuracy can be predicted before the calculation is per-

formed.

5. Examples of Numerical Calculation

Numerical simulations were performed with the IS-

Algorithm (IS) proposed in this paper and also with the

conventional G1-Algorithm (G1) in order to compare the

performance of the two processes. The test calculations

were performed for the power function f1(t) = ta, and the

sine function f2(t) = sin ωt, whose analytical solutions are

given by

Dqf1(t) = Dqta =
Γ(a + 1)

Γ(a + 1 − q)
ta−q, (34)

Dqf2(t) = Dq sin ωt = t−q

∞∑
n=0

(−1)n(ωt)2n+1

Γ(2n + 2 − q)
, (35)

where the parameters in the above equation were set at

q = ±0.5 , a = 2 and ω = 3 for the computation.

5. 1 Comparison of computation time for iden-

tical cases

The calculation window was set for the entire domain

(L = t) for both the IS and G1 procedures. Table 1

shows the time required to perform a computation for

the q = 0.5 of f1(t). The sampling period was set at

∆τ (= ∆T ) = 0.01 [s] and the calculation domains were

t = 5, 10, 20, 50 [s]. The expressions for the FI and FD

are exactly the same in G1, but are different in the pro-

posed method, so are marked accordingly on the table as

IS(FI) and IS(FD). The table indicates that the time re-

quired for the G1 calculation increased dramatically with

increase in domain length. This increase was greatly alle-

viated by the new procedure. It was verified that the new

procedure offers higher calculation efficiency.

5. 2 Assessment of calculation precision

Table 2 presents the absolute error and the estimated

Table 2 Calculation errors of the theoretical results for IS

and the two numerical ones for ∆τ = ∆T =

0.1, 0.01.

D−0.5t2 ε of eq.(31) IS G1

∆T = 0.1 0.40 0.09 0.60

∆T = 0.01 0.04 0.02 0.36

D−0.5 sin 3t ε of eq.(31) IS G1

∆T = 0.1 1.79 0.25 0.31

∆T = 0.01 0.18 0.04 0.10

0 2 4 6 8 10

t [s]

D0.5t2

50

40

30

20

10

0

theoretical

L = 3 [s]

L = 2 [s]

L = 1 [s]

Fig. 6 Comparison between the theoretical solution of D0.5t2

and the proposed ones for L = 1, 2, 3 [s].

error according to Eq.(31) for the FI of order q = 0.5 un-

der both procedures for f1(t) and f2(t). Here, t = 10[s],

the calculation window was the entire domain (L = t),

and the sampling periods were ∆τ (= ∆T ) = 0.1, 0.01[s].

The error of the IS computation was within the range

predicted by Eq.(31) for both f1(t) and f2(t), indicating

that the equation is, indeed, suitable for estimating error

of IS. Furthermore, accuracy was somewhat higher for IS

than for G1 for these examples. Similar results were ob-

tained when the calculations were performed with other

parameters.

5. 3 Influence of calculation window : �

Next, the calculation window L was shortened in order

to reduce calculation time, and the effect on calculation

accuracy was examined. Figures 6 and 7 show the results

of IS calculations with FD of order q = 0.5 for f1(t) and

f2(t). Parameters are set for the calculation time t = 10[s]

and ∆τ (= ∆T ) = 0.01[s], for f1(t), L = 1, 2, 3[s] and

for f2(t), L = 0.1, 0.2, 0.3[s]. Figure 6 shows that, for a

monotonically increasing function like f1(t), shortening L

causes a rapid degradation in accuracy, while a periodic

function such as f2(t), however, even a window of L = 0.1,

which was much shorter than the period of the function,

produced a fairly close approximation of the solution in

Fig. 7.
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20 4 6 8 10

t [s]

0

-1

1

2

-2

D0.5sin3t

theoretical

L = 0.3 [s]

L = 0.2 [s]

L = 0.1 [s]

Fig. 7 Comparison between the theoretical solution of

D0.5 sin 3t and the proposed ones for L =

0.1, 0.2, 0.3 [s].

6. Summary

This paper presents an inhomogeneous sampling algo-

rithm (IS-Algorithm) as a method for obtaining accu-

rate numerical solutions of fractional calculus problems

at a reduced computational cost in comparison with con-

ventional solutions, which have been severely hampered

by significant increases in computational burden with in-

creases in the length of the time domain. In the proposed

method, the sampling period is set constant on a “trans-

formed” time axis, resulting in sampling periods on the

“actual” time axis whose length increases with distance

into the past. This significantly reduces the number of

required sample points in time.

The numerical simulations showed that the proposed

procedure offers accuracy comparable to that of the con-

ventional procedure, and a substantially superior compu-

tational efficiency. An error assessment method was also

demonstrated for the proposed procedure. If the func-

tion is periodic, it has also been shown that the use of a

calculation window effectively reduces computation time.

Potential applications of the proposed model include prac-

tical control systems employing FDs.
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