
Trans. of the Society of Instrument
and Control Engineers

Vol.E-6, No.1, 16/25 (2007)

Improvement of the Performances of Genetic Algorithms

by Using Low-discrepancy Sequences

ShuheiK IMURA ∗ and KokiMATSUMURA∗

The random number generator is one of the important components of evolutionary algorithms. Therefore, when we try
to solve function optimization problems using the evolutionary algorithms, we must carefully choose a good pseudo-random
number generator. In the evolutionary algorithms, the pseudo-random number generator is often used for creating uniformly
distributed individuals. In this study, as the low-discrepancy sequences allow us to create individuals more uniformly than the
random number sequences, we apply the low-discrepancy sequence generator, instead of the pseudo-random number genera-
tor, to the evolutionary algorithms. Since it was difficult for some evolutionary algorithms, such as binary-coded genetic algo-
rithms, to utilize the uniformity of the sequences, the low-discrepancy sequence generator was applied to real-coded genetic
algorithms. The numerical experiments show that the low-discrepancy sequence generator improves the search performances
of the real-coded genetic algorithms.

Key Words: genetic algorithm, real-coded GA, low-discrepancy sequence, random number generator, function optimization

1. Introduction

Evolutionary algorithms (EAs), such as genetic algorithms

(GAs), are function optimizers inspired by the process of nat-

ural evolution. Because of their powerfulness and flexibility, a

number of researchers have taken an interest in EAs. In order

to enhance the probability of finding a reasonable solution with

a low computational effort, a great number of EAs have been

proposed1), 5), 6), 11), 19). The random number generator is a com-

ponent that most of these algorithms use. As it is difficult for

computers to generate actual random numbers, EAs generally

utilize pseudo-random numbers.

Although the random number generator is an essential com-

ponent for EAs, researchers paid less attention to it. Recently,

however, several studies have showed that the performances of

EAs depend on the pseudo-random number generator applied
3), 4), 14), 15). Therefore, when we try to apply EAs to function op-

timization problems, we should use a pseudo-random number

generator that has an ability to generate “good” pseudo-random

numbers.

One of the goodness measures of random number sequences

is uniformity. The most common measure of uniformity is dis-

crepancy22). For the point setPN = {x1,x2, · · · ,xN} in [0,1]s,

the discrepancy is defined as

T∗N(PN) =

√∫

[0,1]s

[
A(J,PN)

N
−V(J)

]2

du, (1)

whereu = (u1,u2, · · · ,us), J is a hyper-brick defined by[0,u],

A(J,PN) is the number of points landed insideJ, andV(J) is

∗ Faculty of Engineering, Tottori University, 4-101 Koyama-Minami,
Tottori

the volume ofJ. The discrepancy represents the averaged differ-

ence between the true volume ofJ and that estimated by a Monte

Carlo method. This measure has been developed in the field of

the Monte Carlo methods of numerical integration.

It is known that, when the discrepancy is used to measure the

uniformities of sequences, a uniform random number sequence

does not have the best uniformity. As the sequences that give the

lower discrepancy than the uniform random number sequence,

low-discrepancy sequences have been proposed23). While the

discrepancy of the uniform random number sequence is in the

order of
√

log logN
N

, (2)

those of the low-discrepancy sequences are in the order of16)

(logN)s

N
. (3)

The low-discrepancy sequences are less random, but have a bet-

ter uniformity than the random number sequence.

In EAs, a pseudo-random number sequence is often used for

creating new sampling points. Since we generally have no infor-

mation about the search space before sampling, these sampling

points should be created uniformly. However, the points gener-

ated by the pseudo-random number sequence have a worse uni-

formity than those generated by the low-discrepancy sequence.

Therefore, when trying to create new sampling points in EAs,

this study uses the low-discrepancy sequence generator, instead

of the pseudo-random number generator. The use of the low-

discrepancy sequence should make the search processes of EAs

efficient. However, since the use of the low-discrepancy se-

quence would not improve all EAs, this study applies the low-

discrepancy sequence generator into real-coded GAs19). As

TR 0001/07/E-601–0016c© 2007 SICE

T. SICE Vol.E-6 No.1 January 2007 17

Table 1 Sample observation sites for the van der Corput sequences in
base 2,3,4 and 5.

n S2 S3 S4 S5

0 0.0000 0.0000 0.0000 0.0000
1 0.5000 0.3333 0.2500 0.2000
2 0.2500 0.6667 0.5000 0.4000
3 0.7500 0.1111 0.7500 0.6000
4 0.1250 0.4444 0.0625 0.8000
5 0.6250 0.7778 0.3125 0.0400
6 0.3750 0.2222 0.5625 0.2400
7 0.8750 0.5556 0.8125 0.4400
8 0.0625 0.8889 0.1250 0.6400
9 0.5625 0.0370 0.3750 0.8400
...

...
...

...
...

chromosomes of the real-coded GAs are vectors of real numbers,

these GAs easily utilize the uniformity of the low-discrepancy

sequence.

In the next section, we will present the low-discrepancy se-

quence used in this study. The section 3 will describe how to

apply the low-discrepancy sequence generator into real-coded

GAs. Then, in the section 4, we will verify the effectiveness of

the use of the low-discrepancy sequence through numerical ex-

periments on several benchmark problems. The sections 5 and 6

are the discussion and the conclusion, respectively.

2. Low-discrepancy Sequence

Although a number of low-discrepancy sequences have been

proposed7), 12), 17), 22), 23), this study uses canonical one. The se-

quence used in this study is described below.

