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Improvement of the Performances of Genetic Algorithms
by Using Low-discrepancy Sequences

ShuheiKIMURA* and KokiM ATSUMURA*

The random number generator is one of the important components of evolutionary algorithms. Therefore, when we try
to solve function optimization problems using the evolutionary algorithms, we must carefully choose a good pseudo-random
number generator. In the evolutionary algorithms, the pseudo-random number generator is often used for creating uniformly
distributed individuals. In this study, as the low-discrepancy sequences allow us to create individuals more uniformly than the
random number sequences, we apply the low-discrepancy sequence generator, instead of the pseudo-random number genera-
tor, to the evolutionary algorithms. Since it was difficult for some evolutionary algorithms, such as binary-coded genetic algo-
rithms, to utilize the uniformity of the sequences, the low-discrepancy sequence generator was applied to real-coded genetic
algorithms. The numerical experiments show that the low-discrepancy sequence generator improves the search performances
of the real-coded genetic algorithms.

Key Words: genetic algorithm, real-coded GA, low-discrepancy sequence, random number generator, function optimization

the volume ofl. The discrepancy represents the averaged differ-
ence between the true volumedidind that estimated by a Monte
Evolutionary algorithms (EAs), such as genetic algorithms Carlo method. This measure has been developed in the field of

(GAs), are function optimizers inspired by the process of nat- the Monte Carlo methods of numerical integration.
ural evolution. Because of their powerfulness and flexibility, a  Itis known that, when the discrepancy is used to measure the
number of researchers have taken an interest in EAs. In order uniformities of sequences, a uniform random number sequence
to enhance the probability of finding a reasonable solution with does not have the best uniformity. As the sequences that give the
a low computational effort, a great number of EAs have been lower discrepancy than the uniform random number sequence,
proposed5-9:11.19) The random number generator is a com- low-discrepancy sequences have been propSsedvhile the
ponent that most of these algorithms use. As it is difficult for discrepancy of the uniform random number sequence is in the

computers to generate actual random numbers, EAs generally order of

utilize pseudo-random numbers. /loglogN @
Although the random number generator is an essential com- N

ponent for EAs, researchers paid less attention to it. Recently, those of the low-discrepancy sequences are in the ord€r of

however, several studies have showed that the performances of (IogN)S. 3)

EAs depend on the pseudo-random number generator applied N

8).4.14).15) Therefore, when we try to apply EAs to function op-  The low-discrepancy sequences are less random, but have a bet-

timization problems, we should use a pseudo-random number ter uniformity than the random number sequence.

generator that has an ability to generate “good” pseudo-random  In EAs, a pseudo-random number sequence is often used for

numbers. creating new sampling points. Since we generally have no infor-
One of the goodness measures of random number sequencegnation about the search space before sampling, these sampling

is uniformity. The most common measure of uniformity is dis-  points should be created uniformly. However, the points gener-

1. Introduction

crepancy?. For the point seBy = {X1,X2,---,Xn} in [0,1]5, ated by the pseudo-random number sequence have a worse uni-
the discrepancy is defined as formity than those generated by the low-discrepancy sequence.
e > Therefore, when trying to create new sampling points in EAs,
TN(AN) = \//{0 1 { ( I;IH\I) fV(J)} du, (1) this study uses the low-discrepancy sequence generator, instead
’ of the pseudo-random number generator. The use of the low-
whereu = (ug,Up, -+, Us), J is a hyper-brick defined b0, u], discrepancy sequence should make the search processes of EAs
A(J,P\) is the number of points landed inside andV (J) is efficient. However, since the use of the low-discrepancy se-

* Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, quence would not improve all EAs, this study applies the low-

Tottori discrepancy sequence generator into real-coded *BAsAs
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Table 1 Sample observation sites for the van der Corput sequences in A) Halton sequence
base 2,3,4 and 5. e s e

S S S S
0.0000| 0.0000| 0.0000| 0.0000
0.5000| 0.3333| 0.2500( 0.2000
0.2500| 0.6667| 0.5000| 0.4000
0.7500| 0.1111| 0.7500| 0.6000
0.1250| 0.4444) 0.0625| 0.8000
0.6250| 0.7778| 0.3125| 0.0400
0.3750| 0.2222| 0.5625| 0.2400
0.8750| 0.5556| 0.8125| 0.4400
0.0625| 0.8889| 0.1250(| 0.6400
0.5625| 0.0370| 0.3750| 0.8400

=}
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chromosomes of the real-coded GAs are vectors of real numbers,
these GAs easily utilize the uniformity of the low-discrepancy
sequence.

In the next section, we will present the low-discrepancy se-

quence used in this study. The section 3 will describe how to

apply the low-discrepancy sequence generator into real-coded
GAs. Then, in the section 4, we will verify the effectiveness of .

) ] Fig.1 2-D plots of 500 points generated by A) the Halton sequence,
the use of the low-discrepancy sequence through numerical ex- and B) the pseudo-random number sequence, respectively.
periments on several benchmark problems. The sections 5 and 6

are the discussion and the conclusion, respectively. to generate points that are uniformly distributed only in a one-

2. Low-discrepancy Sequence dimensional space. In order to generate points uniformly dis-
tributed in a multi-dimensional space, Halton proposed the Hal-

Although a number of low-discrepancy sequences have been ton sequencé.

proposed) 12:17).22).23) this study uses canonical one. The se-  The Halton sequence is an extension of the van der Corput se-
guence used in this study is described below. quence to a multi-dimensional space. B@imensional Halton
2.1 Vander Corput sequence sequence is defined & = {xo,X1,X2,"- -}, where

The van der Corput sequence is a one-dimensional low- Xn = (@, (N), @y (M), @ (M) @)
1 ? 2 bl bl .
discrepancy sequené&®. For an integeb > 2, the van der Cor-

put sequence in bagsis the sequenc8= {to,t1,tp, -}, where bi,by,--- bs are integers that are greater than one and pair-

wise prime. In practice, they are often chosen to be the dirst

th = @(n). 4) prime numbers. This sequence enables us to obtain points uni
formly distributed in a multi-dimensional spac&ig. 1 shows
2-dimensional plots of 500 points generated by the Halton se-

@(n) =3 o (5) quence and the pseudo-random number sequence (Mersenne
]:

@ (n) is a radical inverse function, given by

Twister). As shown in the figure, the points generated by the

wherea; (j =0,1,2,---) is a coefficient of a digit expansion of Halton sequence seem to have a better uniformity.

the integemn in baseb, i.e., 2.3 Digit-scrambling
© As the Halton sequence is deterministic, it is difficult to use
n= _zoaj bl. (6) statistical techniques for analyzing it. This nature is inconve-
]:

nient when we try to compare the performances of GAs with
Different values of base provide us with different van der  ang without the Halton sequence. In order to introduce ran-
Corput sequencedable 1 shows the first ten observation sites  gomness into the Halton sequence, this study utilizes a digit-

for four van der Corput sequences in b&s8, 4 and5, respec- scrambling?. Even when the scrambling is applied, the se-
tively. quence still possesses a good uniforrfity
2.2 Halton sequence When we apply the digit-scrambling into the Halton sequence,

The van der Corput sequence described above has an ability then-th pointin the sequencexs = ((pél(n), (pl’)z(n), e %S(n)),
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where we can apply it only to the steps 1 and 3 of MGG. Noting this
v n'j(i)(aj) ® a point, the reminder of this section will describe each of the steps
@, (n) = 2, g + s (8) of MGG in greater detail.
_ - IZet 2 3.1 Step: Initialization
Tfj(l) is a randomly generated permutation{@f 1,---,bj — 1}, As an initial population, create, individuals. In real-coded
andJmaxis a positive integer. GAs, individuals are represented ssimensional real number
This study applies the low-discrepancy sequence described vectors, wheres is the dimension of the search space. To make
here into several real-coded GAs. the initial population uniformly distributed, we use the low-

3. Application of Low-discrepancy Sequences to EAs discrepancy sequence generator in this study.

3.2 Step: Selection for reproduction

In order to confirm whether the use of the low-discrepancy se-  selectm parents,py,p,- -+, Py, randomly without replace-

quence improves GAs, this study applies the low-discrepancy se- ment from the population. For the random selection of this step,

guence described in the previous section into several real-coded ¢ pseudo-random number generator is used.
GAs. We should note here that, as mentioned in the section 1, 3 3 Step: Generation of offsprings
we use the low-discrepancy sequence only for generating new

sampling points (individuals). Therefore, it is insufficient even
when we simply substitute the low-discrepancy sequence gen- tion operator, this study uses any of ENDX (an Extended Normal
erator for the random number generator in EAs. In this section, Distribution Crossove), UNDX (a Unimodal Normal Distri-
through the application of the low-discrepancy sequence into the bution Crossover and SPX (a Simplex Crossovél) This

we will describe how to apply section however describes the technique of applying the low-
the low-discrepancy sequences into EAs.

Generatenc children by applying a recombination operator
into the parents selected in the previous step. As the recombina-

real-coded GA used in this study,

discrepancy sequence into ENDX, for example.