2. 1 Van der Corput sequence

The van der Corput sequence is a one-dimensional low-

discrepancy sequence22). For an integerb≥ 2, the van der Cor-

put sequence in baseb is the sequenceS= {t0, t1, t2, · · ·}, where

tn = φb(n). (4)

φb(n) is a radical inverse function, given by

φb(n) =
∞

∑
j=0

a j

b j+1 , (5)

wherea j (j = 0,1,2, · · ·) is a coefficient of a digit expansion of

the integern in baseb, i.e.,

n =
∞

∑
j=0

a jb
j . (6)

Different values of baseb provide us with different van der

Corput sequences.Table 1 shows the first ten observation sites

for four van der Corput sequences in base2, 3, 4 and5, respec-

tively.

2. 2 Halton sequence

The van der Corput sequence described above has an ability

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x1

x2

x1

x2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A) Halton sequence

B) pseudo-random number sequence

Fig. 1 2-D plots of 500 points generated by A) the Halton sequence,
and B) the pseudo-random number sequence, respectively.

to generate points that are uniformly distributed only in a one-

dimensional space. In order to generate points uniformly dis-

tributed in a multi-dimensional space, Halton proposed the Hal-

ton sequence7).

The Halton sequence is an extension of the van der Corput se-

quence to a multi-dimensional space. Thes-dimensional Halton

sequence is defined asSH = {x0,x1,x2, · · ·}, where

xn =
(
φb1(n),φb2(n), · · · ,φbs

(n)
)
. (7)

b1,b2, · · · ,bs are integers that are greater than one and pair-

wise prime. In practice, they are often chosen to be the firsts

prime numbers. This sequence enables us to obtain points uni-

formly distributed in a multi-dimensional space.Fig. 1 shows

2-dimensional plots of 500 points generated by the Halton se-

quence and the pseudo-random number sequence (Mersenne

Twister). As shown in the figure, the points generated by the

Halton sequence seem to have a better uniformity.

2. 3 Digit-scrambling

As the Halton sequence is deterministic, it is difficult to use

statistical techniques for analyzing it. This nature is inconve-

nient when we try to compare the performances of GAs with

and without the Halton sequence. In order to introduce ran-

domness into the Halton sequence, this study utilizes a digit-

scrambling12). Even when the scrambling is applied, the se-

quence still possesses a good uniformity22).

When we apply the digit-scrambling into the Halton sequence,

then-th point in the sequence isxn =(φ ′b1
(n),φ ′b2

(n), · · · ,φ ′bs
(n)),

18 T. SICE Vol.E-6 No.1 January 2007

where

φ ′bi
(n) =

Jmax

∑
j=0

π(i)
j (a j)

b j+1
i

+
∞

∑
j=Jmax+1

a j

b j+1
i

, (8)

π(i)
j is a randomly generated permutation of{0,1, · · · ,bi − 1},

andJmax is a positive integer.

This study applies the low-discrepancy sequence described

here into several real-coded GAs.

3. Application of Low-discrepancy Sequences to EAs

In order to confirm whether the use of the low-discrepancy se-

quence improves GAs, this study applies the low-discrepancy se-

quence described in the previous section into several real-coded

GAs. We should note here that, as mentioned in the section 1,

we use the low-discrepancy sequence only for generating new

sampling points (individuals). Therefore, it is insufficient even

when we simply substitute the low-discrepancy sequence gen-

erator for the random number generator in EAs. In this section,

through the application of the low-discrepancy sequence into the

real-coded GA used in this study, we will describe how to apply

the low-discrepancy sequences into EAs.

This study uses MGG (a Minimal Generation Gap model)21)

as a generation alternation model of our GAs because it is rela-

tively simple. The followings are an algorithm of MGG. In the

algorithm described below, a recombination operator requires

m≥ 2 parents to generate offsprings.

[Algorithm: MGG]

(1) Initialization

As an initial population, createnp individuals. SetGeneration

= 0.

(2) Selection for reproduction

Selectm individuals without replacement from the popula-

tion. The selected individuals, that are expressed here as

p1,p2, · · · ,pm, are used as the parents for the recombination

operator in the next step.

(3) Generation of offsprings

Generatenc children by applying some recombination opera-

tor to the parents selected in the previous step.

(4) Selection for survival

Select two individuals from the family containing the two par-

ents (p1 andp2) and their children. One is the individual that

has the best objective value, and the other is selected ran-

domly. Then, replace the two parents with the selected in-

dividuals.

(5) Termination

Stop if the halting criteria are satisfied. Otherwise,Generation

←Generation+1, and then return to the step 2.

As mentioned above, this study uses the low-discrepancy se-

quence only when trying to create new individuals. Therefore,

we can apply it only to the steps 1 and 3 of MGG. Noting this

point, the reminder of this section will describe each of the steps

of MGG in greater detail.

3. 1 Step: Initialization

As an initial population, createnp individuals. In real-coded

GAs, individuals are represented ass-dimensional real number

vectors, wheres is the dimension of the search space. To make

the initial population uniformly distributed, we use the low-

discrepancy sequence generator in this study.

3. 2 Step: Selection for reproduction

Selectm parents,p1,p2, · · · ,pm, randomly without replace-

ment from the population. For the random selection of this step,

the pseudo-random number generator is used.

3. 3 Step: Generation of offsprings

Generatenc children by applying a recombination operator

into the parents selected in the previous step. As the recombina-

tion operator, this study uses any of ENDX (an Extended Normal

Distribution Crossover)9), UNDX (a Unimodal Normal Distri-

bution Crossover)18) and SPX (a Simplex Crossover)8). This

section however describes the technique of applying the low-

discrepancy sequence into ENDX, for example.

ENDX utilizesmparents,p1,p2, · · · ,pm, and generates a child

c according to the following equation.

c = p+ξd+
m

∑
i=3

ηip′i , (9)

where

p = (p1 +p2)/2, (10)

d = p2−p1, (11)

p′i = pi −
1

m−2

m

∑
j=3

p j . (12)

ξ andηi are random numbers drawn from normal distributions

N(0,α2) and N(0,β 2), respectively. This study uses the fol-

lowing recommended values for the parameters;α = 0.434,

β = 0.35/
√

m−3 andm= s+2.

In this study,ξ andηi are generated using the low-discrepancy

sequence generator, instead of using the pseudo-random num-

ber generator. In order to generate normally distributed numbers

from uniformly distributed ones, this study uses the Box-Muller

transformation (see Appendix A)2). Although we can also use

the rejection method or the method based on the central limit

theorem to generate normally distributed numbers, these meth-

ods may destroy the uniformity in the sequence.

3. 4 Step: Selection for survival

Choose two individuals from the family that includes the two

parents (p1 andp2) and their children. One is the individual that

has the best objective value, and the other is selected randomly.

Then, replace the two parents (i.e.,p1 andp2) with the selected

T. SICE Vol.E-6 No.1 January 2007 19

Table 2 Benchmark functions.

Objective function Search region Optimum
Sphere fsp(x) = ∑s

i=1 x2
i −5.12≤ xi ≤ 5.12 fsp(0, · · · ,0) = 0

Rosenbrock fro(x) = ∑s−1
i=1 [100(xi+1−x2

i)
2 +(xi −1)2] −2.048≤ xi ≤ 2.048 fro(1, · · · ,1) = 0

Rastrigin fra(x) = 10s+∑s
i=1[x

2
i −cos(2πxi)] −5.12≤ xi ≤ 5.12 fra(0, · · · ,0) = 0

Wide & shifted fws(x) = 10s+∑s
i=1[x

2
i −cos(2πxi)] −90≤ xi ≤ 110 fws(0, · · · ,0) = 0

Rastrigin

Griewangk fgr(x) = 1
4000∑s

i=1 x2
i −∏s

i=1 cos
(

xi√
i

)
+1 −512≤ xi ≤ 512 fgr(0, · · · ,0) = 0

individuals. We use the pseudo-random number generator for

the random selection of this step.

4. Numerical Experiments

In order to confirm the effectiveness of the use of the low-

discrepancy sequence, this section applies the real-coded GAs

with and without the low-discrepancy sequence generator into

several benchmark functions.

4. 1 Objective functions

Five benchmark functions listed inTable 2 were minimized

in our experiments. The experiments were performed on 10, 15,

and 20 dimensional functions (i.e.,s= 10,15 and20). In each

trial, we generated an initial population uniformly in the search

region given in the table, and considered no explicit treatment of

the search region during the search.

Sphere and Rosenbrock functions are unimodal. The Rosen-

brock function is also non-separable since the optimum resides

at the deep and curved valley. Rastrigin function is multimodal,

and it has a number of local optima around a global optimum.

Although the search region of the original Rastrigin function

is [−5.12,5.12]s, we enlarged and shifted it to[−90,110]s in

a wide and shifted Rastrigin function. This treatment makes the

optimization problem difficult. Griewangk function is also mul-

timodal. However, this function is close to the Sphere function

when the dimension of the search space is high. Therefore, the

Griewangk function becomes easy as the dimension increases.

4. 2 Experimental setup

We used three real-coded GAs, i.e., ENDX/MGG, UNDX/MGG

and SPX/MGG, that use ENDX, UNDX (see Appendix B)18)

and SPX (see Appendix C)8), respectively, as a recombina-

tion operator, and use MGG as a generation alternation model.

In order to confirm the effectiveness of the use of the low-

discrepancy sequence, the performances of the GAs with the

low-discrepancy sequence were compared with those without

the low-discrepancy sequence. This study used the scram-

bled Halton sequence described in the section 2. 3 as a low-

discrepancy sequence generator, and the Mersenne Twister13) as

the a pseudo-random number generator.

The population sizes of ENDX/MGG, UNDX/MGG and

SPX/MGG werenp = 15s,10s and20s, respectively. The num-

ber of the children generated by a recombination operator per

selectionnc was 100 in all of the trials. We did not always use

the recommended values for these parameters because the use

of the recommended values made us difficult to confirm the dif-

ferences between the performances of the GAs with and without

the low-discrepancy sequence. For the other parameters of the

GAs, we used their recommended values.

We performed 300 trials for the unimodal functions and 500

trials for the multimodal functions. Each trial was continued un-

til the best fitness value reached less than1.0×10−6, the popula-

tion was converged within the range of1.0×10−6 in each coor-

dinate, the number of function evaluation reached1.0×109, or

the best fitness value did not improve for2.0×107 function eval-

uations. The optimum was considered to be found only when the

best fitness value reached less than1.0×10−6.

4. 3 Results

The experimental results of the GAs with the low-discrepancy

sequence (with LDS) and those without the low-discrepancy se-

quence (w/o LDS) are shown inTable 3. The performances were

compared using two standards, the number of trials where the al-

gorithm succeeds in finding an optimum (SUC) and the average

number of function evaluations required for finding an optimum

(AVG). The standard deviations of the number of function eval-

uations required (SD) are also shown in the table.