This study uses MGG (a Minimal Generation Gap mogfel) ENDX utilizesm parentspy, pa, - -, pr, and generates a child

as a generation alternation model of our GAs because it is rela- c according to the following equation.

tively simple. The followings are an algorithm of MGG. In the

m
algorithm described below, a recombination operator requires c=p+ Ed+23ni pi, 9)
m > 2 parents to generate offsprings. =
[Algorithm: MGG] where
1) Initialization
W - . o _ P=(P1+P2)/2, (10)
As an initial population, create, individuals. SeGeneration
d=pz—P1, 11)
=0.
. . 1 2
(2) Selection for reproduction P =P — P j;pj- (12)

Selectm individuals without replacement from the popula-
tion. The selected individuals, that are expressed here as ¢ andn; are random numbers drawn from normal distributions
P1.Pa,- P, are used as the parents for the recombination N(0,a?) andN(0,3?), respectively. This study uses the fol-

operator in the next step. lowing recommended values for the parametaxs= 0.434,
(3) Generation of offsprings B =0.35/v/m—-3andm=s+2.
Generatean. children by applying some recombination opera-  Inthis study§ andn; are generated using the low-discrepancy
tor to the parents selected in the previous step. sequence generator, instead of using the pseudo-random num-
(4) Selection for survival ber generator. In order to generate normally distributed numbers

Select two individuals from the family containing the two par- ~ from uniformly distributed ones, this study uses the Box-Muller
ents p; andp,) and their children. One is the individual that ~ transformation (see Appendix &) Although we can also use
has the best objective value, and the other is selected ran- the rejection method or the method based on the central limit

domly. Then, replace the two parents with the selected in- theorem to generate normally distributed numbers, these meth-

dividuals. ods may destroy the uniformity in the sequence.

(5) Termination 3.4 Step: Selection for survival
Stop if the halting criteria are satisfied. Otherwi&eneration Choose two individuals from the family that includes the two
— Generationt 1, and then return to the step 2. parents, andp,) and their children. One is the individual that

As mentioned above, this study uses the low-discrepancy se- has the best objective value, and the other is selected randomly.
qguence only when trying to create new individuals. Therefore, Then, replace the two parents (i.py, andp,) with the selected
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Table 2 Benchmark functions.

Objective function Search region Optimum
Sphere fop(X) = 35 1 % —5.12<x <512 | fsy(0,---,0)=0
Rosenbrock  fro(x) = ¥ 2[100(x 11 —¥2)2 + (% — 1)?] | —2.048< x < 2.048] fro(1,---,1) =0
Rastrigin fra(X) = 10s+ 35, [¥* — cog 271 )] —5.12<% <512 | fa(0,---,0)=0
Wide & shifted fys(X) = 105+ 35_; X — cos(27mx)] -90<x <110 fws(0,--+,0) =0
Rastrigin
Griewangk  fgr(X) = zdp 31 % — 5, cos(%) +1| -512<x <512 | fg(0,---,00=0

individuals. We use the pseudo-random number generator for
the random selection of this step.

4. Numerical Experiments

In order to confirm the effectiveness of the use of the low-

selectionn: was 100 in all of the trials. We did not always use

the recommended values for these parameters because the use
of the recommended values made us difficult to confirm the dif-
ferences between the performances of the GAs with and without
the low-discrepancy sequence. For the other parameters of the

discrepancy sequence, this section applies the real-coded GAsGAs, we used their recommended values.

with and without the low-discrepancy sequence generator into
several benchmark functions.

4.1 Objective functions

Five benchmark functions listed ifable 2 were minimized
in our experiments. The experiments were performed on 10, 15,
and 20 dimensional functions (i.es= 10,15 and20). In each
trial, we generated an initial population uniformly in the search
region given in the table, and considered no explicit treatment of
the search region during the search.

We performed 300 trials for the unimodal functions and 500
trials for the multimodal functions. Each trial was continued un-
til the best fithess value reached less th&n 10, the popula-
tion was converged within the range b x 108 in each coor-
dinate, the number of function evaluation reachdix 10°, or
the best fitness value did not improve 8 x 107 function eval-
uations. The optimum was considered to be found only when the
best fitness value reached less thaihx 1076,

4.3 Results

Sphere and Rosenbrock functions are unimodal. The Rosen-
brock function is also non-separable since the optimum resides sequence (with LDS) and those without the low-discrepancy se-