Except for the trials where SPX/MGG was applied to the

higher-dimensional Rosenbrock functions, the GAs succeeded

in finding the optimum solutions in the unimodal functions. The

GAs with the low-discrepancy sequence optimized these func-

tions with the smaller number of function evaluations than those

without the low-discrepancy sequence. The difference of the

number of function evaluations was statistically significant at

the significance levelα = 5%, except for the experiments where

SPX/MGG was applied to the Sphere functions.

In most of the multimodal functions, on the other hand, the

GAs with the low-discrepancy sequence found the optimum so-

lutions with a higher probability than those without the low-

discrepancy sequence. The difference of the probability was sta-

tistically significant at the significance levelα = 5% when the

GAs were applied to the Rastrigin functions, except for the trials

where UNDX/MGG was applied to the 20-dimensional function.

In addition, the GAs with the low-discrepancy sequence required

the smaller number of function evaluations for the optimization

20 T. SICE Vol.E-6 No.1 January 2007

Table 3 Summary of results.

Objective Dimension ENDX/MGG UNDX/MGG SPX/MGG
function s with LDS w/o LDS with LDS w/o LDS with LDS w/o LDS

SUC SUC SUC SUC SUC SUC
AVG AVG AVG AVG AVG AVG
STD STD STD STD STD STD

300/300 300/300 300/300 300/300 300/300 300/300
10 2.2674×105 2.2900×105 1.4677×105 1.4841×105 2.5733×105 2.5810×105

±9.7978×103 ±8.9727×103 ±6.7206×103 ±6.7950×103 ±1.5567×104 ±1.4999×104

300/300 300/300 300/300 300/300 300/300 300/300
Sphere 15 4.0780×105 4.0958×105 2.7776×105 2.7912×105 4.8032×105 4.8197×105

±1.2850×104 ±1.2864×104 ±8.6498×103 ±8.8160×103 ±1.9569×104 ±1.9578×104

300/300 300/300 300/300 300/300 300/300 300/300
20 6.0907×105 6.1450×105 4.2934×105 4.3293×105 7.3653×105 7.3882×105

±1.5674×104 ±1.5969×104 ±1.1957×104 ±1.3071×104 ±2.3307×104 ±2.2777×104

300/300 300/300 300/300 300/300 300/300 300/300
10 9.8427×105 1.0103×106 1.0395×106 1.0511×106 8.7382×105 8.9910×105

±6.6814×104 ±8.3740×104 ±4.8351×104 ±5.4197×104 ±7.8563×104 ±8.9111×104

300/300 300/300 300/300 300/300 3/300 0/300
Rosenbrock 15 3.2853×106 3.4639×106 3.2363×106 3.2818×106 6.6822×106 —

±2.2863×105 ±2.5642×105 ±1.0344×105 ±1.1180×105 ±9.0693×105 —
300/300 300/300 300/300 300/300 0/300 0/300

20 9.7032×106 1.0601×107 7.4567×106 7.5397×106 — —
±7.4792×105 ±1.0719×106 ±2.1838×105 ±2.2955×105 — —

451/500 388/500 407/500 378/500 409/500 381/500
10 5.5360×105 5.6773×105 4.9821×105 5.1056×105 4.8443×105 4.8543×105

±6.1959×104 ±7.0424×104 ±8.7026×104 ±9.5134×104 ±3.0292×104 ±3.3277×104

442/500 359/500 366/500 339/500 402/500 353/500
Rastrigin 15 8.9325×105 9.3697×105 8.7400×105 9.0513×105 8.7912×105 8.8518×105

±8.8003×104 ±1.0337×105 ±1.1868×105 ±1.3172×105 ±3.6783×104 ±3.9989×104

453/500 371/500 370/500 347/500 402/500 377/500
20 1.2381×106 1.3021×106 1.2664×106 1.3160×106 1.3436×106 1.3469×106

±1.0924×105 ±1.7820×105 ±1.3927×105 ±1.4448×105 ±5.0985×104 ±4.7696×104

175/500 179/500 331/500 327/500 304/500 300/500
10 7.2372×105 7.3512×105 5.9066×105 6.1706×105 5.9476×105 5.9648×105

±9.1184×104 ±1.0132×105 ±9.2806×104 ±1.0293×105 ±3.7113×104 ±3.6087×104

Wide & 16/500 14/500 186/500 172/500 206/500 171/500
shifted 15 1.2868×106 1.2181×106 1.1009×106 1.1191×106 1.0728×106 1.0729×106

Rastrigin ±1.6509×105 ±1.4141×105 ±1.5911×105 ±1.5806×105 ±4.5707×104 ±4.0789×104

1/500 0/500 89/500 78/500 132/500 124/500
20 1.8751×106 — 1.6741×106 1.7691×106 1.6114×106 1.6236×106

±0.0000×100 — ±2.2611×105 ±2.7190×105 ±4.5525×104 ±5.4931×104

361/500 337/500 351/500 335/500 419/500 425/500
10 5.8344×105 5.9290×105 4.5742×105 4.6706×105 4.7076×105 4.7514×105

±7.8820×104 ±8.6214×104 ±9.8646×104 ±8.9377×104 ±2.6541×104 ±2.8373×104

487/500 486/500 495/500 492/500 499/500 497/500
Griewangk 15 6.7858×105 6.9400×105 4.8974×105 4.9386×105 7.0786×105 7.0972×105

±4.3654×104 ±6.0286×104 ±2.1687×104 ±2.3570×104 ±2.4850×104 ±2.5102×104

491/500 489/500 500/500 496/500 500/500 500/500
20 9.2828×105 9.4666×105 7.3605×105 7.4326×105 1.0471×106 1.0479×106

±7.0790×104 ±7.1118×104 ±2.3879×104 ±2.4426×104 ±2.8843×104 ±2.6021×104

in most of the multimodal functions.

The experimental results therefore indicate that the applica-

tion of the low-discrepancy sequence into real-coded GAs de-

creases the number of function evaluations required and in-

creases a probability of finding an optimum solution. Note here

that this section compared the performances of the GAs with and

without the low-discrepancy sequence only. These GAs were not

always use the recommended values for their parameters. Thus,

we cannot use the experimental results to compare the perfor-

mances of the GAs that utilize the different recombination oper-

ators from each other.

5. Discussion

5. 1 Steps where low-discrepancy sequences are applied

In the previous section, we showed that the use of the low-

discrepancy sequence has an ability to improve the search per-

formances of real-coded GAs. As described in the section 3, on

T. SICE Vol.E-6 No.1 January 2007 21

Table 5 Performances of the 4 GAs mentioned in the section 5. 1.

Objective Dimension ENDX/MGG (both) ENDX/MGG (none) ENDX/MGG (init) ENDX/MGG (xover)
function s SUC SUC SUC SUC

AVG AVG AVG AVG
STD STD STD STD

300/300 300/300 300/300 300/300
10 9.8427×105 1.0103×106 1.0052×106 9.6852×105

±6.6814×104 ±8.3740×104 ±7.8834×104 ±7.5416×104

300/300 300/300 300/300 300/300
Rosenbrock 15 3.2853×106 3.4639×106 3.4570×106 3.2952×106

±2.2863×105 ±2.5642×105 ±2.3935×105 ±2.2206×105

300/300 300/300 300/300 300/300
20 9.7032×106 1.0601×107 1.0595×107 9.6765×106

±7.4792×105 ±1.0719×106 ±9.6709×105 ±8.6192×105

451/500 388/500 455/500 395/500
10 5.5360×105 5.6773×105 5.5970×105 5.7061×105

±6.1959×104 ±7.0424×104 ±6.3677×104 ±7.2881×104

442/500 359/500 443/500 374/500
Rastrigin 15 8.9325×105 9.3697×105 9.0542×105 9.3388×105

±8.8003×104 ±1.0337×105 ±9.4941×104 ±1.0421×105

453/500 371/500 445/500 361/500
20 1.2381×106 1.3021×106 1.2515×106 1.2857×106

±1.0924×105 ±1.7820×105 ±1.2454×105 ±1.2744×105

Table 4 GAs used in the section 5. 1. The low-discrepancy sequence
generator (LDS) and the pseudo-random number generator
(PRN) are differently applied to the steps of ENDX /MGG.

GAs step 1 step 3
Initialization Gen. of off.

ENDX /MGG (both) LDS LDS
ENDX /MGG (none) PRN PRN
ENDX /MGG (init) LDS PRN
ENDX /MGG (xover) PRN LDS

the other hand, we applied the low-discrepancy sequence gener-

ator into the two steps of the GAs, i.e., the “Initialization” step

(step 1) and the “Generation of offsprings” step (step 3). This

section investigates the effect that the application of the the low-

discrepancy sequence into these steps has.

We applied four real-coded GAs listed inTable 4 into the

Rosenbrock and the Rastrigin functions. Although all of the

GAs used here utilized ENDX as a recombination operator and

MGG as a generation alternation model, they differently applied

the low-discrepancy sequence generator and the pseudo-random

number generator into the two steps. ENDX/MGG (both) and

ENDX/MGG (none) are the GAs that use the low-discrepancy

sequence generator and the pseudo-random number generator,

respectively, for generating new individuals. ENDX/MGG (init)

and ENDX/MGG (xover), on the other hand, apply the low-

discrepancy sequence generator only to the “Initialization” step

and the “Generation of offsprings” step, respectively. All of the

other experimental conditions were the same as those used in the

previous section.

Table 5 summarizes the experimental results for the four

GAs. When we compared the GAs with respect to the num-

ber of function evaluations required for optimizing the Rosen-

brock functions, no statistical difference between ENDX/MGG

(none) and ENDX/MGG (init) was found at the significance

level α = 1%. We could not also find any notable difference

between ENDX/MGG (both) and ENDX/MGG (xover) in the 15

and 20 dimensional Rosenbrock functions (the significance level

α = 1%). These results indicate that the application of the low-

discrepancy sequence into the “Generation of offsprings” step

decreases the number of function evaluations required for the

optimization. The application of the low-discrepancy sequence

into the “Initialization” step, on the other hand, may not improve

the search performances of the GAs in the Rosenbrock function.

In the Rastrigin functions, the performances of ENDX/MGG

(both) and ENDX/MGG (none) were almost the same as those

of ENDX/MGG (init) and ENDX/MGG (xover), respectively,

with respect to the probability of finding an optimum solution

(the significance levelα = 1%). The application of the low-

discrepancy sequence into the “Initialization” step, therefore,

may enhance a probability of finding an optimum in multimodal

functions. On the contrary, even if the low-discrepancy sequence

was applied to the “Generation of offsprings” step, a probability

of finding an optimum was not improved in multimodal func-

tions.