The experimental results of the GAs with the low-discrepancy
at the deep and curved valley. Rastrigin function is multimodal, quence (w/o LDS) are shownTrable 3. The performances were

and it has a number of local optima around a global optimum. compared using two standards, the number of trials where the al-
Although the search region of the original Rastrigin function gorithm succeeds in finding an optimum (SUC) and the average
is [-5.12,5.12]5, we enlarged and shifted it tp-90,110° in
a wide and shifted Rastrigin function. This treatment makes the (AVG). The standard deviations of the number of function eval-

number of function evaluations required for finding an optimum

optimization problem difficult. Griewangk function is also mul-
timodal. However, this function is close to the Sphere function

uations required (SD) are also shown in the table.
Except for the trials where SPX/MGG was applied to the

when the dimension of the search space is high. Therefore, the higher-dimensional Rosenbrock functions, the GAs succeeded

Griewangk function becomes easy as the dimension increases.
4.2 Experimental setup
We used three real-coded GAs, i.e., ENDX/MGG, UNDX/MGG
and SPX/MGG, that use ENDX, UNDX (see Appendix*8)
and SPX (see Appendix &) respectively, as a recombina-
tion operator, and use MGG as a generation alternation model.
In order to confirm the effectiveness of the use of the low-

discrepancy sequence, the performances of the GAs with the

low-discrepancy sequence were compared with those without
the low-discrepancy sequence.

This study used the scram-

in finding the optimum solutions in the unimodal functions. The
GAs with the low-discrepancy sequence optimized these func-
tions with the smaller number of function evaluations than those
without the low-discrepancy sequence. The difference of the
number of function evaluations was statistically significant at
the significance leval = 5%, except for the experiments where
SPX/MGG was applied to the Sphere functions.

In most of the multimodal functions, on the other hand, the
GAs with the low-discrepancy sequence found the optimum so-
lutions with a higher probability than those without the low-

bled Halton sequence described in the section 2.3 as a low- discrepancy sequence. The difference of the probability was sta-

discrepancy sequence generator, and the Mersenne Ti#ister
the a pseudo-random number generator.

The population sizes of ENDX/MGG, UNDX/MGG and
SPX/MGG werenp = 15s,10s and20s, respectively. The num-
ber of the children generated by a recombination operator per

tistically significant at the significance leval= 5% when the
GAs were applied to the Rastrigin functions, except for the trials
where UNDX/MGG was applied to the 20-dimensional function.
In addition, the GAs with the low-discrepancy sequence required
the smaller number of function evaluations for the optimization
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Table 3 Summary of results.