5. 2 Scrambling techniques

As described in the section 2. 3, this study uses the digit-

scrambling in order to introduce randomness into the Halton se-

quence. However, some other techniques have been proposed

for the same purpose12), 22), 23). This section shows that the other

techniques are not always appropriate for the application into

EAs.

22 T. SICE Vol.E-6 No.1 January 2007

Table 6 Performances of ENDX/MGGs using the digit-scrambled, the random linear scrambled, and
the random-start Halton sequences, respectively.

Objective Dimension Digit-scrambling Random linear scrambling Random-start
function s b: small b: large b: small b: large b: small b: large

SUC SUC SUC SUC SUC SUC
AVG AVG AVG AVG AVG AVG
STD STD STD STD STD STD

300/300 300/300 300/300 300/300 300/300 0/300
10 9.8427×105 1.0036×106 9.7380×105 1.0293×106 9.7361×105 —

±6.6814×104 ±8.6969×104 ±7.8254×104 ±3.1068×105 ±6.8190×104 —
300/300 300/300 300/300 299/300 300/300 0/300

Rosenbrock 15 3.2853×106 3.4626×106 3.3177×106 3.5301×106 3.3113×106 —
±2.2863×105 ±2.4170×105 ±2.4972×105 ±5.9383×105 ±2.4769×105 —

300/300 300/300 300/300 294/300 300/300 0/300
20 9.7032×106 1.0673×107 9.7074×106 1.0844×107 9.3812×106 —

±7.4792×105 ±1.0610×106 ±9.6406×105 ±3.6527×106 ±7.6102×105 —
451/500 419/500 448/500 426/500 459/500 0/500

10 5.5360×105 5.6453×105 5.5189×105 5.5680×105 5.5802×105 —
±6.1959×104 ±6.6153×104 ±5.7641×104 ±5.7871×104 ±6.6538×104 —

442/500 380/500 454/500 401/500 434/500 0/500
Rastrigin 15 8.9325×105 9.1908×105 8.9508×105 9.0596×105 9.0318×105 —

±8.8003×104 ±1.0589×105 ±8.2201×104 ±1.0625×105 ±9.2358×104 —
453/500 409/500 463/500 415/500 439/500 0/500

20 1.2381×106 1.2728×106 1.2399×106 1.2432×106 1.2759×106 —
±1.0924×105 ±1.3010×105 ±1.0618×105 ±9.5050×104 ±1.3851×105 —

In order to introduce randomness into the Halton sequence,

this section uses three techniques, i.e., the digit-scrambling de-

scribed in the section 2. 3, the random linear scrambling22) and

the random-start Halton sequence23). The random linear scram-

bling uses

π(i)
j (a) =

j

∑
k=0

M(i)
jk a j +c(i)

j (mod bi), (13)

asπ(i)
j given in the equation (8), whereM(i)

jk andc(i)
j are integers

randomly selected from{0,1, · · · ,bi−1}. The random-start Hal-

ton sequence is, on the other hand, equivalent to the sequence

SrH = {y0,y1,y2, · · ·}, where

yn =
(
φb1(n+m1),φb2(n+m2), · · · ,φbs

(n+ms)
)
.

m1,m2, · · · ,ms (mi ≥ 0) are constant integers randomly selected.

In this section, we applied the Halton sequences with the dif-

ferent scrambling techniques to ENDX/MGG, and compared

their performances. As mentioned in the section 2. 2, when we

try to utilize thes-dimensional Halton sequence, the firstsprime

numbers are generally used as its basesb. In addition to using

the Halton sequences with these prime numbers, we also used

those with the firsts prime numbers larger than 547 (the 101-

th prime number) in this section. This experiment simulates the

situation in which we try to solve higher-dimensional problems.

All of the other experimental conditions were the same as those

used in the section 4.

The experimental results are summarized inTable 6. When

we applied the Halton sequence with the small bases into

x1

x2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Fig. 2 2-D plot of 500 points generated by the random-start Halton se-
quence of large bases.

ENDX/MGG (b: small), its search performance was indepen-

dent of the scrambling technique applied. The performance of

ENDX/MGG, on the other hand, depended on the scrambling

technique when the large prime numbers were used (b: large).

Especially when we used the random-start Halton sequence with

the large bases, the GA failed in optimizing the functions for all

of the trials. Real-coded GAs generally create not more than

hundreds of individuals at a time. When the random-start Hal-

ton sequence with the large bases is used to generate several hun-

dreds of points, they are distributed in the biased area (Fig. 2).

Since the GA using the random-start Halton sequence with the

large bases could not create sampling points uniformly, it should

fail in finding an optimum solution.

The performance of the GA using the digit-scrambled Hal-

ton sequence was not worse than that using the pseudo-random

number sequence, even when the large prime numbers are used

as its bases. As points generated by the digit-scrambled Hal-

T. SICE Vol.E-6 No.1 January 2007 23

x1

x2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Fig. 3 2-D plot of 500 points generated by the digit-scrambled Halton
sequence of large bases.

ton sequence are similar to those of the pseudo-random num-

ber sequence (Fig. 3), the performances of the GAs would re-

semble each other. The GA using the random linear scrambled

Halton sequence with the large bases, on the other hand, some-

times failed in the optimization, even when it was applied to

the unimodal function. The reason for the failure in the opti-

mization is that the random linear scrambled Halton sequence

with large bases often fails in generating points uniformly. The

digit-scrambled Halton sequence with large bases scarcely cre-

ates points distributed in the biased area.

The experimental results indicate that, even when we try

to apply GAs into high-dimensional functions, the use of the

digit-scrambled Halton sequence should improve their search

performance. The use of other scrambling techniques, on the

other hand, may not be suitable for the optimization of high-

dimensional functions.

6. Conclusion

This study applied the low-discrepancy sequence, instead

of the pseudo-random number sequence, into the real-coded

GAs. The experimental results showed that the use of the low-

discrepancy sequence has an ability to enhance the search per-

formances of the real-coded GAs. Through the additional ex-

periments, we found that the application of the low-discrepancy

sequence into the “Initialization” step enhances the probability

of finding an optimum solution and the application of the low-

discrepancy sequence into “Generation of offsprings” step de-

creases the number of function evaluations required for the opti-

mization. We then showed that, even when we try to apply GAs

into high-dimensional functions, the use of the digit-scrambled

Halton sequence should improve their search performance. Even

when we applied the low-discrepancy sequence to the GAs, the

improvement of the performances was slight. However, since the

application of the low-discrepancy sequence requires no modifi-

cation on GAs, it should be a useful technique.

As described in the section 1, several studies have showed that

the performances of GAs depend on the pseudo-random number

sequence applied3), 4), 14), 15). However, we do not know what na-

ture of the sequences improves the performances of GAs. More-

over, Wiese and his colleagues have reported that the behavior

and performance of the random number sequence in EAs are de-

pendent on the different characteristics of the problems24). On

the other hand, this study improved the performances of the GAs

using the low-discrepancy sequence. The low-discrepancy se-

quence is less random, but has a better uniformity than the ran-

dom number sequence. The originality of this work is to utilize

the uniformity of the low-discrepancy sequence for EAs.

The low-discrepancy sequences have been applied into EAs

in few studies20). In this study, we applied the low-discrepancy

sequence only to the simple real-coded GAs. Therefore, we

should confirm whether the low-discrepancy sequences improve

the search performances of more complicated EAs. In addi-

tion, as this study only used the Halton sequence as the low-

discrepancy sequence, we should test EAs that apply other low-

discrepancy sequences.

References

1) T. Bäck, U. Hammel and H.P. Schwefel: Evolutionary Computa-
tion: Comments on the History and Current State, IEEE Trans. on
Evolutionary Computation,1-1, 3/17 (1997)

2) G.E.P. Box and M.E. Muller: A Note on the Generation of Random
Normal Deviates. Ann. Math. Stat.,29, 610/611 (1958)

3) E. Cant́u-Paz: On Random Numbers and the Performance of Ge-
netic Algorithms, Proc. of Genetic and Evolutionary Computation
Conference (GECCO) 2002, 754/761 (2002)

4) J.M. Daida, D.S. Ampy, M. Ratanasavetavadhana, H. Li and O.A.
Chaudhri: Challenges with Verification, Repeatability, and Mean-
ingful Comparison in Genetic Programming: Gibson’s Magic,
Proc. of GECCO 1999, 1851/1858 (1999)

5) K. Deb, D. Joshi and A. Anand: Real-coded Evolutionary Algo-
rithms with Parent-Centric Recombination, Proc. of Congress on
Evolutionary Computation (CEC) 2002, 61/66 (2002)

6) L.J. Eshelman and J.D. Schaffer: Real-coded Genetic Algorithms
and Interval-Schemata, Proc. of Foundations of Genetic Algorithms
(FOGA) 2, 187/202 (1993)

7) J.H. Halton: On the Efficiency of Certain Quasi-Random Sequences
of Points in Evaluating Multi-Dimensional Integrals, Numerische
Mathematik,2, 84/90 (1960)

8) T. Higuchi, S. Tsutsui and M. Yamamura: Simplex Crossover for
Real-coded Genetic Algorithms, Trans. of the Japanese Society for
Artificial Intelligence (JSAI),16-1, 147/155 (2001, in Japanese)

9) S. Kimura, I. Ono, H. Kita and S. Kobayashi: An Extension of
UNDX based on Guidelines for Designing Crossover Operators:
Proposition and Evaluation of ENDX, Trans. of the Society of In-
strument and Control Engineers (SICE),36-12, 1162/1171 (2000,
in Japanese)

10) S. Kimura and K. Matsumura: Genetic Algorithms using Low-
Discrepancy Sequences, Proc. of GECCO 2005, 1341/1346 (2005)

11) H. Kita, I. Ono and S. Kobayashi: Multi-parental Extension of the
Unimodal Normal Distribution Crossover for Real-coded Genetic
Algorithms, Proc. of CEC 1999, 1581/1588 (1999)

12) J. Matoŭsek: Geometric Discrepancy: An Illustrated Guide,
Springer (1999)

13) M. Matsumoto and T. Nishimura: Mersenne Twister: A 623-
Dimensionally Equidistributed Uniform Pseudorandom Number
Generator, ACM Trans. on Modeling and Computer Simulation,8-

24 T. SICE Vol.E-6 No.1 January 2007

1, 3/30 (1998)
14) M.M. Meysenburg and J.A. Foster: Randomness and GA Perfor-

mance, Revisited, Proc. of GECCO 1999, 425/432 (1999)
15) M.M. Meysenburg and J.A. Foster: Random Generator Quality and

GP Performance, Proc. of GECCO 1999, 1121/1126 (1999)
16) W.J. Morokoff and R.E. Caflisch: Quasi-random sequences and

their discrepancies, SIAM J. on Scientific Computing,15-6,
1251/1279 (1994)

17) H. Niederreiter: Random Number Generation and Quasi-Monte
Carlo Methods, SIAM (1992)