Objective | Dimension ENDX/MGG UNDX/MGG SPX/IMGG
function S with LDS w/o LDS with LDS w/o LDS with LDS w/o LDS
sucC sucC sucC SucC sucC sucC
AVG AVG AVG AVG AVG AVG
STD STD STD STD STD STD
300/300 300/300 300/300 300/300 300/300 300/300
10 2.2674x 10°P | 2.2900x 10° | 1.4677x10° | 1.4841x10° | 2.5733x10° | 2.5810x 10°
+9.7978x 10% | £8.9727x 10° | £6.7206x 10° | +6.7950x 103 | +£1.5567x 10* | £1.4999x 10*
300/300 300/300 300/300 300/300 300/300 300/300
Sphere 15 4.0780x 10° | 4.0958x 10° | 2.7776x10° | 2.7912x 10° | 4.8032x 1C° | 4.8197x 10°
+1.2850x 10* | +£1.2864x 10* | £8.6498x 10° | +8.8160x 103 | +£1.9569x 10* | +£1.9578x 10*
300/300 300/300 300/300 300/300 300/300 300/300
20 6.0907x 10° | 6.1450x 10° | 4.2934x 10° | 4.3293x 10° | 7.3653x10° | 7.3882x 10P
+1.5674x 10* | £1.5969x 10* | £1.1957x 10* | +£1.3071x 10* | £2.3307x 10* | £2.2777x 10*
300/300 300/300 300/300 300/300 300/300 300/300
10 9.8427x 10° | 1.0103x10f | 1.0395x 10° | 1.0511x10° | 8.7382x10° | 8.9910x 10°
+6.6814x 10* | £8.3740x 10* | +£4.8351x 10* | £5.4197x 10* | +7.8563x 10* | +£8.9111x 10*
300/300 300/300 300/300 300/300 3/300 0/300
Rosenbrock 15 3.2853x 10° | 3.4639x10° | 3.2363x10° | 3.2818x 10° | 6.6822x 1(P —
+2.2863x 10° | £2.5642x 10° | +£1.0344x 10° | +£1.1180x 10° | £9.0693x 10° —
300/300 300/300 300/300 300/300 0/300 0/300
20 9.7032x 10° | 1.0601x 10’ | 7.4567x 10° | 7.5397x 1(° — —
+7.4792x 10° | £1.0719x 10° | +2.1838x 10P | +2.2955x 10° — —
451/500 388/500 407/500 378/500 409/500 381/500
10 5.5360x 10° | 5.6773x10° | 4.9821x10° | 51056x 10° | 4.8443x10° | 4.8543x 10°
+6.1959x 10* | £7.0424x 10* | £8.7026x 10* | £9.5134x 10* | £3.0292x 10* | £3.3277x 10*
442/500 359/500 366/500 339/500 402/500 353/500
Rastrigin 15 8.9325x 10° | 9.3697x10° | 8.7400x 10° | 9.0513x 10° | 8.7912x10° | 8.8518x 10°
+8.8003x 10* | £1.0337x 10° | +£1.1868x 10° | +1.3172x 10° | +3.6783x 10* | £3.9989x 10*
453/500 371/500 370/500 347/500 402/500 377/500
20 1.2381x 10° | 1.3021x10° | 1.2664x 10° | 1.3160x 10° | 1.3436x 10° | 1.3469x 10°
+1.0924% 10° | £1.7820x 10° | £1.3927x 10° | +1.4448x 1P | +5.0985x 10* | +4.7696x 10*
175/500 179/500 331/500 327/500 304/500 300/500
10 7.2372x10° | 7.3512x 10° | 5.9066x 10° | 6.1706x 10° | 59476x 10° | 5.9648x 1C°
+9.1184x 10* | +£1.0132x 10° | £9.2806x 10* | +1.0293x 10° | +3.7113x 10* | +3.6087x 10*
Wide & 16/500 14/500 186/500 172/500 206/500 171/500
shifted 15 1.2868x 10° | 1.2181x10° | 1.1009x 10° | 1.1191x10° | 1.0728x 10° | 1.0729x 10°
Rastrigin +1.6509% 10° | +£1.4141x 10° | £1.5911x 10° | +1.5806x 10° | +£4.5707x 10* | +£4.0789x 10*
1/500 0/500 89/500 78/500 132/500 124/500
20 1.8751x 108 — 1.6741x10° | 1.7691x10° | 1.6114x10° | 1.6236x 10°
+0.0000x 10° — +2.2611x 10° | £2.7190% 10° | +4.5525x% 10* | +5.4931x 10*
361/500 337/500 351/500 335/500 419/500 425/500
10 5.8344x 10° | 5.9290x 10° | 4.5742x10° | 4.6706x 10° | 4.7076x 10° | 4.7514x 1C°
+7.8820x 10* | £8.6214x 10* | £9.8646x 10* | £8.9377x 10* | £2.6541x 10* | +2.8373x 10*
487/500 486/500 495/500 492/500 499/500 497/500
Griewangk 15 6.7858x 10° | 6.9400x 10° | 4.8974x10° | 4.9386x 10° | 7.0786x 10° | 7.0972x 10°
+4.3654x 10* | £6.0286x 10* | £2.1687x 10* | £2.3570x 10* | +2.4850% 10* | +2.5102% 10*
491/500 489/500 500/500 496/500 500/500 500/500
20 0.2828x 10° | 9.4666x 10° | 7.3605x 10° | 7.4326x 10° | 1.0471x10° | 1.0479x 10°
+7.0790x 10* | £7.1118x 10* | £2.3879x 10* | £2.4426x 10* | +2.8843x 10* | +2.6021x 10*

in most of the multimodal functions.

we cannot use the experimental results to compare the perfor-
The experimental results therefore indicate that the applica- mances of the GAs that utilize the different recombination oper-

tion of the low-discrepancy sequence into real-coded GAs de- ators from each other.

creases the number of function evaluations required and in- . .

- o ) ) 5. Discussion

creases a probability of finding an optimum solution. Note here

5.1 Steps where low-discrepancy sequences are applied

without the low-discrepancy sequence only. These GAswere not  In the previous section, we showed that the use of the low-

always use the recommended values for their parameters. Thus,discrepancy sequence has an ability to improve the search per-

formances of real-coded GAs. As described in the section 3, on

that this section compared the performances of the GAs with and
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Table 5 Performances of the 4 GAs mentioned in the section 5. 1.