18) I. Ono, H. Satoh and S. Kobayashi: A Real-coded Genetic Al-
gorithm for Function Optimization Using the Unimodal Normal
Distribution Crossover, J. of the JSAI,14-6, 1146/1155 (1999, in
Japanese)

19) I. Ono, M. Yamamura and H. Kita: Real-coded Genetic Algorithms
and Their Applications, J. of the JSAI,15-2, 259/266 (2000, in
Japanese)

20) I.C. Parmee and C.R. Bonham: Improving Cluster Oriented Genetic
Algorithms for High-performance Region Identification, Proceed-
ings US United Engineering Foundation’s ‘Optimization in Indus-
try’ Conference, 14p (2001)

21) H. Satoh, I. Ono and S. Kobayashi: A New Generation Alteration
Model of Genetic Algorithms and Its Assessment, Trans. of the
JSAI,12-5, 734/744 (1997, in Japanese)

22) J. Wang, M. Taguri, S. Tezuka, Y. Kabashima and N. Ueda: Com-
putational Statistics I: New Methods for the Computation of Proba-
bility, Iwanami Shoten (2003, in Japanese)

23) X. Wang and F.J. Hickernell: Randomized Halton Sequences,
Mathematical and Computer Modelling,32, 887/899 (2000)

24) K.C. Wiese, A. Hendriks, A. Deschênes and B.B. Youssef: The Im-
pact of Pseudorandom Number Quality on P-RnaPredict, a Parallel
Genetic Algorithm for RNA Secondary Structure Prediction, Proc.
of GECCO 2005, 479/480 (2005)

Appendix A. Box-Muller Transformation

The Box-Muller transformation is a method of generating

pairs of independent normally distributed random numbers,

given a source of uniformly distributed random numbers2). If

x1 andx2 are uniformly and independently distributed between

0 and1, thenz1 andz2 defined below follow a normal distribu-

tion with meanµ = 0 and varianceσ2 = 1.

z1 =
√
−2ln(x1)cos(2πx2), (A. 1)

z2 =
√
−2ln(x1)sin(2πx2). (A. 2)

When the low-discrepancy sequences are used, the Box-

Muller transformation seems to give us “better” normally dis-

tributed points (Fig.A.1).

Appendix B. Application of Low-discrepancy Se-
quences into UNDX

UNDX (Unimodal Normal Distribution Crossover)18) is a re-

combination operator that requires three parents (p1, p2, p3), and

it generates offsprings according to the following equation.

c = p+ξd+D
s−1

∑
i=1

ηiei . (B. 1)

where

z1

z2

z1

z2

A) Halton sequence

B) pseudo-random number sequence

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

Fig. A.1 2-D plots of 500 normally distributed points generated by A)
the Halton sequence, and B) the pseudo-random number se-
quence, respectively.

p = (p1 +p2)/2, (B. 2)

d = p2−p1, (B. 3)

D =

√
|p3−p1|2−

[d · (p3−p1)]2

|d|2 , (B. 4)

ξ ∼ N(0,α2), (B. 5)

ηi ∼ N(0,β 2). (B. 6)

The vectorsei (i = 1,2, · · · ,s− 1) are normalized orthogonal

bases that span the subspace orthogonal to the vectord. α = 0.5

andβ = 0.35/
√

s are recommended, wheres is the dimension

of the search space.

When we try to apply the low-discrepancy sequence into

UNDX, we use the numbersξ andηi generated from the low-

discrepancy sequence.

Appendix C. Application of Low-discrepancy Se-
quences into SPX

SPX (Simplex Crossover)8) is a multi-parental extension of

BLX-α 6). SPX requiresm parents (p1,p2, · · · ,pm) and gener-

ates offsprings according to the following procedure.

(1) Let the center of mass of the parents beg = 1
m ∑m

i=1pi .

(2) Computex1 = g+α(p1−g).

(3) Computexk andck (k = 2,3, · · · ,m) according to the

following equations.

xk = g+α(pk−g), (C. 1)

ck = rk−1(xk−1−xk +ck−1), (C. 2)

T. SICE Vol.E-6 No.1 January 2007 25

wherec1 = 0, andα is a constant parameter.rk is a random

number given by

rk = u
1
k
k , (C. 3)

whereuk is a uniform random number in[0,1].

(4) Generate a offspring according to the following equa-

tion.

c = xm+cm. (C. 4)

As the parameters of SPX,α =
√

s+2 andm= s+1 are recom-

mended.

When we try to apply the low-discrepancy sequence into SPX,

we simply substituteuk generated by the low-discrepancy se-

quence generator for that generated by the pseudo-random num-

ber generator.

Shuhei KIMURA (Member)

Shuhei Kimura received his M.E. degree from Ky-
oto Univ. in 1998 and Ph.D degree from Tokyo Insti-
tute of Tech. in 2001. He had been in RIKEN Ge-
nomic Sciences Center as a research scientist since
2001. Since 2004, he has been in Tottori Univ. as
an associate professor. His current research interests
are evolutionary algorithms and bioinformatics.

Koki M ATSUMURA

Koki Matsumura received his Ph.D degree from Os-
aka City Univ. in 1978. He had been in Ibaraki Univ.
as an associate professor, and Konan Univ. as a pro-
fessor. Since 2002, he has been in Tottori Univ. as
a professor. His current research interests are evolu-
tionary algorithms, knowledge engineering, study of
management information and financial engineering.

Reprinted from Trans. of the SICE

Vol. 42 No. 6 659/667 2006