Objective | Dimension| ENDX/MGG (both) | ENDX/MGG (none)| ENDX/MGG (init) | ENDX/MGG (xover)
function s SucC SucC SucC SuUcC
AVG AVG AVG AVG
STD STD STD STD
300/300 300/300 300/300 300/300
10 9.8427x 10° 1.0103x 10° 1.0052x 108 9.6852x 10°
+6.6814x 10* +8.3740x 10* +7.8834x 10* +7.5416x 10*
300/300 300/300 300/300 300/300
Rosenbrock 15 3.2853x 10P 3.4639x 10° 3.4570x 108 3.2952x 108
+2.2863x 10° +2.5642x 10° +2.3935% 10° +2.2206x 10°
300/300 300/300 300/300 300/300
20 9.7032x 10° 1.0601x 10 1.0595x 10’ 9.6765x 10°
+7.4792% 10° +1.0719x 10° +9.6709% 10° +8.6192x 10°
451/500 388/500 455/500 395/500
10 5.5360x 10° 5.6773x 1P 5.5970x 10° 5.7061x 10°
+6.1959% 10* +7.0424% 10* +6.3677x 10* +7.2881x 10*
442/500 359/500 443/500 374/500
Rastrigin 15 8.9325x 10° 9.3697x 10P 9.0542x 10° 9.3388x 10°
+8.8003x 10* +1.0337x 10° +9.4941x 10* +1.0421x 10°
453/500 371/500 445/500 361/500
20 1.2381x 10f 1.3021x 1P 1.2515x% 108 1.2857x 108
+1.0924x 10° +1.7820x 10° +1.2454x% 10° +1.2744x 10°

Table 4 GAs used in the section 5.1. The low-discrepancy sequence ber of function evaluations required for optimizing the Rosen-
generator (LDS) and the pseudo-random number generator

rock functions, no statistical differen tween ENDX/M
(PRN) are differently applied to the steps of ENDX /MGG. brock functions, no statistical difference betwee MGG

(none) and ENDX/MGG (init) was found at the significance

GAs step 1 step 3
Initialization Gen. of off. level a = 1%. We could not also find any notable difference
ENDX /MGG (both) LDS LDS between ENDX/MGG (both) and ENDX/MGG (xover) in the 15
ENDX /MGG (none) PRN PRN . . . N
ENDX /MGG (init) LDS PRN and 20 dimensional Rosenbrock functions (the significance level
ENDX /MGG (xover) PRN LDS a = 1%). These results indicate that the application of the low-

discrepancy sequence into the “Generation of offsprings” step

decreases the number of function evaluations required for the
the other hand, we applied the low-discrepancy sequence gener-optimization. The application of the low-discrepancy sequence
ator into the two steps of the GAs, i.e., the “Initialization” step  into the “Initialization” step, on the other hand, may not improve
(step 1) and the “Generation of offsprings” step (step 3). This the search performances of the GAs in the Rosenbrock function.
section investigates the effect that the application of the the low-  In the Rastrigin functions, the performances of ENDX/MGG
discrepancy sequence into these steps has. (both) and ENDX/MGG (none) were almost the same as those

We applied four real-coded GAs listed Fable 4 into the of ENDX/MGG (init) and ENDX/MGG (xover), respectively,
Rosenbrock and the Rastrigin functions. Although all of the Wwith respect to the probability of finding an optimum solution
GAs used here utilized ENDX as a recombination operator and (the significance levelr = 1%). The application of the low-
MGG as a generation alternation model, they differently applied discrepancy sequence into the “Initialization” step, therefore,
the low-discrepancy sequence generator and the pseudo-randoninay enhance a probability of finding an optimum in multimodal
number generator into the two steps. ENDX/MGG (both) and functions. On the contrary, even if the low-discrepancy sequence
ENDX/MGG (none) are the GAs that use the low-discrepancy Was applied to the “Generation of offsprings” step, a probability
sequence generator and the pseudo-random number generator@f finding an optimum was not improved in multimodal func-
respectively, for generating new individuals. ENDX/MGG (init) ~ tions.
and ENDX/MGG (xover), on the other hand, apply the low- 5.2 Scrambling techniques
discrepancy sequence generator only to the “Initialization” step ~ As described in the section 2.3, this study uses the digit-
and the “Generation of offsprings” step, respectively. All of the scrambling in order to introduce randomness into the Halton se-
other experimental conditions were the same as those used in thequence. However, some other techniques have been proposed
previous section. for the same purpos@:2?:23) This section shows that the other
Table 5 summarizes the experimental results for the four techniques are not always appropriate for the application into

GAs. When we compared the GAs with respect to the num- EAs.
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the random-start Halton sequences, respectively.

Table 6 Performances of ENDX/MGGs using the digit-scrambled, the random linear scrambled, and

Objective | Dimension Digit-scrambling Random linear scrambling Random-start
function S b: small b: large b: small b: large b: small b: large
suc suc sucC sucC suc sucC
AVG AVG AVG AVG AVG AVG
STD STD STD STD STD STD
300/300 300/300 300/300 300/300 300/300 0/300
10 9.8427x 10° | 1.0036x 10° | 9.7380x 10° | 1.0293x 10° | 9.7361x 1C° —
+6.6814x 10* | £8.6969x 10* | £7.8254x 10* | £3.1068x 10° | +6.8190x 10 —
300/300 300/300 300/300 299/300 300/300 0/300
Rosenbrock 15 3.2853x 10° | 3.4626x 10° | 3.3177x10° | 3.5301x 10° | 3.3113x 1P —
+2.2863x 10°P | £2.4170x 10° | £2.4972x 10° | £5.9383x 10° | +2.4769x% 10° —
300/300 300/300 300/300 294/300 300/300 0/300
20 9.7032x 10° | 1.0673x 10 | 9.7074x10° | 1.0844x 10" | 9.3812x 1CP —
+7.4792x 10° | +£1.0610x 10° | +£9.6406x 10° | +£3.6527x 10f | £7.6102x 10° —
451/500 419/500 448/500 426/500 459/500 0/500
10 5.5360x 10° | 5.6453x10° | 55189x 10° | 5.5680x 10° | 55802x 1C° —
+6.1959x 10* | £6.6153x 10* | £5.7641x 10* | £5.7871x 10* | +6.6538x 10* —
442/500 380/500 454/500 401/500 434/500 0/500
Rastrigin 15 8.9325x 10° | 9.1908x 10° | 8.9508x 10° | 9.0596x 10° | 9.0318x 1C° —
+8.8003x 10* | £1.0589x 10° | £8.2201x 10* | £1.0625x% 10° | +9.2358x% 10* —
453/500 409/500 463/500 415/500 439/500 0/500
20 1.2381x10° | 1.2728x10° | 1.2399x 10° | 1.2432x1Cf | 1.2759x 10° —
+1.0924x 10° | +£1.3010x 10° | +£1.0618x 10° | +£9.5050x 10* | +1.3851x 10° —

In order to introduce randomness into the Halton sequence,
this section uses three techniques, i.e., the digit-scrambling de-

scribed in the section 2. 3, the random linear scramBfihand

the random-start Halton sequeri@e The random linear scram-

bling uses

: j ) :
Tfj(')(a) = k;Mj(l'ja,- +c§') (modb;),

asnf” given in the equation (8), WheMjk
randomly selected frof0, 1, - - -, bj — 1}. The random-start Hal-

(i)

andc(i)

(13)

are integers

V

Fig.2 2-D plot of 500 points generated by the random-start Halton se-
guence of large bases.

ton sequence is, on the other hand, equivalent to the sequence

SH = {y07yl7y27 o '}1

where

Yo = (@, (N+ M), @, (N+ M), -+, @ (N+Ms)) .

myg, mp, -+, Mg (M; > 0) are constant integers randomly selected.

ENDX/MGG (b: small), its search performance was indepen-

dent of the scrambling technique applied. The performance of
ENDX/MGG, on the other hand, depended on the scrambling

technique when the large prime numbers were ubedafge).

In this section, we applied the Halton sequences with the dif- Especially when we used the random-start Halton sequence with

ferent scrambling techniques to ENDX/MGG, and compared the large bases, the GA failed in optimizing the functions for all
their performances. As mentioned in the section 2.2, when we of the trials. Real-coded GAs generally create not more than
try to utilize thes-dimensional Halton sequence, the fggrime hundreds of individuals at a time. When the random-start Hal-
numbers are generally used as its basek addition to using ton sequence with the large bases is used to generate several hun-
the Halton sequences with these prime numbers, we also useddreds of points, they are distributed in the biased aFég 2).
those with the firss prime numbers larger than 547 (the 101- Since the GA using the random-start Halton sequence with the
th prime number) in this section. This experiment simulates the large bases could not create sampling points uniformly, it should
fail in finding an optimum solution.

The performance of the GA using the digit-scrambled Hal-

ton sequence was not worse than that using the pseudo-random

situation in which we try to solve higher-dimensional problems.
All of the other experimental conditions were the same as those
used in the section 4.

The experimental results are summarizedable 6. When
we applied the Halton sequence with the small bases into as its bases. As points generated by the digit-scrambled Hal-

number sequence, even when the large prime numbers are used
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Fig.3 2-D plot of 500 points generated by the digit-scrambled Halton

sequence of large bases.

ton sequence are similar to those of the pseudo-random num-

ber sequenceF{g. 3), the performances of the GAs would re-
semble each other. The GA using the random linear scrambled
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sequence appliedi ¥-14-15) However, we do not know what na-
ture of the sequences improves the performances of GAs. More-
over, Wiese and his colleagues have reported that the behavior
and performance of the random number sequence in EAs are de-
pendent on the different characteristics of the prob&nsOn

the other hand, this study improved the performances of the GAs
using the low-discrepancy sequence. The low-discrepancy se-
quence is less random, but has a better uniformity than the ran-
dom number sequence. The originality of this work is to utilize
the uniformity of the low-discrepancy sequence for EAs.

The low-discrepancy sequences have been applied into EAs
in few studieg?. In this study, we applied the low-discrepancy
sequence only to the simple real-coded GAs. Therefore, we
should confirm whether the low-discrepancy sequences improve

the search performances of more complicated EAs. In addi-

Halton sequence with the large bases, on the other hand, some-

times failed in the optimization, even when it was applied to
the unimodal function. The reason for the failure in the opti-
mization is that the random linear scrambled Halton sequence
with large bases often fails in generating points uniformly. The

digit-scrambled Halton sequence with large bases scarcely cre-

ates points distributed in the biased area.

The experimental results indicate that, even when we try
to apply GAs into high-dimensional functions, the use of the
digit-scrambled Halton sequence should improve their search
performance. The use of other scrambling techniques, on the
other hand, may not be suitable for the optimization of high-
dimensional functions.

6. Conclusion

This study applied the low-discrepancy sequence, instead

of the pseudo-random number sequence, into the real-coded

GAs. The experimental results showed that the use of the low-

tion, as this study only used the Halton sequence as the low-
discrepancy sequence, we should test EAs that apply other low-
discrepancy sequences.
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Appendix A. Box-Muller Transformation

The Box-Muller transformation is a method of generating
pairs of independent normally distributed random numbers,
given a source of uniformly distributed random numigérdf
X1 andxy are uniformly and independently distributed between
0 and1, thenz; andz defined below follow a normal distribu-
tion with meanu = 0 and variances? = 1.

71 = v/—2In(x1)coq2mxy), (A.1)
2z, = /—2In(xq) sin(271x2). (A.2)

T.SICE Vol.E-6 No.1 January 2007

A) Halton sequence

Fig.A.1 2-D plots of 500 normally distributed points generated by A)
the Halton sequence, and B) the pseudo-random number se-
quence, respectively.

P = (P1+P2)/2, (B.2)

= p27p17 (B3)
D = \/|p3_p1|2 (pﬁﬂ_zpl)] ; (B.4)
&~ (B.5)
n ~ N(O’B )~ (B.6)

The vectorsg (i = 1,2,---,s— 1) are normalized orthogonal
bases that span the subspace orthogonal to the \eotor= 0.5
andp = 0.35/,/s are recommended, whesds the dimension
of the search space.

When we try to apply the low-discrepancy sequence into
UNDX, we use the number& andn; generated from the low-
discrepancy sequence.

When the low-discrepancy sequences are used, the Box- Appendix C. Application of Low-discrepancy Se-

Muller transformation seems to give us “better” normally dis-
tributed points Fig.A.1).

Appendix B. Application of Low-discrepancy Se-
guences into UNDX

UNDX (Unimodal Normal Distribution Crossoveld is a re-
combination operator that requires three paregmtsi,, p3), and
it generates offsprings according to the following equation.

s—1

c=p+&d+D Y nis. (B.1)
2

where

guences into SPX

SPX (Simplex Crossove?) is a multi-parental extension of
,Pbm) and gener-
ates offsprings according to the following procedure.
(1) Letthe center of mass of the parentggse % SMpi.
(2) Computex! =g+a(p;—9).
(3) ComputexX andc® (k=2,3,---,
following equations.

BLX-a ®. SPX requiresn parents [, Py, --

m) according to the

XK

(O]
(C.2)

g+a(pk—9),

K= g (&1

c —xkq L),
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wherec! = 0, anda is a constant parameten is a random
number given by

(C.3)

AN Xl

g =u

I

whereuy is a uniform random number 9, 1].
(4) Generate a offspring according to the following equa-

tion.
C:Xm+cm. (C4)

As the parameters of SP¥,= v/s+ 2 andm= s+ 1 are recom-
mended.

When we try to apply the low-discrepancy sequence into SPX,
we simply substitutay, generated by the low-discrepancy se-
guence generator for that generated by the pseudo-random num-
ber generator.
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